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Abstract

An intrinsic characteristic of current projects in the area of
sensor networks is the heterogeneity of hardware and appli-
cation requirements. In addition, the requirements of current
applications are expected to change over time. This makes
developing, deploying, and optimizing sensor network appli-
cations an extremely difficult task. In this paper, we present
the architecture of TinyCubus, a flexible and adaptive cross-
layer framework for TinyOS-based sensor networks that aims
at providing the necessary infrastructure to cope with the
complexity of such systems. TinyCubus consists of three
parts: a data management framework that selects and adapts
both system and data management components, a cross-layer
framework that enables optimizations through cross-layer in-
teractions, and a configuration engine that installs components
dynamically. We show the feasibility of our architecture by
describing and evaluating a code distribution algorithm that
optimizes its behavior by using application knowledge about
the sensor topology.

1. INTRODUCTION

In the last few years wireless sensor networks have been
proposed as a way to unobtrusively gather real-world data. A
sensor network consists of small networked devices equipped
with sensors. Each node is able to sense the physical world
and process data in the network and transmit it using multi-hop
communication. Since most nodes are resource-constrained,
energy consumption and, in general, efficient resource man-
agement plays an important role.

In order to acquire data, sensor networks use various kinds
of hardware devices. Although many research groups use
Berkeley Motes together with TinyOS [1], there is no standard
platform for sensor nodes yet, which leads to a heterogeneity
in hardware.

Likewise, applications are continuously evolving and are,
therefore, highly heterogeneous. New applications continue to
arise and although there are similarities, each of them has its
own specific requirements.

The network itself, defined as a collection of devices, might
also be heterogeneous: In more recent applications, a network
often consists of different devices that are able to perform
different tasks and is no longer considered a homogeneous
environment. For example, some nodes are equipped with

special kinds of sensors, whereas others may have more
processing power for complex calculations or act as gateways
to infrastructure-based networks. Furthermore, if application
requirements change or another application is executed, the
network has to adapt. However, developing adaptation for
every application and optimizing the code over and over
again are complex, error-prone tasks. In order to simplify
application development, system software in the form of a
flexible, adaptive framework that supports a large number of
hardware platforms and applications is clearly needed.

In this paper we present the architecture of TinyCubus,
which aims at providing the necessary infrastructure to deal
with the complexity of such systems. TinyCubus consists
of a data management framework, a cross-layer framework,
and a configuration engine. The data management framework
allows the dynamic selection and adaptation of system and
data management components. The cross-layer framework
supports data sharing and other forms of interaction between
components in order to achieve cross-layer optimizations.
Finally, the configuration engine allows code to be distributed
reliably and efficiently by taking into account the topology of
sensors and their assigned functionality.

The contribution of this paper is twofold. First, we describe
the architecture of TinyCubus, a flexible, adaptive cross-
layer framework for sensor networks. Secondly, we describe
and evaluate a code distribution algorithm used by the config-
uration engine to disseminate components and code reliably
and efficiently within the network, using the cross-layer data
provided by the framework. The results of our evaluation show
that our algorithm reduces the number of messages exchanged
if the topology of the network is structured and known to the
application.

The remainder of this paper is structured as follows. The
next section presents the overall architecture of our framework
and gives more detailed information about its three parts.
Section 3 describes and evaluates the code distribution algo-
rithm used by the configuration engine. Section 4 gives an
overview of related work and section 5 concludes this paper
and describes future directions.

2. OVERALL ARCHITECTURE

The overall architecture of TinyCubus has been developed
with the goal of creating a generic reconfigurable framework
for sensor networks. As shown in figure 1, TinyCubus
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Fig. 1: Architectural components in TinyCubus

is implemented on top of TinyOS [1] using the nesC pro-
gramming language [2], which allows for the definition of
components in the sense of TinyOS. From the point of view
of TinyOS, TinyCubus is the only application running in
the system. All other applications register their requirements
within TinyCubus and are executed by the framework.
TinyCubus itself consists of three parts: the Tiny Data

Management Framework, the Tiny Cross-Layer Framework,
and the Tiny Configuration Engine, which are described in
the following sections.

A. Tiny Data Management Framework

The Tiny Data Management Framework provides a set of data
management and system components. For each type of stan-
dard data management component such as replication/caching,
prefetching/hoarding, aggregation, as well as each type of
system component, such as time synchronization and broadcast
strategies, it is expected that several implementations of each
component type exist. The Tiny Data Management Framework
is then responsible for the selection of the appropriate imple-
mentation based on the current information contained in the
system.

The cube of figure 1, called ’Cubus’, combines optimiza-
tion parameters, such as energy, communication latency and
bandwidth; application requirements, such as reliability; and
system parameters, such as mobility. For each component type,
algorithms are classified according to these three dimensions.
For example, a tree based routing algorithm is energy-efficient,

but cannot be used in highly mobile scenarios with high
reliability requirements. The component implementing the
algorithm is tagged with the combination of parameters and
requirements for which the algorithm is most efficient.

The Tiny Data Management Framework selects the best
suited set of components based on current system parameters,
application requirements, and optimization parameters. This
adaptation has to be performed throughout the lifetime of the
system and is a crucial part of the optimization process. We
are currently investigating different strategies that determine
when it is necessary – and beneficial – to select a different
component and where this component should be loaded from.

Furthermore, the parameters and requirements in the three
dimensions of the Cubus (system parameters, application re-
quirements, and optimization parameters) have to be carefully
selected. Regarding the system parameters, we analyze which
of them can be measured by a sensor node. In the simplest
case these observations are purely local, such as the number
of neighbors and their mobility, but in some cases it might
be needed to disseminate certain information. By examining
sensor network applications we determine the application
requirements. In the broadest sense, they can be subsumed
under the term ‘quality of service’. Examples are consistency,
accuracy, reliability, and real-time constraints. Finally, the
optimization parameters describe how an algorithm distin-
guishes itself from other algorithms under the same system and
application parameters. These can be latency, communication,
and energy.

B. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic interface
to support the parameterization of components that use cross-
layer interactions. As described in [3], strict layering is not
practical for wireless sensor networks because it might not be
possible to apply certain desirable optimizations. For example,
if some of the application components as well as the link layer
component need information about the network neighborhood,
this information can be gathered by one of the components
in the system and provided to all others. Other examples
for cross-layer interactions are callbacks to higher-level func-
tions, such as the ones provided by the application developer.
The Tiny Cross-Layer Framework provides support for both
forms of interaction. To deal with callbacks and dynamically
loaded code, TinyCubus extends the functionality provided
by TinyOS to allow for the dereferencing and resolution of
interfaces and components.

1) State Repository: If layers or components interact
with each other, there is the danger of loosing desirable
architectural properties such as modularity. Therefore, in our
architecture the cross-layer framework acts as a mediator
between components. Cross-layer data is not directly accessed
from other components but stored in the state repository.
Thus, if a component is replaced (e.g., to adapt to changed
requirements), no component that uses the old component’s
cross-layer data is affected by the change, given that the new
component also provides the same or compatible data. We



expect that most components available in the framework will
be developed with cross-layer optimizations in mind.

For this, components must know what cross-layer data is
available in the state repository. For this purpose we use
a specification language which allows us to specify what
cross-layer data a component needs and provides. With this
specification components that make cross-layer data available
can also determine if other ones use their data and if they have
to gather the data at all.

2) Callbacks: Regarding callbacks to other components,
TinyOS already provides some support with its separation of
interfaces from the implementation of components. However,
the TinyOS concept for callbacks is not sophisticated enough
for our purposes, since the wiring of components is static.
With TinyCubus components are selected dynamically and
can be exchanged at runtime. Therefore, both the usage of
a component and callbacks cannot be static; they have to
be directed to the new component if the data management
framework selects a different component or the configuration
engine installs a replacement for it.

C. Tiny Configuration Engine

In some cases parameterization, as provided by the Tiny Cross-
Layer Framework, is not enough. Installing new components,
or swapping certain functions is necessary, for example, when
new functionality such as a new processing or aggregation
function for the sensed data is required by the application.
The Tiny Configuration Engine addresses this problem by
distributing and installing code in the network. Its goal is
to support the configuration of both system and application
components with the assistance of the topology manager and
role assignment algorithms.

1) Topology Manager: The topology manager is respon-
sible for the self-configuration of the network and the assign-
ment of specific roles to each node. A role defines the function
of a node based on properties such as hardware capabilities,
network neighborhood, location etc. Examples for roles are
SOURCE, AGGREGATOR, and SINK for aggregation applica-
tions, CLUSTERHEAD, GATEWAY, and SLAVE for clustering
applications as well as VIBRATION to describe the sensing
capabilities of a node. In previous work [4] we describe a
generic specification language and an algorithm for efficient
role assignment that are briefly outlined in the remainder of
this section.

Since in most cases the network is heterogeneous, the
assignment of roles to nodes is extremely important: only
those nodes that actually need a component have to receive
and install it. As we show in Section 3, this information can
be used by the configuration engine, for example, to distribute
code efficiently in the network.

2) Role Specification and Role Assignment Algorithm:
In order to assign roles to nodes in the network, the topology
manager uses a generic specification language and a decentral-
ized role assignment algorithm. In the specification language
a role is defined by a rule. If a rule is satisfied, the algorithm
assigns the role to the node. For example, the following rule

assigns the role CLUSTERHEAD if there is no other node with
this role in its 1-hop neighborhood:
CLUSTERHEAD :: {

count(1-hop) {role == CLUSTERHEAD} == 0

}

Whenever possible the role assignment algorithm only uses
local knowledge. However, if information about the network
neighbors is required (e.g., the number of nodes in the
neighborhood with a given role), the node has to retrieve this
information from its neighbors while avoiding conflicting role
assignments (see [4] for details).

3. ROLE-BASED CODE DISTRIBUTION ALGORITHM

Let us now describe a code distribution algorithm that makes
use of cross-layer information to optimize the number of
messages sent to perform a code update. In many sensor
network applications the topology of the roles in the network
is known in advance and follows a regular structure. This is
definitely the case if roles are defined with routing in mind,
such as with clustering approaches. Of course, in the general
case, roles can be based on other properties of the application
or the system at hand. A good example is provided by the
Sustainable Bridges application (Fig. 2), where nodes affixed
to the edge are equipped with vibration sensors, whereas others
are only required to provide temperature readings. The goal
of the Sustainable Bridges application is to provide a cost-
effective monitoring of bridges using static sensor nodes in
order to detect structural defects. A wide range of sensor data
such as temperature, humidity, vibration and noise detection
and localization mechanisms are needed to achieve this goal.

Fig. 2: Sensor topology for Sustainable Bridges

Having information about different roles, and assuming that,
in most cases, a difference in role assignment is motivated by
differences in functionality, our code distribution algorithm can
leverage this knowledge to route code updates only through the
set of nodes that really need it, that is, belong to a specific role.
In other words, if the code for nodes with vibration sensors
is updated, for example, because a new in-network vibration
data processing algorithm is needed, this should not affect the
temperature nodes available in the system. Of course, the code
distribution algorithm has to make sure that all nodes receive
the appropriate messages reliably so that, in the end, they all
run the same version of the application.



Thinking of the severe energy constraints of sensor nodes
in this particular application, and taking into account that
the energy cost for data transmission is very high, a scheme
that can reduce the number of messages sent unnecessarily to
irrelevant nodes is definitely beneficial.

A. Detailed Description

Our code distribution algorithm uses the information about
role assignments provided by the Tiny Cross-Layer Framework
to efficiently disseminate code updates to specific roles. The
algorithm starts at gateway nodes by broadcasting data to its
kr-hop neighborhood, where r is a role and k r is a parameter
that determines the number of hops the algorithm is able to
tolerate over nodes with a different role from r. Then, only
nodes with role r forward this data further to their own k r-
hop neighbors, thus flooding the nodes with role r while using
only those nodes with other roles that are necessary to reach
them. The algorithm can be parametrized by selecting k r for
each role. The topology of the network is, therefore, crucial.
If, such as for the case depicted in Fig. 2, the network is
at most 1-hop connected for a given role r, it is possible to
reach all target nodes with maximum efficiency. However, in
the general case, especially if topologies are random, other
nodes with roles different from r need to be involved in the
process of forwarding this information.

In addition, the distribution algorithm makes use of implicit
acknowledgments. If a neighbor forwards a message sent by
node n, n treats this message as an acknowledgment. If after
a certain amount of time, the neighbor does not forward
the message, n retransmits it. Following the modularization
techniques advocated at the beginning of this paper, this
reliability component of our algorithm can be replaced with
any other scheme that ensures reliable transmissions.

Finally, in our algorithm, a node n waits a random time
t ∈ [0, . . . , tmax] before retransmitting a message. This is
just one possible way to avoid the broadcast storm problem,
mentioned in [5] and, like the reliability component, can be
replaced with any other scheme that avoids collisions. Of
course, the choice of tmax is directly related with the delay
observed in the evaluation of the algorithm.

In summary, our role-based dissemination algorithm has
three settable parameters that, in our system, are maintained
by the Tiny Cross-Layer Framework: r, the role of the target
nodes; kr, the network connectivity used for broadcasting data;
and tmax that determines the maximum retransmission time.

Assumptions: In the implementation of our algorithm, we
assume that roles have already been assigned and that there
is no dynamic reassignment of roles while the code dissem-
ination algorithm runs. This means that the connectivity k r

of the network for a given role r can be determined up-
front. Furthermore, we assume that nodes are stationary, do
not fail, and have already determined their neighborhood with
respect to a given role r and network connectivity k. Finally,
communication is assumed to be performed via bidirectional
local broadcasts and that transmission failures, if they occur,
are not permanent.

B. Evaluation

In order to show the feasibility of our approach, we have
implemented the role-based code distribution algorithm for
motes running TinyOS [1]. In our experiments, we compare
the efficiency of our algorithm with a flooding approach
that has been modified to provide reliability and collision
avoidance. The results presented in this paper have been
obtained using TOSSIM, the TinyOS simulator provided by
UC Berkeley [6].

1) Experimental Setup: For our experiments, we have
analyzed the following scenario: Sensor nodes are laid out in
an evenly spaced 12×4 grid with the role assignment depicted
in Fig. 2, which represents the topology of the Sustainable
Bridges application [7]. There is only one gateway node,
located in one of the corners, used to inject messages to
the network. The distance between the nodes is 10 meters
and their radio model is set to a lossless disc model with
a communication range of 15 meters. Finally, packet losses
occur only due to collisions and the maximum retransmission
delay tmax has been set to 150 ms and 600 ms respectively.

In our scenarios, we assume the presence of two roles:
VIBRATION and TEMPERATURE, that represent the two
types of sensors found in the network. We evaluate the code
distribution algorithm by sending (fictitious) code updates
from the gateway node to all vibration sensors.

2) Performance Results: Fig. 3 shows the number of
messages sent on average by each node in the Sustainable
Bridges scenario. The graph compares the messages sent by
both flooding and our role-based distribution algorithm for
maximum retransmission delay tmax = 150ms and 600ms,
respectively. Role assignments on the x-axis vary from the
original configuration depicted in Fig. 2 to all nodes being
assigned the VIBRATION role. The measurements shown are
the average of 100 runs. In the graph, we can see that flooding
with tmax = 150ms requires about 5 messages per node,
whereas with tmax = 600ms, it requires only a little over 2
on average. Since the flooding algorithm retransmits messages
in the presence of collisions until all nodes are reached, the
average number of messages sent is greater than 1 and varies
with the length of tmax. In addition, the graph shows that
the number of messages sent is independent of the ratio
of vibration to temperature sensors, since flooding does not
distinguish among them to distribute data.

In contrast, our role-based algorithm performs much better
than flooding, especially when the ratio of vibration to temper-
ature sensors is low, since only vibration sensors are required
to forward messages1. As expected, the number of messages
per node increases as the ratio of vibration to temperature
sensors increases. In the extreme (when all nodes in the
network are vibration nodes), our algorithm behaves just like
flooding.

Fig. 4 depicts the average delays needed by both algorithms
to reach all vibration nodes. Maximum delays (not shown in

1Recall that the network topology in this scenario exhibits 1-hop connec-
tivity for the VIBRATION role.
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the graph) are for our algorithm in the worst case as much
as twice as long as the delay needed on average. In addition,
average delays for flooding are at most 1.5 times better than
our role-based algorithm. The reason is that flooding uses
not only vibration nodes to forward the data (which allows
for more parallelism), and the fact that in our network all
vibration nodes are located in a square so that, if one vibration
node chooses a long random delay to avoid collisions, data
distribution as a whole is delayed. Nevertheless, by choosing
for example tmax = 150ms, it is possible to keep the number
of sent messages low (see Fig. 3), while achieving delays just
slightly above those of flooding (compare Flooding Avg 150
and Role-based Avg 150 in Fig. 4).

C. Advantages of Role-Based Code Distribution

As we have seen in the evaluation section, the results provided
by our role-based algorithm are very promising for structured
scenarios. For these cases, we can use application knowledge
about the topology of the network to improve on the number
of messages sent while maintaining reliability.

In general, our algorithm can be used to distribute any kind
of data whose destination varies based on information such as
roles. Furthermore, if we assume that roles have already been
assigned, our algorithm is more efficient than plain flooding.

Even in the case where nodes are mobile and their distribu-
tion changes, if we assume that the ratio of r to all other nodes
is high enough, we could try to determine values of k r that
work well. Furthermore, each node might decide to perform
this estimation and conclude that its own neighborhood is
relatively static with respect to changes in the topology, and
that certain values of kr work even in the presence of mobility.

Since the algorithm is parametrized with respect to the
properties of the network, we can select the appropriate version
based on the desired goal. There is, therefore, a tradeoff
between latency and the number of messages required by the
algorithm that can be used by our framework to adapt to the
requirements of the application or the network itself.

Finally, although the experiments presented in this paper
only deal with two distinct roles, our results are clearly valid
for any number of roles.

4. RELATED WORK

TinyCubus and our role-based code distribution algorithm
are related to a variety of other work. In this section, we
provide a description of relevant projects that are in the process
of creating frameworks similar (in part) to ours, related code
distribution schemes, and finally, routing algorithms that, like
ours, use cross-layer data to make forwarding decisions.

SensorWare [8] and Impala [9] aim at providing function-
ality to distribute new applications in sensor networks. For
this purpose, they create abstractions between the operating
system and the application, although both differ slightly from
each other. SensorWare uses a scripting language that is not re-
ally well-suited for resource-limited platforms. It uses special
commands of the language that allow the forwarding of the
current program to other nodes, and tries to avoid unnecessary
code transfers by transmitting the code only if the script is not
already running on the neighboring nodes. SensorWare does
not support adaptation and cross-layer interactions, as it is the
case in our framework.

In Impala, new code is only transmitted on demand if there
is a new version available on a neighboring node. Furthermore,
if certain parameters change and an adaptation rule is satisfied,
the system can switch to another protocol. However, this
adaptation mechanism only supports simple adaptation rules.
Although it uses cross-layer data, Impala does not have a
generic, structured mechanism to share it and so, is not easily
extensible.

The MobileMan project [10] is a system that aims at
creating a cross-layer framework similar to ours. However,
MobileMan is not targeted towards sensor networks and as-
sumes environments typical of mobile ad-hoc networks, which
are, in the general case, not so limited in terms of resources. In
addition, MobileMan focuses on data sharing between layers
of the network protocol stack and, therefore, does not include



the configuration and adaptation capabilities found in our
framework.

EmStar [11] is a software environment for Linux-based
sensor nodes that, like MobileMan, assumes the presence of
higher-end nodes as part of the sensor network. EmStar also
contains some standard components for routing, time syn-
chronization, etc., but it is not able to provide the adaptation
mechanisms available in our framework.

Regarding related work concerned with the implementa-
tion of code distribution, Ripple [12] is a code distribution
algorithm implemented using EmStar. In order to reduce the
number of messages, this algorithm uses a publish/subscribe
scheme where a single node in the neighborhood sends code
updates to its subscribers. Similar to our approach, it includes
a mechanism to transmit code updates reliably, but it fails to
consider cross-layer data (e.g., role information) and, there-
fore, data is always forwarded to all nodes.

Another example of code propagation for sensor networks is
Trickle [13]. Trickle periodically broadcasts meta-data about
the software version nodes are using, and focuses on detecting
whether or not a code update is needed. On the other hand, our
role-based algorithm is used to selectively send code updates
to nodes that are supposed to receive it based on their role
assignmnent. Of course, it would be possible to combine both
algorithms to further optimize code updates in our system.

Finally, there are a number of routing algorithms [14], [15]
that use cross-layer information to improve on their efficiency,
although this is usually done on a protocol-specific basis. One
example is the use of spatial information for routing, as has
been done in the Cartalk 2000 project [16]. However, Cartalk
does not provide a generic mechanism to allow for arbitrary
cross-layer data sharing that can be used with other schemes.

5. CONCLUSION AND FUTURE WORK

In this paper, we have described the architecture of
TinyCubus, a flexible, adaptive cross-layer framework for
sensor networks. Its specific requirements have been derived
from the increasing complexity of the hardware capabilities
of sensor networks, the breadth of typical sensor applications,
and the heterogeneity of the network itself. Therefore, we
have designed our system to have the Tiny Data Management
Framework, that provides adaptation capabilities, the Tiny
Cross-Layer Framework, that provides a generic interface and
a repository for the exchange and management of cross-layer
information, and the Tiny Configuration Engine, that manages
the upload of code onto the appropriate sensor nodes.

Furthermore, we have provided the description of a novel
role-based code distribution algorithm that uses cross-layer
information, such as role assignments, in order to improve on
the number of messages needed to distribute code to specific
nodes. The results of our evaluation show that this algorithm
performs several times better than plain flooding in scenarios
where the topology and distribution of roles within the network
is well-known.

The implementation of TinyCubus is still under way and,
although the prototypes for the cross-layer framework and

configuration engine are already partially functional, there is
still work to do. We are in the process of integrating our
framework with an additional application that provides the
capabilities found in a smart environment and that will fully
make use of the functionality provided by TinyCubus.

Finally, regarding the role-based code distribution algo-
rithm, we plan on extending it to support highly mobile sensor
nodes, like the ones found in the Cartalk 2000 project, and to
include functionality found in related projects, like Trickle. In
addition, we would like to analyze other types of topologies
where nodes are randomly placed and not equally spaced and
investigate how well our role-based algorithm works under
such conditions.
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