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Abstract — Mobility of users significantly impacts
performance of a mobile ad-hoc network. Most existing
simulation tools offer only a few random mobility models, which
poorly reflect user movements in outdoor scenarios. For
example, they do not consider restrictions of a spatial
environment. In this paper, we describe a comprehensive and
extensible approach to model mobility of users in outdoor
scenarios. It reflects the main factors that influence user
movement: spatial environments, user travel decisions, and user
movement dynamics. We identify model parameters and show
how to set them for concrete scenarios. We provide a simulation
environment implementing our approach. For concrete
scenarios, the environment supports automatic derivation of
some parameters from user position traces.
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I. INTRODUCTION AND MOTIVATION

mobile ad-hoc network (MANET) is composed of mobile

devices capable of wireless communication, such as user-
carried PDAs and notebooks. These devices cooperate
spontaneously without relying on any communication
infrastructure.

Many communication protocols and applications for
MANETs are under research. Since performing large-scale
studies in real networks is impractical, simulation tools are
often used (see [8], [19], and [35] for example). These tools
offer simulation models that represent MANETSs and reflect
the application behavior, a wireless network protocol stack,
the properties of the communication channel (e.g., signal
attenuation), and mobility of network clients.

MANETSs are frequently intended to be used in outdoor
scenarios, e.g., Usenet-on-the-fly [4], CarTALK 2000 [13],
and Ad Hoc City [23]. The studies of these scenarios need
appropriate simulation support. Regarding the mobility
modeling of outdoor scenarios, the existing approaches are
neither suitable nor complete. For example, stochastic
approaches [9], [12], [14] randomly produce user movements
within a rectangular area similar to the Brownian motion of
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molecular particles. By assuming the simulation area to be
free of obstacles, these models do not reflect the spatial
environment, which constrains the movements of users. Other
approaches focus only on particular characteristics of
movement, like places to visit in the graph-based mobility
model [40] or movement dynamics in the smooth mobility
model [6].

In this paper, we describe a comprehensive approach to
model user mobility in outdoor scenarios. It integrates a
number of models from different research domains. We also
show how to set model parameters for the concrete scenarios
and describe how we support automatic derivation of some
model parameters from real-world observations, e.g., GPS
traces [22]. Our implementation is publicly available and can
be downloaded from [11].

The remainder of the paper is structured as follows. Section
I describes related work in the area of mobility modeling. In
Section III, we present the design of our approach. Sections
IV to VII describe the components of our model in more
detail. In Section VIII, we discuss how to set model
parameters for concrete scenarios. Section IX describes our
approach for automatic derivation of some model parameters
from user position traces. We sum up with a conclusion and
an overview of future work in Section X.

II. RELATED WORK

Existing approaches for modeling movements of mobile
network users can be classified into: random mobility models,
area-constrained random models, profile-based models,
approaches based on real-world position traces, and integrated
models.

Random mobility models represent user mobility as random
movements within a rectangular area, such as the Brownian
walk [14], the smooth mobility model [6], and the random
waypoint mobility model [9]. These models do not consider
constraints of the movement area, and thus poorly reflect real
outdoor scenarios.

Area-constrained  random  models  restrict random
movements with constraints of a spatial area. Examples are:
the random waypoint mobility model with obstacle avoidance
[24], the restricted random waypoint mobility model [7], and
the graph-based mobility model [40]. Although these models
consider spatial environments, they poorly reflect other factors
that influence mobility. For example, they do not consider



user travel decisions or movement
dynamics.

Profile-based models reflect regular travel behavior of a
user, e.g., the circle-defined mobility model [28] or the global-
local mobility model [29]. These models do not consider
spatial environments and use straightforward approaches to
reflect user movement dynamics, such as constant-speed
movement.

Approaches based on real-world position traces produce
user movements according to the traces obtained with a GPS
or reconstructed from a trip survey [37]. The traces reflect
movements of a limited number of users only, and therefore
are not suitable for larger scenarios. Moreover, the traces
hardly allow for the variation of parameters like movement
speed or the sequence of visited places.

Integrated mobility models reproduce user mobility with a
consideration of multiple factors. For example, [30] takes into
account constraints of a spatial area, user trips, and user
movement profiles. However, the authors are not interested in
obtaining complete movement paths. They rather get statistical
values for performance analysis of cellular networks. MANET
simulation requires a detailed mobility trace. In [31], the
authors consider spatial constraints and movement profiles,
but use a statistical distribution to reflect user trips. In order to
obtain more accurate results, we explicitly model user trips
and movement path selection.

It is worth noting that none of the mentioned works
correlate its model parameters with real-world observations.

oversimplify user

III. MOBILITY MODEL DESIGN

In this paper, we aim at constructing a comprehensive,
flexible, and scalable mobility model for outdoor scenarios.
We base our model on the user-oriented mobility meta-model,
which, as shown in [39], is a generic approach to model
mobility of users in various simulation scenarios. For outdoor
scenarios, we extended the basic model with the modeling of
movement path selection and new approaches to reflect user
movement dynamics. This allows us to model user mobility
more precisely, in particular in city areas.

The user-oriented mobility model considers three key
factors that impact user movement in a given area:

- Outdoor environments (movement constraints and
points of interest)

- User travel decisions

- User movement dynamics

An outdoor environment constrains movements of users.
Network clients move along the certain movement paths like
streets and roads, and do not go through obstructions of the
movement area. In addition, the outdoor environment contains
the so-called “points of interest” (e.g., supermarkets or
museums) which normally serve as destination points of
movement.

The modeling of user travel decisions includes the
modeling of user trip sequences and the modeling of

movement path selection. Obviously, people do not move
completely random in the target area. According to the
activity-based travel demand approach [25], [34], people
move to perform an action in certain places, for example,
shopping in the particular shops or visiting the predefined
sights. A sequence of such actions (trip sequence) predefines
user movements in the area. Besides, in order to get to a place
where the activity can be executed, a user has the choice
among a number of movement paths. Hence, our mobility
model also considers the selection of a movement path.

Mobile clients exhibit different movement dynamics. For
example, pedestrians tend to move at low speeds with frequent
interruptions, while vehicles move at higher speeds and
influence dynamics of neighboring vehicles. Since the
dynamics of client movement impacts the stability of the
network topology, it needs to be reflected in a simulation. To
be applied in common MANET scenarios, our implementation
supports two major groups of mobile clients: pedestrians and
vehicles.

Consequently, the resulting mobility model integrates three
sub-models (Fig. 1): spatial model, user trip model, and
movement dynamics model.
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Fig. 1: Structure of the User-Oriented Mobility Model

The spatial model contains a description of the movement
area (outdoor environment). It provides the necessary
information about the area constraints and the points of
interest. The spatial model is initialized from a digital map
taken from a geographic information system.

The wuser trip model reflects user travel decisions. It
performs the mobility modeling at the level of user trips:
“Move from point A to point B on the path P,p;, and then to C
on Ppcs.” The paths chosen for movement reflect the spatial
model, i.e. contain points of interest as the movement
destination points and consider movement area constraints. To
model user trips, we use models from urban transportation
planning [32]. The models allow correlation of their
parameters with real-world observations.

The movement dynamics model reflects dynamics of user
movement (position changes) along their movement paths.



Here we use models from physics and vehicular dynamics
[36], [43]. The changes of user positions constitute mobility
traces, which serve as an input for MANET simulation tools.

The following sections describe the design of these three
basic components and their integration.

IV. SPATIAL MODEL

The spatial model provides a digital map of the simulation
area containing its objects. To standardize the model interface
and to be able to use existing map data sources, we have built
it according to the Geographic Data Files (GDF) [17]
standard.

Thus, as in GDF, the area is represented as the collection of
real-world objects, such as streets, museums, hotels,
restaurants, cinemas, etc. An object description includes its
geometry, attributes, and relations with other objects (Fig. 2).
The geometry is specified with primitives, such as points,
lines, and polygons. Object attributes contain additional
properties, e.g., speed limits or museum opening times.
Relations specify meaningful links between the objects
holding descriptive (e.g., the building belongs to the road) or
restrictive (e.g., prohibited maneuver from one road to
another) semantics.

general info

id="#4925"
theme="Road and Ferries"
class="Road Element"

geometry

Line={(512099.05, 5402049.54, 0),
(512106.39, 5402052.99, 0),

-}

attributes

Direction of Traffic Flow="Both
Directions*

Number of Lanes=2

Average Vehicle Speed=120
Traffic Jam Sensitivity=20%
Length=5431m

Fig. 2: Example of a Road Element in GDF

GDF specifies some objects as services. Thus, it provides
information about the typical activities which people usually
perform at the certain points of interest, e.g., shopping at a
shopping center, or having lunch in a restaurant. We use this
information in the user trip model for trip construction.

To support mobility modeling, we build a topological graph
of the movement area (Fig. 3). The vertices represent the
locations in the simulation area serving as origins,
destinations, or intermediate points of movement. They relate
to street crossings and points of interest passed by users, such
as monuments, museums, restaurants, and shops. The edges
represent the street elements connecting locations. The
vertices and the edges are annotated with the properties of the

)
Fig. 3: Representing the Spatial Model with a Topological Graph

spatial model objects.

In this paper, we focus on mobility modeling for MANET
outdoor scenarios. We initialize the spatial model from a city
map in GDF format. Besides GDF, our implementation also
supports maps in other formats, such as the Geometry Markup
Language (GML) [18].

V. USER TRIP MODEL

The user trip model reflects travel decisions of users. It
models the trips users perform during a simulation, and a
selection of movement paths. We base this model on the
approaches from the domain of urban transportation planning
[32].

1) User Trips

In order to define user trips, we use the activity-based travel
demand modeling approach [25], [34]. In real life, people do
not think about how many trips they are going to perform
during a day. Instead, they think about what they want to do,
and where these activities can or need to be performed.

As a consequence, we describe user trips with a trip chain.
The chain arranges single actions (activities) performed by a
user (Fig. 4), such as shopping or sightseeing. It can be
defined individually for a user or aggregated over a group of
users. For the individually defined trip chain, the sequence of
activities is predetermined. The user performs an activity at a
corresponding location for some duration of time. The
aggregated trip chain accumulates individual trip chains of
many users. Hence, users perform activities at multiple

restaurant

preference=20%
45-50 min

preference-80%
20-30 min

Fig. 4: Example of Individual (on the left) and Aggregated (on the right)
Trip Chains and their Integration with the Spatial Model



locations; different transitions between the activities are
possible. Each of the locations and transitions gets a certain
“level of popularity” (probability of being selected) reflecting
how many users choose the particular transition or location in
real life.

The locations for executing activities correspond to points
of interest in the spatial model. In a trip chain, they are
referenced using either geographic coordinates (e.g.,
[1100762.20N; 4934457.40E]) or symbolic coordinates (e.g.,
“384 Pitt Street”).

During a simulation, mobile users perform activities
successively as in their trip chains. In the aggregated chain,
the next activity and location for its execution are chosen
according to probabilities. The users move from their current
position to the location where the next activity is executed.
After arriving at the destination, the user stays there for the
time needed to execute the activity; then he or she chooses the
next activity and starts a new movement.

2) Movement Path Selection

To find a movement path between the trip origin and
possible destination points, many authors apply simple
approaches, like a shortest path algorithm [39], [40]. This
poorly reflects real life, since according to investigations in
transportation planning, mobile users do not always choose
the shortest path for their movement. Diversity in user path
selections impacts their mobility in the area and needs to be
appropriately reflected in a MANET simulation.

Hence, to model path selection, we use the probabilistic
multipath traffic assignment model from transportation
planning [15], [32]. The corresponding so-called STOCH
algorithm avoids explicit path enumeration. Its computational
complexity is comparable to the complexity of the shortest
path algorithms. Moreover, the algorithm is based on the
multinomial logit model from discrete choice theory [5], [42].
Therefore, the model parameters can be calibrated to fit real-
world observations [1], [27].

In the next section, we describe two variations of the
algorithm for modeling the path choice of pedestrians and car
drivers, and their integration into our mobility model.

VI. MODELING THE USER PATH CHOICE

In the probabilistic multipath traffic assignment model,
every path between the trip origin and destination is assigned
a selection probability according to the estimated path travel
time. Since car drivers and pedestrians estimate travel times
differently, we consider two cases.

A. Notation

We assume a mobile user is currently located at vertex s
(trip source vertex) of our spatial model graph (Fig. 3). After
selecting the next activity, he or she decides to move to vertex
d (trip destination vertex). By e=(i, j) we denote a single graph
edge directed from vertex i to vertex j. The edge represents a

transportation link, which is basically a street element from
our spatial model. Every edge has the associated cost (i, j).
This cost is the estimated travel time from i to j along the
corresponding transportation link. #*(s, /) denotes the shortest
cost (the shortest time) to get from s to i. Transportation link
length is a link’s end-to-end travel distance. Link traffic
volume v(e) is the number of vehicles currently traveling on
the graph edge in the direction from i to .

B. Modeling the Path Choice of Pedestrians

For pedestrians, we model the path choice as follows. In the
first step, we estimate path travel times based on the typical
movement speed of the user. In the second step, based on the
estimated times, we use the STOCH algorithm [15] to
calculate path selection probabilities. In the next paragraphs,
we provide a brief description of the algorithm to describe its
integration into our mobility model.

For efficiency reasons, the algorithm obviates path
enumeration and determines selection probabilities for the
individual graph edges. We use these probabilities to select
edges for movement successively, thus obtaining the resultant
movement path.

The algorithm works with a directed graph. For pedestrians,
our spatial model graph is bidirectional and the edge attributes
are symmetric.

Similar to user behavior in real life, the algorithm considers
only “reasonable” paths with “efficient” links. For the
efficient links, the shortest path cost from the trip origin s to
the link start vertex i is less than the shortest path cost from s
to the link end vertex j (thus, users would come farther from
the origin with every move):

Ve=(,j): t (s,0)<t(s,)) (1)

This reduces the number of links under consideration. The
algorithm assumes that the selection probability a for link
e=(i, j) is exponentially dependant on the difference between
the cost of the shortest path from s to j and the cost of the
shortest path from s to j that contains the link e:

a(e) = M D=1 (s~ ©)

The parameter & (6> 0) is set by the modeler. It reflects the
importance of the path length for the user choice and user
knowledge about the movement area. As @ increases (i.e., the
path length becomes more important and the user knows that
the particular paths are shorter), the selection probabilities for
shorter paths also increase. When @ is zero (i.e., the path
length is not important or the user cannot estimate it), all
efficient paths are considered equally. The exponential
expression is analogous to the expression of choice
probability from the multinomial logit discrete choice model.
Thus, the parameter € can be correlated with real-world
observations by maximizing the so-called log-likelihood
function using methods of numerical maximization, as
described in [42].

The algorithm performs three steps (Fig. 5). During the first
step (“Initialization”), it calculates the shortest path costs from



s to all other vertices. They are used to estimate the link
selection likelihoods a(e). In this step, the non-efficient links
are assigned a likelihood of zero, and thus are excluded from
further consideration. During the next step (“Forward Step”),
the algorithm computes link weights w(e) depending on the
weights of the topologically preceding links. In the third step
(“Backward Step”), the algorithm estimates conditional link
selection probabilities p(e|f). Obviously, the sum of the
conditional selection probabilities of edges having the same
end vertex equals 1.

It is important to note that the third step of the presented
algorithm differs slightly from the third step of the original
STOCH algorithm. Since the goal of the original algorithm is
to distribute a number of moving users among the
transportation links, it assigns link traffic volumes. In this
paper, we calculate the link selection probabilities.

It is clear that the algorithm terminates during the “forward”
and “backward” steps. Since it excludes the non-efficient links
from consideration, it traverses the graph edges successively
in the topological order, until it reaches the trip destination
vertex d.

An example of using the STOCH algorithm to calculate link
selection probabilities is depicted in Fig. 6. The example
shows a subset of the spatial model graph that contains
efficient links for the trip from the vertex s to the vertex d.
Based on the estimated travel times (posted above the edges),
conditional link selection probabilities are obtained (posted
below the edges). They provide the possibility that the link
and its end vertex are visited. In the example, we use ¢=0.9.
Having the probabilities calculated, it is a straightforward task
to traverse the graph in the reverse direction from the
destination to the source, and to choose edges stochastically at
each intermediate vertex, thus constructing the selected
movement path.

Following this method, a path choice for pedestrians is
performed as follows:

1. Estimate conditional selection probabilities for the
efficient graph edges using the STOCH algorithm.

2. Decide on a movement path by traversing the graph in
the reverse direction from the destination vertex to the
source vertex. The resultant path is successively
constructed by adding edges. The edges are chosen
stochastically at each intermediate vertex from the set
of efficient incoming edges in accordance with the
computed selection probabilities (i.e. the edge with
higher selection probability has a better chance of
being selected).

Since, according to our model, link travel times for a
pedestrian depend only on link end-to-end distances, the
corresponding edge costs do not change for the user over time.
Hence, the STOCH algorithm needs to be applied only once
for this user and for the given source and destination vertices.
Once computed, the probabilities are reused by successive
calculations.

Initialization
1. Calculate shortest path costs ¢* from the trip origin
s to all other graph vertices using a shortest path
algorithm (e.g., Dijkstra [16]).
2. For each edge e=(i, j), determine its likelihood
a(e):

Ol (s, )= (5=t D] 5o e i) o e i
ale) = e , ift (s0) <t (s))
0, otherwise

Forward Step

Starting with the origin s, for each edge e=(i,)
determine its weight (likelihood with respect to
likelihoods of the edges having i as end vertex (denoted
as F))):

a(e), if F,=0
w(e) =1 4(e) Zw(e'), otherwise
e'inF;

Stop when the destination d is reached.

Backward Step

Starting from the destination d, for each edge e=(i, j)
determine its conditional selection probability p(e|))
with respect to the edges having j as end vertex

(denoted as F)):
N w(e)
plelj) = S @)
e'inF;

Stop when the origin s is reached.

Fig. 5: Algorithm to Estimate Selection

Probabilities (STOCH Algorithm)

Conditional Edge

Fig. 6: Example of Calculating Link Selection Probabilities using the
STOCH Algorithm

C. Modeling the Path Choice of Car Drivers

For car drivers, travel time on a transportation link depends
not only on the link length, but also on the current traffic
volume. Travel time is longer on congested roads, so drivers
try to avoid them.

In transportation science, the so-called “volume-delay”
functions model the impact of the link traffic volume on the
link travel time (its cost), e.g., the Bureau of Public Roads
(BPR) function [10], the Overgaard function [33], and the



Spiess function [38]. Although we could use any of these
functions, we choose the BPR function, because it is well
investigated and its parameters for different road types are
well documented (see [21] for details).

The BPR function defines the following dependency
between the link travel time ¢ and the link traffic volume Q:

B

g ] ©)

max

H0) =1, 1+a[

where #, is the link travel time at free traffic flow. It is
estimated from the typical vehicle travel speed and the link
length.

a and f are empirical coefficients. Their values for the
concrete road classes are available. Our implementation relies
on the standard values (¢=0.15 and f=4) and on the values
from [21] with the spatial model providing the necessary road
class identifiers.

Q is the current link traffic volume. It is calculated from the
current density of vehicles (veh./m) traveling on a graph edge
in the direction from the start vertex to the end vertex, and the
average traffic speed.

Oax 1 the maximum link capacity. We rely on the typical
link capacity values from [3] and [26].

We use the BPR function to calculate estimated link travel
times for vehicles. Then we apply the STOCH algorithm to
calculate link selection probabilities. Upon calculating the
probabilities, we also consider whether a movement is
prohibited for vehicles along a particular road element or in a
particular direction. In this case, the element is assigned the
probability p(e|j)=0.

To sum-up, the path choice for car drivers is made as
follows:

1. Calculate the link costs based on the current link traffic
flows using the BPR function (3).

2. Estimate conditional selection probabilities for efficient
edges using the STOCH algorithm.

3. Decide on a movement path by traversing the graph in
the reverse direction from the destination vertex to the
source vertex. The resulting path is successively
constructed by adding edges. The edges are
stochastically chosen at each intermediate vertex from
the set of efficient incoming edges in accordance with
the computed selection probabilities.

As opposed to the pedestrian case, link travel times change
dynamically due to changing traffic volumes. Therefore, we
need to compute selection probabilities each time upon
simulating a selection of a movement path for a user.

D. Possible Extensions for the Path Selection Modeling

An interesting option would be to apply the STOCH
algorithm in the opposite direction from the trip destination to
the trip source point. As the result, we obtain the conditional
link selection probability providing the possibility that the link
and its start vertex are visited. This allows deciding on a
movement path by traversing the graph starting from the

source vertex. According to [41], it reflects user behavior
better in some cases.

It is also possible to model user path choices considering
factors other than the estimated travel time, e.g., the number
of sights passed or the number of stop signs. In this case, a
modeler defines a so-called “behavioral process” function
[42]. The function is a linear combination of attributes
impacting the user choice. It is estimated by a modeler for a
specific situation and for a specific group of users. In future
work, we plan to support the behavioral process, which is
defined using attributes of spatial model objects.

VII. MOVEMENT DYNAMICS MODEL

The movement dynamics model defines patterns in speed
and direction changes of mobile clients during their movement
between two locations. It is based on models from physics and
vehicular dynamics.

Different dynamics models are proposed for different types
of mobile clients. For example, the low-speed motion along
road edges with frequent stop-and-go behavior reflects the
dynamics of pedestrians. There are models for vehicles based
on correlations of speed and direction changes (e.g., smooth
random mobility model [6]), approaches from traffic modeling
(e.g., fluid traffic model [36]), and dependencies between
movements of neighboring vehicles (e.g., intelligent driver
model [43]). In addition, we can integrate special models for
the certain aspects of movement dynamics, such as lane
change behavior [2]. To improve the accuracy of modeling,
the movement dynamics model can also consider the attributes
of road elements, such as the speed limit or the number of
traffic lanes.

Our present implementation includes a number of
movement dynamics models for pedestrians and vehicles. We
find the following models are the most interesting for the
outdoor scenarios.

A. Modeling the Dynamics of Pedestrians

We model the dynamics of pedestrians as a constant speed
motion. The speed is randomly chosen at the beginning of the
movement from a certain interval. For example, for
pedestrians walking freely in a city, typical values are between
4 and 5 km/h [26].

B. Modeling the Dynamics of Vehicles

For modeling the dynamics of vehicles, we use the
intelligent driver model described in [43]. According to the
model, vehicles try to keep certain distance between each
other for their safety. The acceleration of vehicle 7 at time ¢
depends on its current velocity v(?), the distance s;;;(?) to the
vehicle i-1 in front, and the safety distance s*l», i-1(t) between the
vehicles:
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In the formula, a; is the maximum acceleration of the
vehicle i.

v/ is the desired speed of vehicle i which depends on the
behavior of the driver. In our simulations, we choose
randomly the desired speed for a vehicle from a certain
interval, e.g., between 40 km/h and 50 km/h in city scenarios.

o is the exponent controlling the acceleration behavior of
vehicles until they reach their desired speed.

The safety distance s*,-,,-_j(t) between vehicles i and i+ is
expressed as:

VAV, iy 0

where s, is the minimum distance between vehicles, like in
a traffic jam.

T; is the safe time headway in congested traffic. It
represents the maximum reaction time of a driver, e.g., to
apply breaks.

Av; i is the difference in velocities between the vehicles i
and i-1: Av;; ;=vivi).

b; is the driver’s typical deceleration in regular (e.g., non-
critical) situations.

According to the model, on distances s;;; >> s*,«,,«_J the
vehicle i accelerates until reaches its desired speed. As the gap
s;;.; approaches the safety distance, the vehicle decreases its
acceleration. When s;,.; < S*,-,i,z, the vehicle breaks harder to
avoid a collision.

The model can handle traffic jam situations, e.g., as the
leading vehicles slow down, the succeeding vehicles will also
decrease their speeds.

Typical values of coefficients as described in [43] are:
a=0.6 m/s’, 0=4, T=1.5 s, s,=2 m, [=5 m, and »=0.9 m/s’.
Our implementation uses these values by default.

The described model does not explicitly reflect movement
on multiple traffic lanes. The reason is that in our road data
each lane is represented as a separate road element, hence the
multilane traffic is still reflected.

By integrating the described model into our simulation
environment we make it useful for performance evaluations of
vehicular ad-hoc networks (VANETSs). To the best of our
knowledge, no other freeware tool currently exists to generate
VANET mobility traces for MANET simulation tools.

* p—
;i1 =S¢ +max| v, T; +

VIII. DEFINING MODEL PARAMETERS

In order to use the described approach in simulations, it is
necessary to define the spatial model, user trip model, and
movement dynamics model. They can be defined according to
the simulation scenario for every user individually or for a
group of users.

The spatial model contains a digital map of the simulation
area. Since we implemented parsers for GDF and GML, its

initialization from the given geographic information system is
straightforward.

The parameters of movement dynamics are specific to a
particular model. For the models described in this paper, either
the model authors specify typical values (e.g., for the
intelligent driver model) or they can be easily estimated based
upon the daily experiences.

Parameters of the user trip model include trip chains with
activities, places for executing activities, times needed to
execute activities, transitions between activities, and the
parameter @ for path selection. Defining the user trip model
requires more effort. To make things simpler, our
implementation provides random generation of user trips. Path
selection modeling can also be simplified, for example, by
setting dto 0 which makes mobile users consider all efficient
paths equally. Setting & to some large value makes the users
select only the shortest paths. In these two cases, our path
selection model performs as a multiple-path searching
algorithm.

To simulate mobility in concrete scenarios more accurately,
our implementation also provides automatic derivation of trip
model parameters from position traces, e.g., GPS traces, as
described in the next section. One might argue that if we
already have position traces, it is sufficient to simulate
mobility according to them. However, the trace represents
only a limited number of clients. Having the model parameters
defined, it is possible to simulate any number of mobile
clients. In addition, the model parameters can be varied to
check their effect on simulation results.

IX. DERIVING USER TRIP MODEL PARAMETERS FROM
POSITION TRACES

Our approach is quite simple and is based on associating the
locations in the area with the typical activities. A more
sophisticated approach is based on heuristic and is described
in [44].

We consider a client position trace as a sequence of entries
having the following form:

- Client ID
- Time
- Client position (coordinate)

The entries are stored at constant intervals. The authors in
[44] state that in order to reconstruct movement paths for
vehicles, the granularity should be less than 10 s. For
pedestrians, the granularity can be estimated proportionally.

For constructing an aggregated trip chain from the traces,
we perform the following steps.

1) Associate activities with locations

Using information from the spatial model (“theme” and
“class code” of spatial model objects), we associate activities
with corresponding locations in the target area. This allows
the “reverse” mapping from a visited point to the performed
activity. Thus, if we detect a user stays at a particular location,



we can also determine which activity he or she performed
there.

The association is unambiguous, i.e. although multiple
activities can be performed at a point, we consider only the
primary activity (e.g., a shopping center is used only for
shopping).

Our current implementation automatically distinguishes the
following activities provided by GDF data sources:
“business”, “cultural”, “educational”, “meal”, “parking”,
“recreation”, “shopping”, and “sightseeing”. Besides, we
introduce two special activities: “initial” and “unclassified”.
The initial positions of mobile users in the trace sample are
associated with the “initial” activity. All the points of interest
that do not belong to one of the standard activities are
associated with the “unclassified” activity. Moreover, if upon
a trace analysis we detect a user stays at a location, which is
not associated with an activity, it is also added to the
“unclassified” activity.

Obviously, the described splitting into activities is neither
obligatory nor complete. It just reflects our current simulation
scenarios. In our implementation, it is possible to change the
standard associations and / or introduce new ones.

2) Determine the trip chain parameters

The parameters to be determined are: probabilities of
transitions between activities, visiting probabilities of
locations, and durations of activity executions at the locations.
These parameters are obtained by comparing client positions
with coordinates of points of interest. Thus, we process trace
entries of every user in chronological order and check the
following:

- If a client stays within a point of interest longer than a
threshold value (minimal activity execution time), we
then detect an activity by:

e Finding the corresponding activity;

e Incrementing the counter for this activity;

e Incrementing the counter for this activity at this
location;

e Incrementing the number of transitions between the
previous activity and the current activity.

- If a client departs from a point of interest (i.e. his or her
position is no longer within the previous point of
interest):

e Update durations of executing the activity at this
location (in our implementation, we obtain the
minimal and maximal values (Fig. 4); as an option,
we could also use the average or the weighted
average).

After the trace data is processed completely, we calculate
the selection probabilities for locations within every activity
(location’s preference) by dividing the counter for the activity
at the location by the counter for the activity. We calculate the
probabilities of transitions between two activities by dividing
the count of transitions between the activities by the total
count of transitions from the source activity.

It is important to note that by applying the described

method for vehicles, we primarily detect the “parking”
activity. To further differentiate between activities, we must
additionally process movements of car drivers after parking.

3) Determine the parameter 6 of path selection model

To determine this parameter, we need to count how many
times a particular transportation link is used for a trip between
two given locations. Then & needs to be calibrated for each
pair of vertices between which the trips are performed. For
calibration, a method of numerical maximization (e.g., the
method of steepest ascent) can be used, as described in [42].
Then the single value for the system can be calculated as the
weighted average of the calibrated 4.

For vehicles, we also need to consider traffic volumes on
transportation links, since they impact link costs in our model.
So far, we do not provide the calibration of € in our prototype,
but its implementation is planned as described.

X. CONCLUSION

Many authors have shown that user mobility has a
significant impact on the performance of MANETSs [9], [12],
[24], [40]. Hence, it needs to be appropriately reflected in
simulations. In this paper, we have focused on mobility
modeling in outdoor scenarios and proposed a comprehensive
approach. Out approach considers a geographic model of the
simulation area, user trip sequences with path selection
decisions, and user movement dynamics. We have
implemented it in our publicly available framework for
mobility modeling [11]. It is a stand-alone application which
produces mobility traces for various MANET simulation or
emulation tools, such as NS-2 [8], GloMoSim [19], or
Network Emulation Testbed [20].

We made our implementation easy-to-use. Hence, it
supports processing of digital maps in common formats,
random generation of user trips in the area, and a number of
movement dynamics models for pedestrians and vehicles with
typical parameters. Obviously, the random generation of user
trips is only introduced to minimize the model creation
overhead. To produce user trips more accurately, the
framework can also derive trip model parameters from actual
position traces.

In future work, we plan on using our approach in
simulations and emulations of MANET outdoor scenarios in
order to obtain more accurate evaluation results.
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