Generic Role Assignment for Wireless Sensor Networks*

Kay Romer, Christian Frank
Department of Computer Science
ETH Zurich, Switzerland

{roemer, chfrank}@inf.ethz.ch

Abstract. Wireless ad hoc networks of sensor nodes are
envisioned to be deployed in the physical environment to
monitor a wide variety of real-world phenomena. Almost
any sensor network application requires some form of self-
configuration, where sensor nodes take on specific functions
or roles in the network without manual intervention. These
roles may be based on varying sensor node properties (e.g.,
available sensors, location, network neighbors) and may be
used to support applications requiring heterogeneous node
functionality (e.g., clustering, data aggregation). In this pa-
per we argue that the assignment of user-defined roles is a
fundamental part of a wide range of sensor network appli-
cations. Consequently, a framework for assignment of roles
to sensor nodes in an application-specific manner could sig-
nificantly ease sensor network programming. We outline
the general structure of such a framework and present a first
approach to its realization. We demonstrate its utility and
feasibility using a number of concrete examples.

1 Introduction

Wireless sensor networks consist of so-called sensor nodes
— small untethered computing devices equipped with sen-
sors, a wireless radio, a processor, and autonomous power
supply. Large and dense networks of these devices can then
be deployed unobtrusively in the physical environment in
order to monitor a wide variety of real-world phenomena
with unprecedented quality and scale while only marginally
disturbing the observed physical processes [2].

Many sensor network applications require some form of
configuration, where sensor nodes take on specific functions
in the network. Configuration of a sensor network is par-
ticularly challenging, as the anticipated large scale of sen-
sor networks (in terms of numbers of nodes) typically pre-
cludes manual configuration of individual nodes. Addition-
ally, pre-deployment configuration is often infeasible be-
cause some configuration parameters such as node location
and network neighborhood are typically unknown prior to
deployment. Also, node parameters may change over time,
necessitating dynamic re-configuration. Hence, a means for

*This work was partly supported by NCCR-MICS, a center supported
by the Swiss National Science Foundation under grant no. 5005-67322.

Pedro José Marron, Christian Becker
Department of Computer Science
University of Stuttgart, Germany

{marron, becker}@informatik.uni-stuttgart.de

in-situ configuration after deployment must be found. The
term self-configuration is commonly used to express the fact
that a sensor network should configure itself without man-
ual intervention.

When sensor nodes join the network, they are in an ini-
tial software state. However, nodes may differ in their hard-
ware capabilities and parameters such as their location or
their network neighborhood. The goal of configuration is
to break the initial symmetry and assign specific roles to
individual sensor nodes based on their properties. As the
network and node properties change over time, role assign-
ments must be updated to reflect these changes. Based on
the assigned roles, sensor nodes may adapt their behavior
accordingly, establish cooperation with other nodes, or may
even download specific code for the selected role.

Examples that would require some form of self-
configuration and role assignment can be readily found
in the sensor network literature. Below we present three
of them, which we will use to illustrate our approaches
throughout the paper. Variations and combinations of these
examples show up in many applications.

Coverage. A certain area is said to be covered if every
physical spot falls within the observation range of at least
one sensor node. In dense networks, each physical spot may
be covered by many equivalent nodes. The lifetime of the
sensor network can be extended by turning off these redun-
dant nodes and by switching them on again when previously
active nodes run out of battery power [13]. Essentially, this
requires proper assignment of the roles ON and OFF to sen-
sor nodes. O

Clustering. Clustering is a common technique to improve
the efficiency of data delivery (e.g., flooding, routing) [6].
With clustering, one of the three roles CLUSTERHEAD,
GATEWAY, SLAVE is assigned to each node. A cluster-
head acts as a hub for slaves in its neighborhood such that
slaves directly communicate with their clusterhead only.
Gateways are slaves of more than one cluster and inter-
connect multiple clusters by forwarding messages between
them. |

In-Network Aggregation. Due to the scarcity of energy
and the high energy cost of wireless communication, re-
ducing data communication is an important design goal in

sensor networks. One common form of data reduction is in-
network data aggregation, where certain nodes in the net-
work aggregate sensory data from many sources [4]. For
this, sensor nodes must be assigned the roles SOURCE (gen-
erate sensory data), AGGREGATOR (aggregate data), and
SINK (consume aggregated data) roles. In order to achieve
a significant network traffic reduction, aggregator nodes
should be located close to the data sources they aggregate.
O

As illustrated by these examples, role assignment is fun-
damental for self-configuration. The criteria for role as-
signment are manifold and can vary significantly from ap-
plication to application. While previous work has pro-
posed individual solutions for specific self-configuration
problems (e.g., the ones sketched above), we aim to provide
a generic framework that supports the development of self-
configuring applications with programming abstractions for
role assignment. \We believe that such a framework may
substantially facilitate sensor network programming.

However, it is not obvious whether and how role assign-
ment can be efficiently supported by a single framework for
a variety of applications. We will investigate this issue in
the next sections. Section 2 defines the core elements that
must be present in such a framework. Section 3 will then
sketch one specific instance of a role assignment approach
by formulating exemplary role assignment rules for the ex-
amples above and outlining an algorithm for generic role
assignment. Section 4 discusses related work and Section
5 concludes the paper and provides an insight into future
work.

2 CoreElements

From the above examples we derive the need for four core
elements of any system that supports role assignment. First,
a property directory which provides access to the capabili-
ties and parameters of sensor nodes. Secondly, a role spec-
ification defines possible roles and rules for how to assign
them. Thirdly, a role assignment algorithm assigns roles
to sensor nodes taking into account role specifications and
properties. Finally, a number of basic services may be re-
quired.

Property Directory. Properties of individual sensor nodes
are available sensors (e.g., temperature) and their character-
istics (e.g., resolution); other hardware features (e.g., mem-
ory size, processing power, communication bandwidth); re-
maining battery power; or physical location and orientation.
Some properties are static, some may change over the life-
time of the network. However, we assume that properties
are not subject to frequent significant changes. This reflects
the understanding that a particular configuration is valid for
a certain minimum amount of time. Depending on their na-
ture, properties may be defined at production time, by hard-

ware introspection, or by sensors. The property directory
abstracts the dissimilitude of properties and provides a uni-
fied interface to access property values. There is one such
directory on each sensor node, which is independent of the
directories on other nodes.

Role Specification. In its basic form, a role is an identi-
fier (e.g., CH for clusterhead, Gw for gateway). We found it
useful to augment roles with parameters that further refine a
role. In the clustering example, gateways may be assigned a
parameterized role Gw (CH1, CH2), where the parameters
refer to the clusterheads connected by the gateway. The val-
ues of role parameters can be accessed by the application.
For example, a cluster-based data routing algorithm might
have to know the cluster heads a node belongs to.

A set of rules defines the necessary conditions for the as-
signment of roles. In general, these rules will refer to a set
of sensor nodes and their respective properties. That is, the
decision of which role should be assigned to a single sen-
sor node typically depends on a set of sensor nodes. We
assume that all sensor nodes are subject to the same set of
roles and according rules. This reflects the understanding
that all sensor nodes are in the same initial software state.

Role Assignment Algorithm. The task of this component
is to assign roles to sensor nodes, taking into account role
specifications and sensor node properties. Depending on
the specific problem instance, it might be useful to allow
the assignment of multiple roles to one node. For example,
a single sensor node might act both as a data source and
as an aggregator. Property changes and node failures may
necessitate re-assignment of roles.

The large scale, resource and energy scarcity, and ro-
bustness requirements of sensor networks imply that role
assignment algorithms should be distributed and localized
algorithms, where interaction is limited to nodes in the net-
work neighborhood. We will discuss such an algorithm in
Section 3.3.

Basic Services. A number of services such as node localiza-
tion, neighbor/topology discovery, or time synchronization
may be needed for role assignment. However, it should be
possible to reuse existing approaches for this purpose, pos-
sibly requiring minor adaptations. Hence, we do not discuss
these services in more detail.

3 A Geneic
Scheme

In this section we will sketch one possible specific instance
of a framework that supports role assignment. We will first
give an overview of this approach. We then show how this
approach can be used for a number of applications and out-
line a possible implementation of our role assignment al-
gorithm that informally delineates the feasibility of our ap-
proach.

Role Assignment

3.1 Overview

In our approach, the property directory exports property val-
ues as a list of name-value pairs. Moreover, it can provide
an indication if a property value changes. The role spec-
ification is a list of role-rule pairs. For each possible role,
the associated rule specifies the conditions for assigning this
role. Rules are Boolean expressions that may contain pred-
icates over the local properties of a sensor node and predi-
cates over the properties of well-defined sets of nodes in the
neighborhood of a sensor node. All nodes in the network
have a copy of the same role specification.

A separate instance of the role assignment algorithm is
executing on each sensor node. Triggered by property and
role changes on nodes in the neighborhood, the algorithm
evaluates the rules contained in the role specification. If a
rule evaluates to true, the associated role is assigned.

For the ease of exposition, we do not explicitly discuss
assignment of multiple roles to a single sensor node. How-
ever, there is nothing particular in our approach that pre-
vents us from supporting this.

3.2 Application Examples

Let us now revise the examples sketched in the introduction
into more formal role specifications. Note that these role
specifications will typically result in approximate solutions
of the respective configuration problems.

Coverage. As mentioned earlier, nodes must be assigned
ON and OFF roles. Requirements for the assignment of
these roles are that the area of interest is covered by the
sensors of ON nodes, and that ON nodes have sufficient re-
maining battery power. Assuming one is interested in cov-
erage with temperature readings, one possible formulation
could be:

ON :: {
sensor == temp &&
battery >= threshold &&
count (2 meters) {
role == ON
<=1}

OFF :: else

~ o 0 A w N e

The rule in lines 1-6 specifies the conditions for a node
to have ON status: it must have a temperature sensor and
enough battery power (lines 2 and 3) and there must be at
most one other ON neighbor within its sensing radius of 2
meters (lines 4-6). Otherwise the node is assigned OFF sta-
tus.

The property directory needs to contain an entry for the
current battery level battery=<remaining energy>
and an entry sensor=temp for nodes that are equipped
with a temperature sensor. In addition, there is an entry
role that holds the current role of the node.

The count operator in line 4 expects the specification
of a set of sensor nodes as its first parameter and returns the

number of nodes for which the expression in curly braces
evaluates to true. Note that the variables (e.g., role in line
5) in these expressions refer to properties of the specified
neighbor nodes. The first parameter to the count operator
may take various forms, here we motivate a metric radius;
another form would be a hop-radius, which is illustrated by
the following examples. The output of a sample simulation
run is shown in Fig. 1(a). m]

Clustering. A clustering approach needs to define as-
signment rules for CLUSTERHEAD, GATEWAY and SLAVE
roles. The assignment of these roles depends on a variety of
parameters. Clusterheads should be more powerful devices
(in terms of processing, memory, communication, and en-
ergy supply), since they act as hubs for many slaves. This
may be easily formulated in terms of the property directory
and is neglected here. For the role assignment, consider the
following basic scheme:

CLUSTERHEAD :: {
count (1 hop) {
role == CLUSTERHEAD

1
2

3

4 } == 0}

5 GATEWAY (cl,c2) :: {
6 retrieve (1 hop, 2) {

7 role == CLUSTERHEAD

8 == (cl,c2) &&

9 count (2 hops) ({

10 role == GATEWAY (cl,c2)
11 }==0}

12 SLAVE :: else

A node that does not have any clusterhead among its neigh-
bors declares itself CLUSTERHEAD (lines 1-4). Note that a
one-hop radius is used for the count operator.

Nodes should be assigned the role GATEWAY if they are
neighbors to at least two clusterheads but are not aware of
any other gateway nodes connecting the same two cluster-
heads. Note that the GATEWAY role is additionally parame-
terized to the clusterheads it connects.

To achieve this we introduce the retrieve operator
(line 6), which is similar to count, but returns a list of node
identifiers instead of only counting the nodes. Usage of the
retrieve operator by the programmer implies the need
for locally unique node identifiers at the system level. In this
example the operator is used to identify two clusterheads
in the neighborhood of the node and to bind them to the
names c1 and c2 in line 8 (similar to binding of variables
in declarative programming languages). The second pa-
rameter to retrieve in line 6 requests any two matching
nodes. If not enough matching nodes exist, the retrieve
expression evaluates to false. In this case, the GATEWAY
role is not assigned, the parameters are not bound, and the
evaluation of lines 9-11 can be omitted.

The output of a sample simulation run is shown in
Fig. 1(b). The graph includes the links between cluster-
heads and their slaves, demonstrating that network connec-
tivity is maintained. a

_‘Dﬁ1 | % sim
=0

O Off m On

(Coverage Radius

(a) Coverage

(b) Clustering

O Slave m Gateway . Clusterhead

(c) Aggregation

Figure 1: Sample simulation runs to qualitatively illustrate our approaches. The simulation is based on the algorithm
described in Section 3.3. Nodes with a communication radius of 20m are uniformly placed in an area of 100m x 80m.

In-Network Aggregation. In this example, sensor nodes
equipped with temperature sensors act as data sources. Our
goal is to designate aggregator nodes in the close neigh-
borhood of these data sources that aggregate (e.g., average)
temperature readings from many data sources. A single sink
node with known position consumes aggregated data. Since
data flows from sources to the sink, aggregator locations
should be directed towards the sink.

The role specification contains recursive rules for aggre-
gators of different levels (while an aggregator of level 0 is a
source):

1 AGG(0) :: { sensor == temp }
2 AGG(N) :: {
3 count (2 hops) {
role == AGG(N-1) &&
dist (pos, sink pos) >
dist (super.pos, sink pos)
} os>= 2 &&
count (2 hops) {
role == AGG(N)
10 } == 0 &&
1 1 <=N && N <=2 }

© o N o a »

The aggregators of level 0 (sources) are defined in line 1
as nodes with a temperature sensor. We recursively define
aggregators of higher level as follows: A node becomes an
aggregator of level N if there are at least two data sources
(aggregators of level N-1) in its 2-hop neighborhood which
are farther away from the sink (lines 3-7). Additionally,
there must not be other aggregator nodes of the same level in
its neighborhood (lines 8-10). Only aggregator levels 1 and
2 are defined by this rule (line 11). Note that the recursive
definition can be easily expanded based on the restrictions
in line 11.

While the Boolean expressions for count and
retrieve are generally evaluated for the remote
(neighboring) nodes, these can refer to properties of the
ancestor node by prepending the prefix super (like
super.pos in line 6). The dist operator (lines 8 and
9) returns the distance between two positions. sink pos
refers to the position of the sink (e.g., a fixed base station),
which we assume to be known.

The above aggregator roles could be augmented with
a parent parameter pointing to an aggregator of the
next higher level where applicable to support data routing.
Sources and aggregators would then send data to this par-
ent. If nodes end up without a parent (i.e., nodes that have
no aggregators/sources in its 2-hop neighborhood) then they
directly send data to the sink. Fig. 1(c) shows the output of
a sample simulation run. The lines indicate the aggregation
structure, where thicker lines denote higher aggregation lev-
els. |

3.3 Role Assignment Algorithm

We would like to present a first straight-forward (and inef-
ficient) algorithm that can be used to implement rule eval-
uation. Evaluating a rule involves evaluation of a Boolean
expression, which may contain count (rad) {expr} and
retrieve (rad) {expr} operators. To evaluate these
operators in all rules in parallel, the initiator broadcasts a
request message containing its ID and the values of any
super . * properties to its max (rad) neighborhood. The
receivers know the expr of all operators, since all nodes
share the same rules. max (rad) refers to the maximum

radius of all operators in the role specification. If the re-
ceiver of a request message is also currently evaluating
arule and its ID is lower then the ID of the sender, it sends
back an abort message to the initiator to ensure atomic
rule evaluation (see below). Otherwise, the receiver evalu-
ates the exprs locally and sends back a reply message to
the initiator containing its ID and the outcome of the evalu-
ation of the exprs. If the initiator receives any abort, it
aborts the process of rule evaluation. Otherwise it uses the
received reply messages to complete local evaluation of
the rules. If the initiator has changed its role as a result of
rule evaluation, if there were any aborts, or if local prop-
erties changed since last rule evaluation, then the initiator
broadcasts a confirm message to the max (rad) neigh-
borhood, containing its new role where applicable, and an
indication of property changes where applicable. Upon re-
ceiving a confirm message, nodes restart rule evaluation
if they were aborted earlier, if the role of the sender has
changed, or if sender’s properties changed. Initially, all
nodes start rule evaluation. In order to reduce the proba-
bility of aborts, start of rule evaluation is randomly delayed.
Property changes also trigger rule evaluation.

There are several major issues with the correctness, ro-
bustness, and efficiency of the above algorithm. The ten-
tative approaches to these issues described below should
eventually lead to an efficient distributed algorithm for rule
evaluation.

Correctness. The first and most important issue is the prob-
lem of how to ensure safety and liveness, that is, in absence
of property changes all nodes should eventually decide on
a stable role that does not trigger role changes at any other
node. In general, these properties are inherently tied to a
particular role specification and must be ensured by the role
programmer. In some cases, the developer can use simple
heuristics, such as ensuring that a node may not return to
an earlier role. Where this is not possible, the runtime sys-
tem may detect patterns of misbehavior (e.g., a node going
through the same cycle of roles over and over again) and
notify the application. In such cases the application could
take actions to fix this situation, for example by using the
currently selected role as an approximation (which would
make sense for the coverage problem, for example), or by
notifying a human operator. Property changes (which are
also propagated to neighbors by conf i rm messages) reset
the algorithm to allow dynamic re-configuration. In order
to notify the application of a selected role, it must addi-
tionally be possible to decide when a stable role has been
assumed. We are currently examining an approach where a
role is considered stable when it did not change for a certain
amount of time.

In the above examples we implicitly assumed that rules
are evaluated atomically: if the outcome of evaluation of
the rules on node N depends on a sensor node M, then M
must not change its role during the evaluation of the rules

on node N. We are currently exploring the use of synchro-
nized physical time among sensor nodes for an efficient im-
plementation of rule atomicity. One option is to include be-
gin and end times of rule evaluation in conf i rm messages
to provide an indicator for the need of abortion. A second
option is to setup a rule evaluation schedule that avoids the
need for rule abortions. It might even be an option to use
randomization techniques to establish schedules which en-
sure atomicity with high probability.

Robustness is an important issue in sensor networks, be-
cause sensor nodes and communication links are subject to
frequent failures. Note that node failures which happen
outside a role assignment cycle (the request, reply,
confirm sequence described above) are considered im-
plicitly by the above algorithm, since the failed node’s prop-
erties will no longer be part of future assignment decisions.
This, however, requires to trigger dynamic re-configuration
for affected nodes after a node failure. This could be im-
plemented by a failure-detection service or by periodic re-
evaluation of rules.

The presented algorithm would be particularly sensitive
to failures that happen during a role assignment cycle. Lost
reply messages will cause the algorithm to ignore re-
spective nodes in the role assignment decision, missing
confirm messages would inhibit aborted nodes from re-
evaluating rules. In both cases, timeouts can be used: to
ignore late messages in the former case and to re-start eval-
uation on aborted nodes in the latter.

Efficiency. Of particular importance for the performance
of the approach are the implementations of the count and
retrieve operators. A straight-forward approach as in
the above algorithm would be inefficient due to the induced
message overhead. One possible solution to this problem is
to exploit the fact that all nodes execute the same rules, so
that a node is able to determine which nodes are affected by
a role change, and what information these nodes will need
in order to re-evaluate their rules. Hence, a node where a
role change occurs can proactively send necessary informa-
tion to the affected nodes. If affected nodes have cached
information from unchanged nodes, proactive updates will
suffice to re-evaluate rules on affected nodes without a need
for repeated broadcasts.

One particular way to restrict broadcasts is the obser-
vation that all information needed to evaluate count and
retrieve statements is locally bounded by a given num-
ber of hops and/or geographical scope. Therefore informa-
tion needed to evaluate a predicate needs to be propagated
only up to the maximum range parameter of its enclosing
count/retrieve context. The locality of the algorithm
may be directly inferred from the programmer’s specifica-
tion.

Since parsing and interpreting role specifications on sen-
sor nodes might be too costly or infeasible, we are exploring
ways of pre-compiling role specifications offline. The out-

put of pre-compilation will contain the role assignment al-
gorithm that has been parameterized based on the role spec-
ifications. This approach should both result in compact and
efficient code.

4 Related Work

There exists a large body of literature on self-organization
and self-configuration in a number of fields (e.g., robotics).
Due to space limitations, we cannot review these here. Self-
configuration in ad hoc and sensor networks has been an
active research topic in the recent past. Various approaches
for solving specific self-configuration problems have been
devised. Examples include coverage [7]; aggregator place-
ment [3]; clustering, routing and addressing [5, 8, 9]. [5]
uses a fixed set of roles to build a network-wide back-
bone infrastructure. However, none of these approaches
are generic frameworks that support the assignment of user-
defined roles in application-specific manner.

Only recently, neigborhood programming abstractions
[10, 11] have been proposed, where network neighbors can
easily share variables among each other. One possible way
to implement our approach could be on top of such an ab-
straction.

Inspired by cellular cooperation in biological organisms,
Amorphous Computing [1] explores ways to program smart
matter — very densely deployed collections of indistinguish-
able smart particles. In contrast, our approach is based on
the observation that sensor nodes may significantly differ
in their properties, may rely on a number of basic services
(e.g., localization), and are less densely deployed. Also, we
focus on the configuration of sensor networks, the actual
“programming” (i.e., distributed data processing etc.) is not
part of our work, although role parameters may provide val-
ueable input for it.

Our scheme for role assignment is similar to cellular au-
tomata [12], where the state of a particle in a regular ar-
rangement is completely defined by the previous values of a
neighborhood of particles around it. Note that a classifica-
tion of a subclass of cellular automata in [12] indicates that
a large group of automata converges to well-defined states.
Major differences of our approach are that state updates are
not synchronous, sensor nodes are not in a regular arrange-
ment, and sensor nodes differ in their properties.

5 Conclusion and Outlook

We have presented an initial approach to solve the prob-
lem of generic role assignment by providing a practical and
feasible tool for the development of sensor network applica-
tions. We have also outlined the general structure of frame-
works for role assignment and presented a first approach to
realize such a framework, demonstrating its utility by means

of a number of concrete examples. In order to support the
feasibility of this scheme, we sketched a straight-forward
distributed role assignment algorithm and presented tenta-
tive approaches for a more efficient and robust implementa-
tion.

As mentioned in Section 3.2, our approach might not be
able to generate optimal configurations under certain cir-
cumstances (e.g., an aggregator placement with minimum
energy expenditure), but we believe that even suboptimal
configurations are helpful for many applications. Moreover,
the generated configurations may serve as a starting point
for further local optimizations (e.g., as in [3]).

Our current work includes the development and evalua-
tion of an efficient distributed role assignment algorithm,
and the development of an encompassing language for role
specifications. We plan to extend our approach for generic
role assignment into a set of tools and services that support
the development of self-configuring sensor network appli-
cations.

References

[1] H. Abelson et al. Amorphous Computing. CACM, 43(5):74-82,
March 2000.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less Sensor Networks: A Survey. Computer Networks, 38(4):393—
422, March 2002.

[3] B.Bonfils and P. Bonnet. Adaptive and decentralized operator place-
ment for in-network query processing. In IPSN, Berkeley, USA,
April 2003.

[4] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Net-
works. In MobiCom, Boston, USA, August 2000.

[5] M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical
self organization for wireless ad hoc sensor networks. In WSNA, San
Diego, USA, 2003.

[6] T.J. Kwon and M. Gerla. Efficient Flooding with Passive Cluster-
ing (PC) in Ad Hoc Networks. Computer Communication Review,
32(1):44-56, January 2002.

[7] S. Slijepcevic and M. Potkonjak. Power efficient organization of
wireless sensor networks. In ICC, Helsinki, Finland, June 2001.

[8] K. Sohrabi, V. Ailawadhi, J. Gao, and G. Pottie. Protocols for Self
Organization of a Wireless Sensor Network. Personal Communica-
tion Magazine, 7:16-27, 2000.

[9] L. Subramanian and R. H.Katz. An architecture for building self-
configurable systems. In MobiHoc, Boston, USA, August 2000.

[10] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In NSDI, Boston, USA, March 2004.
[11] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A neigh-
borhood abstraction for sensor networks. In MobiSys, Boston, USA,
June 2004.
[12] S. Wolfram. Cellular Automata and Complexity. Addison-Wesley,
1994,
[13] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed Energy
Conservation for Ad-Hoc Routing. In MobiCom, Rome, Italy, July
2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

