Consistent Context Management
in Mobile Ad Hoc Networks

Jorg Hahner, Christian Becker, Pedro @ddarion
Institute of Parallel and Distributed Systems (IPVS)
Universitt Stuttgart, Germany

Abstract: John entered his office. John left his office. The order of these updates
to a context-aware system is important to reflect the state in the real world. Context
information obtained by sensor systems requires consistency concepts which reflect
the chronological ordering in which context information has been captured. This paper
introduces a consistency concept which allows to express the ordering of events which
happened outside of a computer system.

1 Introduction

Context-aware applications rely on the state of the physical world and react accordingly
in order to adapt to the preferences of users in their current situation. Examples are nav-
igation systems adapting their presentation to the media a user is travelling on, e.g. as
pedestrian, car driver, or on a public transport. Cell-phones which determine their context,
i.e. being in a meeting based on the noise and light conditions in the surroundings, can
forward incoming calls to a mailbox in order not to interrupt the meeting. Sensors in a
storehouse can provide current information about the goods and their location allowing
for an up-to-date inventory. All these examples have in common that the applications have
to rely on a number of data fetched by sensor systems. The information may be collected
by autonomous sensor nodes as well as there may be no centralized storage of the context
information. Consistency concepts which ensure the logical order of events, such as Lam-
port’s logical clocks, cannot cope with events which are created outside of the computer
system, such as observations made by sensors. Especially applications in mobile ad hoc
networks are additionally challenged by frequent and unpredictable network partitions. As
a result, updates of the sensor information can be delayed and may overwrite more current
ones. In cases where applications have to rely on the most current information or a history,
e.g. to determine the track of an object, this will lead to wrong interpretations.

This paper presents a novel consistency concept that ensures the ordering of events based
on the chronological order in which they have been observed. An algorithm ensuring this
consistency concept in mobile ad hoc networks is sketched. This provides applications
the capability to react upon the order of events happened in the physical world. Important
examples are the determination of the direction of a mobile object based on the time of
two sightings, e.g. moving from observation place 1 to observation place 2 or in the oppo-



site direction. More generally, the consistency concept ensures, that no older observation
overwrites a more current one. The paper is structured as follows. Next, we discuss related
work. In Section 3 we introduce our system and consistency model followed by a discus-
sion of how replication algorithms that guarantee the consistency model may be designed.
The paper closes with a brief summary.

2 Related Work

The ordering of events in distributed systems has been subject of research for many decades.
The seminal work of Lamport [La78] introduces means for ordering events that can be
specified and observedithin a given system. Thhappened-beforeslation as defined

by Lamport utilizes the order between sending and receiving of a given message at dif-
ferent processes in the system by merging the causal history of the sender and receiver
processes at the receiver. Our consistency concept enforces the chronological ordering of
update operations caused by evemtgernalto the system rather than their causal order-

ing within the system. Strong consistency based on the concept of serializability [HR83]
has been addressed in the domain of distributed databases extensively. Since the level of
consistency is a trade-off to availability [DGMS85], strong consistency may result in poor
availability in the presence of frequent node and network failures. Weaker consistency
levels have been proposed to increase the availability of data. The authors of EYGH
propose epidemic algorithms to update copies of replicated data in fixed networks. Their
concept of consistency ensures that all copies converge to a common state. The Deno
system [KCOO] implements an epidemic replication algorithm based on weighted-voting
ensuring that each copy commits updates in the same order. The authors of [LHEO3]
present a collection of protocols for probabilistic quorum based data storage in MANETS.
Read operations will return the result of the latest update operation independent of the
order in which these updates have been executed. Both, the work in [KC00] and [LHEO3]
do not guarantee that updates are applied in chronological order.

3 Consistency Model

Our system is comprised of a set of mobile or stationary nodes which are networked in
an ad hoc manner using wireless communication technology. Each node may be in one or
more of the following roles: observer, database node (DB node), or clienbb&erver

is equipped with sensors that are used to observe the stateradivable object its
surroundings. Whenever such an observer senses a significant state change of an object it
is responsible for creating a so-callepdate requesthich is then sent to one or more DB
nodes. ThéB nodegnaintain a database that stores one state record for each perceivable
object in the system. The database may be distributed over the set of DB nodes in different
ways. Each DB node may, for example, hold a copy of every state record to ensure high
availability. Applications run orclientswhich only read state records. This restriction



makes sense, because each state record reflects the state of a real-world object, which
cannot be altered if no actuators are used in the system. A single physical node in the
network may be in several roles at a time, e.g., as a client and a DB node.

3.1 Ordering of Update Operations

As observers are used to capture the state of real-world objects, the chronological ordering
of update requests created by observers plays a crucial role for applications to reason about
the state of an object. An application may, for example, need to determine the direction
of movement of an object based on a series of location changes. Due to the lack of global
time in distributed systems, the ordering of state changes perceived by different observers
may only be done with limited accuracy. Therefore, we defin@tueirred-beforeelation

for two update requests as follows.

Definition 1 (occurred-before): Let. andwu’ be two update requests. Theroccurred-
before &) v iff tops(u') — tobs(u) >, whered > 0 andtons(u) denotes the real time at
which the observation leading to the generatiom afccurred.

In the definition, parameter describes how accurate update requests can be ordered. If
two update requests are created by two different observers with a temporal difference
of less thand, their order cannot be determined and these update requests are said to
be concurrent If an algorithm relies on synchronized clocks, for exampleyould be
determined by the accuracy of the clock synchronization algorithm used.

3.2 Consistency Definition: Update-Linearizability

Update-linearizability is a weak consistency model which ensures that clients never read
a state for a logical object that is older than any other state the same client has previously
read for the same object. The update requests for each logical object are ordered according
to theoccurred-beforeelation presented in the previous section. The following definition

of update-linearizabilitycaptures the idea that all operations, both read operations done
by clients and update requests executed by observers, may be serialized against a single
logical image of the database.

Definition 2 (update-linearizability): An execution of the read and update operations is-
sued by clients and observers is said to be update-linearizable if there exists some serial-
ization S of this execution that satisfies the following conditions:

(C1) All read operations of a single client on a single objecfiare ordered according to

the program order of the client. For each objecind each pair of update reques{s]
andu/[z] onz in S: w'[x] is a (direct or indirect) successor@ffr] in S iff u[z] < u'[z] or
ulz]||u’[z].

(C2) For each object in the database S meets the specification of a single copy of



a) b) c)

O1: ufz]1 0O1: ufz]1l 01: uf[z]1 uly]2

02: ulz]2 02: ulz]2 02: ufy]l u[z]2

C1: rlz]l r[z]2 | ClL rlz]l rlz]2 | CL: rlz]2 ry|1
C2: rlz]2 C2: rlz]2 rlz]l | C2: rly]2 r[z]1

Figure 1: Sample executions: execution (a) and (c) are valid, while (b) is invalid

3.3 Examples of Executions

Figure 1 gives three examples for valid and invalid executions according to Definition 2.
We use the notation[z]1 to indicate an update request for objedhat writes the staté
andr[y]2 for a read operation that reads objgaind returns statg. The time axis runs
from left to right.

The execution in Figure 1(a) is correct because client C1 reads the state of.obgtt

even though state has already been written by obserg2. This is allowed becausé1

has never read objeatbefore, allowing to star€'1’s program for object: anywhere in

the serialization. Clien€2 reads stat@ at the same time tha@'l reads statd. This

is valid because executions of different clients may be interleaved in the serialization. In
contrast to that, Figure 1(b) shows an invalid execution, bec@@seads staté, which

is the older state information, after it has already read &tate

The example in Figure 1(c) is a valid execution with two objects, because update-linearizability
is an object-local property and both clients read each object only éricesads staté of
objectx before reading stateof objecty andC?2 vice versa.

3.4 Using the Consistency Model

From the perspective of a programmer the concept of update-linearizability is slightly dif-
ferent from sequential programming. Consider a program that monitors the state of an
object, e.g. the temperature of an object. The task of the program is to send a notifica-
tion to another process if a threshold is exceeded. sk@te,.;,,, be a value below and
stateqpove @ Value above a given threshold. Definition 2 guarantees that if the monitoring
process reads a sequentete,. ., thenstate,poe there was a state change from below

the threshold to above the threshold. The same holds respectively for reading,, ..

first and thenstateye,. This means that the monitored state of the object crossed the
threshold in the observed direction, if the monitoring process sends a notification. In gen-
eral, the opposite implication, i.e. if a notification is sent exactly one state transition has
been observed, depends on how fast updates are being propagated to client processes com-
pared to the update frequency. Computations that involve reading multiple objects may
be regarded as concurrent clients where one object is read by each client, because update-
linearizability is an local property for each object.



3.5 Implementation Issues

A multitude of algorithms that implemenpdate-linearizabilityis possible. The spectrum

of such algorithms includes different degrees of data replication and may function with or
without the use of synchronized clocks. Depending on the algorithm, state information
may be fully or partially replicated on a set of DB nodes. Clients and DB nodes may be
co-located on the same device for high read availability. To achieve chronological order-
ing without the use of synchronized clocks, the according algorithms need to maintain
additional ordering information, such as chronological ordering graphs.

4 Summary

Context-aware applications often need to reason about the state of real-world objects. One
key aspect here is the order in which state changes of such objects occur. Therefore, we
presentedupdate-linearizability a novel consistency model that takes into account the
chronologicalordering of update operations as they are created by so-called observers.
Observers are simple devices that are equipped with appropriate sensors that allow for
identifying objects and sensing their state. State changes of objects are propagated to DB
nodes which maintain a distributed database of the most recent state of all objects in the
system. Clients run context-aware applications that read the state of real-world objects in
order to adapt themselves to changes in their environment.

References

[DGH*87]

[DGMS85]
[HR83]
[KCO0]
[La78]

[LHEO3]

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., und Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proc. of the 6th Symposium on Principles of Distributed Computtid—12. 1987.

Davidson, S. B., Garcia-Molina, H., und Skeen, D.: Consistency in a partitioned net-
work: A survey. ACM Computing Surveys (CSUR)7(3):341-370. 1985.

Haerder, T. und Reuter, A.: Principles of transaction-oriented database recAGavy.
Computing Surveys (CSUR)5(4):287-317. 1983.

Keleher, P. J. und Cetintemel, U.: Consistency management in déwizile Networks
and Applications 5(4):299-309. 2000.

Lamport, L.: Time, clocks, and the ordering of events in a distributed systemmmu-
nications of the ACM21(7):558-565. 1978.

Luo, J., Hubaux, J.-P., und Eugster, P. T.. Pan: Providing reliable storage in mobile
ad hoc networks with probabilistic quorum systems. Rroc. of the 4th ACM Int.
symposium on Mobile Ad Hoc Networking and Computigl—-12. 2003.



