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Abstract — Mobility of users significantly impacts 

performance of a mobile ad-hoc network. Most existing 
simulation tools offer only a few random mobility models, which 
poorly reflect user movements in outdoor scenarios. For 
example, they do not consider restrictions of a spatial 
environment. In this paper, we describe a comprehensive and 
extensible approach to model mobility of users in outdoor 
scenarios. It reflects the main factors that influence user 
movement: spatial environments, user travel decisions, and user 
movement dynamics. We identify model parameters and show 
how to set them for concrete scenarios. We provide a simulation 
environment implementing our approach. For concrete 
scenarios, the environment supports automatic derivation of 
some parameters from user position traces. 
 

Index Terms — Communication systems, mobile 
communication, modeling, simulation 
 

I. INTRODUCTION AND MOTIVATION 
mobile ad-hoc network (MANET) is composed of mobile 
devices capable of wireless communication, such as user-

carried PDAs and notebooks. These devices cooperate 
spontaneously without relying on any communication 
infrastructure. 

Many communication protocols and applications for 
MANETs are under research. Since performing large-scale 
studies in real networks is impractical, simulation tools are 
often used (see [8], [19], and [35] for example). These tools 
offer simulation models that represent MANETs and reflect 
the application behavior, a wireless network protocol stack, 
the properties of the communication channel (e.g., signal 
attenuation), and mobility of network clients. 

MANETs are frequently intended to be used in outdoor 
scenarios, e.g., Usenet-on-the-fly [4], CarTALK 2000 [13], 
and Ad Hoc City [23]. The studies of these scenarios need 
appropriate simulation support. Regarding the mobility 
modeling of outdoor scenarios, the existing approaches are 
neither suitable nor complete. For example, stochastic 
approaches [9], [12], [14] randomly produce user movements 
within a rectangular area similar to the Brownian motion of 

molecular particles. By assuming the simulation area to be 
free of obstacles, these models do not reflect the spatial 
environment, which constrains the movements of users. Other 
approaches focus only on particular characteristics of 
movement, like places to visit in the graph-based mobility 
model [40] or movement dynamics in the smooth mobility 
model [6]. 
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In this paper, we describe a comprehensive approach to 
model user mobility in outdoor scenarios. It integrates a 
number of models from different research domains. We also 
show how to set model parameters for the concrete scenarios 
and describe how we support automatic derivation of some 
model parameters from real-world observations, e.g., GPS 
traces [22]. Our implementation is publicly available and can 
be downloaded from [11]. 

The remainder of the paper is structured as follows. Section 
II describes related work in the area of mobility modeling. In 
Section III, we present the design of our approach. Sections 
IV to VII describe the components of our model in more 
detail. In Section VIII, we discuss how to set model 
parameters for concrete scenarios. Section IX describes our 
approach for automatic derivation of some model parameters 
from user position traces. We sum up with a conclusion and 
an overview of future work in Section X. 

 

II. RELATED WORK 
Existing approaches for modeling movements of mobile 

network users can be classified into: random mobility models, 
area-constrained random models, profile-based models, 
approaches based on real-world position traces, and integrated 
models. 

Random mobility models represent user mobility as random 
movements within a rectangular area, such as the Brownian 
walk [14], the smooth mobility model [6], and the random 
waypoint mobility model [9]. These models do not consider 
constraints of the movement area, and thus poorly reflect real 
outdoor scenarios. 

Area-constrained random models restrict random 
movements with constraints of a spatial area. Examples are: 
the random waypoint mobility model with obstacle avoidance 
[24], the restricted random waypoint mobility model [7], and 
the graph-based mobility model [40]. Although these models 
consider spatial environments, they poorly reflect other factors 
that influence mobility. For example, they do not consider 
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user travel decisions or oversimplify user movement 
dynamics. 

Profile-based models reflect regular travel behavior of a 
user, e.g., the circle-defined mobility model [28] or the global-
local mobility model [29]. These models do not consider 
spatial environments and use straightforward approaches to 
reflect user movement dynamics, such as constant-speed 
movement. 

Approaches based on real-world position traces produce 
user movements according to the traces obtained with a GPS 
or reconstructed from a trip survey [37]. The traces reflect 
movements of a limited number of users only, and therefore 
are not suitable for larger scenarios. Moreover, the traces 
hardly allow for the variation of parameters like movement 
speed or the sequence of visited places. 

Integrated mobility models reproduce user mobility with a 
consideration of multiple factors. For example, [30] takes into 
account constraints of a spatial area, user trips, and user 
movement profiles. However, the authors are not interested in 
obtaining complete movement paths. They rather get statistical 
values for performance analysis of cellular networks. MANET 
simulation requires a detailed mobility trace. In [31], the 
authors consider spatial constraints and movement profiles, 
but use a statistical distribution to reflect user trips. In order to 
obtain more accurate results, we explicitly model user trips 
and movement path selection. 

It is worth noting that none of the mentioned works 
correlate its model parameters with real-world observations. 

 

III. MOBILITY MODEL DESIGN 
In this paper, we aim at constructing a comprehensive, 

flexible, and scalable mobility model for outdoor scenarios. 
We base our model on the user-oriented mobility meta-model, 
which, as shown in [39], is a generic approach to model 
mobility of users in various simulation scenarios. For outdoor 
scenarios, we extended the basic model with the modeling of 
movement path selection and new approaches to reflect user 
movement dynamics. This allows us to model user mobility 
more precisely, in particular in city areas. 

The user-oriented mobility model considers three key 
factors that impact user movement in a given area: 

- Outdoor environments (movement constraints and 
points of interest) 

- User travel decisions 
- User movement dynamics 

An outdoor environment constrains movements of users. 
Network clients move along the certain movement paths like 
streets and roads, and do not go through obstructions of the 
movement area. In addition, the outdoor environment contains 
the so-called “points of interest” (e.g., supermarkets or 
museums) which normally serve as destination points of 
movement. 

The modeling of user travel decisions includes the 
modeling of user trip sequences and the modeling of 

movement path selection. Obviously, people do not move 
completely random in the target area. According to the 
activity-based travel demand approach [25], [34], people 
move to perform an action in certain places, for example, 
shopping in the particular shops or visiting the predefined 
sights. A sequence of such actions (trip sequence) predefines 
user movements in the area. Besides, in order to get to a place 
where the activity can be executed, a user has the choice 
among a number of movement paths. Hence, our mobility 
model also considers the selection of a movement path. 

Mobile clients exhibit different movement dynamics. For 
example, pedestrians tend to move at low speeds with frequent 
interruptions, while vehicles move at higher speeds and 
influence dynamics of neighboring vehicles. Since the 
dynamics of client movement impacts the stability of the 
network topology, it needs to be reflected in a simulation. To 
be applied in common MANET scenarios, our implementation 
supports two major groups of mobile clients: pedestrians and 
vehicles. 

Consequently, the resulting mobility model integrates three 
sub-models (Fig. 1): spatial model, user trip model, and 
movement dynamics model. 

 

 
 
The spatial model contains a description of the movement 

area (outdoor environment). It provides the necessary 
information about the area constraints and the points of 
interest. The spatial model is initialized from a digital map 
taken from a geographic information system. 

The user trip model reflects user travel decisions. It 
performs the mobility modeling at the level of user trips: 
“Move from point A to point B on the path PAB1, and then to C 
on PBC5.” The paths chosen for movement reflect the spatial 
model, i.e. contain points of interest as the movement 
destination points and consider movement area constraints. To 
model user trips, we use models from urban transportation 
planning [32]. The models allow correlation of their 
parameters with real-world observations. 

The movement dynamics model reflects dynamics of user 
movement (position changes) along their movement paths. 
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Fig. 1: Structure of the User-Oriented Mobility Model 



 

Here we use models from physics and vehicular dynamics 
[36], [43]. The changes of user positions constitute mobility 
traces, which serve as an input for MANET simulation tools. 

The following sections describe the design of these three 
basic components and their integration. 

 

IV. SPATIAL MODEL 
The spatial model provides a digital map of the simulation 

area containing its objects. To standardize the model interface 
and to be able to use existing map data sources, we have built 
it according to the Geographic Data Files (GDF) [17] 
standard. 

Thus, as in GDF, the area is represented as the collection of 
real-world objects, such as streets, museums, hotels, 
restaurants, cinemas, etc. An object description includes its 
geometry, attributes, and relations with other objects (Fig. 2). 
The geometry is specified with primitives, such as points, 
lines, and polygons. Object attributes contain additional 
properties, e.g., speed limits or museum opening times. 
Relations specify meaningful links between the objects 
holding descriptive (e.g., the building belongs to the road) or 
restrictive (e.g., prohibited maneuver from one road to 
another) semantics. 
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spatial model objects. 
In this paper, we focus on mobility modeling for MANET 

outdoor scenarios. We initialize the spatial model from a city 
map in GDF format. Besides GDF, our implementation also 
supports maps in other formats, such as the Geometry Markup 
Language (GML) [18]. 

 

 
Fig. 3: Representing the Spatial Model with a Topological Graph 

V. USER TRIP MODEL 
The user trip model reflects travel decisions of users. It 

models the trips users perform during a simulation, and a 
selection of movement paths. We base this model on the 
approaches from the domain of urban transportation planning 
[32]. 

 

 
Fig

1) User Trips 
In order to define user trips, we use the activity-based travel 

demand modeling approach [25], [34]. In real life, people do 
not think about how many trips they are going to perform 
during a day. Instead, they think about what they want to do, 
and where these activities can or need to be performed. 

As a consequence, we describe user trips with a trip chain. 
The chain arranges single actions (activities) performed by a 
user (Fig. 4), such as shopping or sightseeing. It can be 
defined individually for a user or aggregated over a group of 
users. For the individually defined trip chain, the sequence of 
activities is predetermined. The user performs an activity at a 
corresponding location for some duration of time. The 
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Fig. 4: Example of Individual (on the left) and Aggregated (on the right) 
Trip Chains and their Integration with the Spatial Model



 

locations; different transitions between the activities are 
possible. Each of the locations and transitions gets a certain 
“level of popularity” (probability of being selected) reflecting 
how many users choose the particular transition or location in 
real life. 

The locations for executing activities correspond to points 
of interest in the spatial model. In a trip chain, they are 
referenced using either geographic coordinates (e.g., 
[1100762.20N; 4934457.40E]) or symbolic coordinates (e.g., 
“384 Pitt Street”). 

During a simulation, mobile users perform activities 
successively as in their trip chains. In the aggregated chain, 
the next activity and location for its execution are chosen 
according to probabilities. The users move from their current 
position to the location where the next activity is executed. 
After arriving at the destination, the user stays there for the 
time needed to execute the activity; then he or she chooses the 
next activity and starts a new movement. 

 
2) Movement Path Selection 

To find a movement path between the trip origin and 
possible destination points, many authors apply simple 
approaches, like a shortest path algorithm [39], [40]. This 
poorly reflects real life, since according to investigations in 
transportation planning, mobile users do not always choose 
the shortest path for their movement. Diversity in user path 
selections impacts their mobility in the area and needs to be 
appropriately reflected in a MANET simulation. 

Hence, to model path selection, we use the probabilistic 
multipath traffic assignment model from transportation 
planning [15], [32]. The corresponding so-called STOCH 
algorithm avoids explicit path enumeration. Its computational 
complexity is comparable to the complexity of the shortest 
path algorithms. Moreover, the algorithm is based on the 
multinomial logit model from discrete choice theory [5], [42]. 
Therefore, the model parameters can be calibrated to fit real-
world observations [1], [27]. 

In the next section, we describe two variations of the 
algorithm for modeling the path choice of pedestrians and car 
drivers, and their integration into our mobility model. 

 

VI. MODELING THE USER PATH CHOICE 
In the probabilistic multipath traffic assignment model, 

every path between the trip origin and destination is assigned 
a selection probability according to the estimated path travel 
time. Since car drivers and pedestrians estimate travel times 
differently, we consider two cases. 

 

A. Notation 
We assume a mobile user is currently located at vertex s 

(trip source vertex) of our spatial model graph (Fig. 3). After 
selecting the next activity, he or she decides to move to vertex 
d (trip destination vertex). By e=(i, j) we denote a single graph 
edge directed from vertex i to vertex j. The edge represents a 

transportation link, which is basically a street element from 
our spatial model. Every edge has the associated cost t(i, j). 
This cost is the estimated travel time from i to j along the 
corresponding transportation link. t*(s, i) denotes the shortest 
cost (the shortest time) to get from s to i. Transportation link 
length is a link’s end-to-end travel distance. Link traffic 
volume v(e) is the number of vehicles currently traveling on 
the graph edge in the direction from i to j. 
 

B. Modeling the Path Choice of Pedestrians 
For pedestrians, we model the path choice as follows. In the 

first step, we estimate path travel times based on the typical 
movement speed of the user. In the second step, based on the 
estimated times, we use the STOCH algorithm [15] to 
calculate path selection probabilities. In the next paragraphs, 
we provide a brief description of the algorithm to describe its 
integration into our mobility model. 

For efficiency reasons, the algorithm obviates path 
enumeration and determines selection probabilities for the 
individual graph edges. We use these probabilities to select 
edges for movement successively, thus obtaining the resultant 
movement path. 

The algorithm works with a directed graph. For pedestrians, 
our spatial model graph is bidirectional and the edge attributes 
are symmetric. 

Similar to user behavior in real life, the algorithm considers 
only “reasonable” paths with “efficient” links. For the 
efficient links, the shortest path cost from the trip origin s to 
the link start vertex i is less than the shortest path cost from s 
to the link end vertex j (thus, users would come farther from 
the origin with every move): 

),(),(:),( ** jstistjie <=∀  (1) 
This reduces the number of links under consideration. The 

algorithm assumes that the selection probability a for link 
e=(i, j) is exponentially dependant on the difference between 
the cost of the shortest path from s to j and the cost of the 
shortest path from s to j that contains the link e: 

)],(),(),([ **
)( jitistjsteea −−= θ  (2) 

The parameter θ (θ ≥ 0) is set by the modeler. It reflects the 
importance of the path length for the user choice and user 
knowledge about the movement area. As θ increases (i.e., the 
path length becomes more important and the user knows that 
the particular paths are shorter), the selection probabilities for 
shorter paths also increase. When θ is zero (i.e., the path 
length is not important or the user cannot estimate it), all 
efficient paths are considered equally. The exponential 
expression is analogous to the expression of choice 
probability from the multinomial logit discrete choice model. 
Thus, the parameter θ can be correlated with real-world 
observations by maximizing the so-called log-likelihood 
function using methods of numerical maximization, as 
described in [42]. 

The algorithm performs three steps (Fig. 5). During the first 
step (“Initialization”), it calculates the shortest path costs from 



 

s to all other vertices. They are used to estimate the link 
selection likelihoods a(e). In this step, the non-efficient links 
are assigned a likelihood of zero, and thus are excluded from 
further consideration. During the next step (“Forward Step”), 
the algorithm computes link weights w(e) depending on the 
weights of the topologically preceding links. In the third step 
(“Backward Step”), the algorithm estimates conditional link 
selection probabilities p(e|j). Obviously, the sum of the 
conditional selection probabilities of edges having the same 
end vertex equals 1. 

It is important to note that the third step of the presented 
algorithm differs slightly from the third step of the original 
STOCH algorithm. Since the goal of the original algorithm is 
to distribute a number of moving users among the 
transportation links, it assigns link traffic volumes. In this 
paper, we calculate the link selection probabilities. 

It is clear that the algorithm terminates during the “forward” 
and “backward” steps. Since it excludes the non-efficient links 
from consideration, it traverses the graph edges successively 
in the topological order, until it reaches the trip destination 
vertex d. 

An example of using the STOCH algorithm to calculate link 
selection probabilities is depicted in Fig. 6. The example 
shows a subset of the spatial model graph that contains 
efficient links for the trip from the vertex s to the vertex d. 
Based on the estimated travel times (posted above the edges), 
conditional link selection probabilities are obtained (posted 
below the edges). They provide the possibility that the link 
and its end vertex are visited. In the example, we use θ=0.9. 
Having the probabilities calculated, it is a straightforward task 
to traverse the graph in the reverse direction from the 
destination to the source, and to choose edges stochastically at 
each intermediate vertex, thus constructing the selected 
movement path. 

Following this method, a path choice for pedestrians is 
performed as follows: 

1. Estimate conditional selection probabilities for the 
efficient graph edges using the STOCH algorithm. 

2. Decide on a movement path by traversing the graph in 
the reverse direction from the destination vertex to the 
source vertex. The resultant path is successively 
constructed by adding edges. The edges are chosen 
stochastically at each intermediate vertex from the set 
of efficient incoming edges in accordance with the 
computed selection probabilities (i.e. the edge with 
higher selection probability has a better chance of 
being selected). 

Since, according to our model, link travel times for a 
pedestrian depend only on link end-to-end distances, the 
corresponding edge costs do not change for the user over time. 
Hence, the STOCH algorithm needs to be applied only once 
for this user and for the given source and destination vertices. 
Once computed, the probabilities are reused by successive 
calculations. 
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Forward Step 

Starting with the origin s, for each edge e=(i,j) 
determine its weight (likelihood with respect to 
likelihoods of the edges having i as end vertex (denoted 
as Fi)): 
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Stop when the destination d is reached. 
 

Backward Step 
Starting from the destination d, for each edge e=(i, j) 

determine its conditional selection probability p(e|j) 
with respect to the edges having j as end vertex 
(denoted as Fj): 
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Fig. 5: Algorithm to Estimate Conditional Edge Selection 
Probabilities (STOCH Algorithm) 
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Fig. 6: Example of Calculating Link Selection Probabilities using the 
STOCH Algorithm 

C. Modeling the Path Choice of Car Drivers 
For car drivers, travel time on a transportation link depends 
t only on the link length, but also on the current traffic 
lume. Travel time is longer on congested roads, so drivers 
 to avoid them. 
In transportation science, the so-called “volume-delay” 
nctions model the impact of the link traffic volume on the 
k travel time (its cost), e.g., the Bureau of Public Roads 
PR) function [10], the Overgaard function [33], and the 



 

Spiess function [38]. Although we could use any of these 
functions, we choose the BPR function, because it is well 
investigated and its parameters for different road types are 
well documented (see [21] for details). 

The BPR function defines the following dependency 
between the link travel time t and the link traffic volume Q: 
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where t0 is the link travel time at free traffic flow. It is 
estimated from the typical vehicle travel speed and the link 
length. 

α and β are empirical coefficients. Their values for the 
concrete road classes are available. Our implementation relies 
on the standard values (α=0.15 and β=4) and on the values 
from [21] with the spatial model providing the necessary road 
class identifiers. 

Q is the current link traffic volume. It is calculated from the 
current density of vehicles (veh./m) traveling on a graph edge 
in the direction from the start vertex to the end vertex, and the 
average traffic speed. 

Qmax is the maximum link capacity. We rely on the typical 
link capacity values from [3] and [26]. 

We use the BPR function to calculate estimated link travel 
times for vehicles. Then we apply the STOCH algorithm to 
calculate link selection probabilities. Upon calculating the 
probabilities, we also consider whether a movement is 
prohibited for vehicles along a particular road element or in a 
particular direction. In this case, the element is assigned the 
probability p(e|j)=0. 

To sum-up, the path choice for car drivers is made as 
follows: 

1. Calculate the link costs based on the current link traffic 
flows using the BPR function (3). 

2. Estimate conditional selection probabilities for efficient 
edges using the STOCH algorithm. 

3. Decide on a movement path by traversing the graph in 
the reverse direction from the destination vertex to the 
source vertex. The resulting path is successively 
constructed by adding edges. The edges are 
stochastically chosen at each intermediate vertex from 
the set of efficient incoming edges in accordance with 
the computed selection probabilities. 

As opposed to the pedestrian case, link travel times change 
dynamically due to changing traffic volumes. Therefore, we 
need to compute selection probabilities each time upon 
simulating a selection of a movement path for a user. 
 

D. Possible Extensions for the Path Selection Modeling 
An interesting option would be to apply the STOCH 

algorithm in the opposite direction from the trip destination to 
the trip source point. As the result, we obtain the conditional 
link selection probability providing the possibility that the link 
and its start vertex are visited. This allows deciding on a 
movement path by traversing the graph starting from the 

source vertex. According to [41], it reflects user behavior 
better in some cases. 

It is also possible to model user path choices considering 
factors other than the estimated travel time, e.g., the number 
of sights passed or the number of stop signs. In this case, a 
modeler defines a so-called “behavioral process” function 
[42]. The function is a linear combination of attributes 
impacting the user choice. It is estimated by a modeler for a 
specific situation and for a specific group of users. In future 
work, we plan to support the behavioral process, which is 
defined using attributes of spatial model objects. 

 

VII. MOVEMENT DYNAMICS MODEL 
The movement dynamics model defines patterns in speed 

and direction changes of mobile clients during their movement 
between two locations. It is based on models from physics and 
vehicular dynamics. 

Different dynamics models are proposed for different types 
of mobile clients. For example, the low-speed motion along 
road edges with frequent stop-and-go behavior reflects the 
dynamics of pedestrians. There are models for vehicles based 
on correlations of speed and direction changes (e.g., smooth 
random mobility model [6]), approaches from traffic modeling 
(e.g., fluid traffic model [36]), and dependencies between 
movements of neighboring vehicles (e.g., intelligent driver 
model [43]). In addition, we can integrate special models for 
the certain aspects of movement dynamics, such as lane 
change behavior [2]. To improve the accuracy of modeling, 
the movement dynamics model can also consider the attributes 
of road elements, such as the speed limit or the number of 
traffic lanes. 

Our present implementation includes a number of 
movement dynamics models for pedestrians and vehicles. We 
find the following models are the most interesting for the 
outdoor scenarios. 

 

A. Modeling the Dynamics of Pedestrians 
We model the dynamics of pedestrians as a constant speed 

motion. The speed is randomly chosen at the beginning of the 
movement from a certain interval. For example, for 
pedestrians walking freely in a city, typical values are between 
4 and 5 km/h [26]. 

 

B. Modeling the Dynamics of Vehicles 
For modeling the dynamics of vehicles, we use the 

intelligent driver model described in [43]. According to the 
model, vehicles try to keep certain distance between each 
other for their safety. The acceleration of vehicle i at time t 
depends on its current velocity vi(t), the distance si,i-1(t) to the 
vehicle i-1 in front, and the safety distance s*

i,i-1(t) between the 
vehicles: 
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In the formula, ai is the maximum acceleration of the 
vehicle i. 

vi
0 is the desired speed of vehicle i which depends on the 

behavior of the driver. In our simulations, we choose 
randomly the desired speed for a vehicle from a certain 
interval, e.g., between 40 km/h and 50 km/h in city scenarios. 
σ is the exponent controlling the acceleration behavior of 

vehicles until they reach their desired speed. 
The safety distance s*

i,i-1(t) between vehicles i and i+1 is 
expressed as: 
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where s0 is the minimum distance between vehicles, like in 
a traffic jam. 

Ti is the safe time headway in congested traffic. It 
represents the maximum reaction time of a driver, e.g., to 
apply breaks. 
∆vi,i-1 is the difference in velocities between the vehicles i 

and i-1: ∆vi,i-1=vi-vi-1. 
bi is the driver’s typical deceleration in regular (e.g., non-

critical) situations. 
According to the model, on distances si,i-1 >> s*

i,i-1 the 
vehicle i accelerates until reaches its desired speed. As the gap 
si,i-1 approaches the safety distance, the vehicle decreases its 
acceleration. When si,i-1 ≤ s*

i,i-1, the vehicle breaks harder to 
avoid a collision. 

The model can handle traffic jam situations, e.g., as the 
leading vehicles slow down, the succeeding vehicles will also 
decrease their speeds. 

Typical values of coefficients as described in [43] are: 
ai=0.6 m/s2, σ=4, Ti=1.5 s, s0=2 m, li=5 m, and bi=0.9 m/s2. 
Our implementation uses these values by default. 

The described model does not explicitly reflect movement 
on multiple traffic lanes. The reason is that in our road data 
each lane is represented as a separate road element, hence the 
multilane traffic is still reflected. 

By integrating the described model into our simulation 
environment we make it useful for performance evaluations of 
vehicular ad-hoc networks (VANETs). To the best of our 
knowledge, no other freeware tool currently exists to generate 
VANET mobility traces for MANET simulation tools. 

 

VIII. DEFINING MODEL PARAMETERS 
In order to use the described approach in simulations, it is 

necessary to define the spatial model, user trip model, and 
movement dynamics model. They can be defined according to 
the simulation scenario for every user individually or for a 
group of users. 

The spatial model contains a digital map of the simulation 
area. Since we implemented parsers for GDF and GML, its 

initialization from the given geographic information system is 
straightforward. 

The parameters of movement dynamics are specific to a 
particular model. For the models described in this paper, either 
the model authors specify typical values (e.g., for the 
intelligent driver model) or they can be easily estimated based 
upon the daily experiences. 

Parameters of the user trip model include trip chains with 
activities, places for executing activities, times needed to 
execute activities, transitions between activities, and the 
parameter θ for path selection. Defining the user trip model 
requires more effort. To make things simpler, our 
implementation provides random generation of user trips. Path 
selection modeling can also be simplified, for example, by 
setting θ to 0 which makes mobile users consider all efficient 
paths equally. Setting θ to some large value makes the users 
select only the shortest paths. In these two cases, our path 
selection model performs as a multiple-path searching 
algorithm. 

To simulate mobility in concrete scenarios more accurately, 
our implementation also provides automatic derivation of trip 
model parameters from position traces, e.g., GPS traces, as 
described in the next section. One might argue that if we 
already have position traces, it is sufficient to simulate 
mobility according to them. However, the trace represents 
only a limited number of clients. Having the model parameters 
defined, it is possible to simulate any number of mobile 
clients. In addition, the model parameters can be varied to 
check their effect on simulation results. 

 

IX. DERIVING USER TRIP MODEL PARAMETERS FROM 
POSITION TRACES 

Our approach is quite simple and is based on associating the 
locations in the area with the typical activities. A more 
sophisticated approach is based on heuristic and is described 
in [44]. 

We consider a client position trace as a sequence of entries 
having the following form: 

- Client ID 
- Time 
- Client position (coordinate) 

The entries are stored at constant intervals. The authors in 
[44] state that in order to reconstruct movement paths for 
vehicles, the granularity should be less than 10 s. For 
pedestrians, the granularity can be estimated proportionally. 

For constructing an aggregated trip chain from the traces, 
we perform the following steps. 

 
1) Associate activities with locations 

Using information from the spatial model (“theme” and 
“class code” of spatial model objects), we associate activities 
with corresponding locations in the target area. This allows 
the “reverse” mapping from a visited point to the performed 
activity. Thus, if we detect a user stays at a particular location, 



 

we can also determine which activity he or she performed 
there. 

The association is unambiguous, i.e. although multiple 
activities can be performed at a point, we consider only the 
primary activity (e.g., a shopping center is used only for 
shopping). 

Our current implementation automatically distinguishes the 
following activities provided by GDF data sources: 
“business”, “cultural”, “educational”, “meal”, “parking”, 
“recreation”, “shopping”, and “sightseeing”. Besides, we 
introduce two special activities: “initial” and “unclassified”. 
The initial positions of mobile users in the trace sample are 
associated with the “initial” activity. All the points of interest 
that do not belong to one of the standard activities are 
associated with the “unclassified” activity. Moreover, if upon 
a trace analysis we detect a user stays at a location, which is 
not associated with an activity, it is also added to the 
“unclassified” activity. 

Obviously, the described splitting into activities is neither 
obligatory nor complete. It just reflects our current simulation 
scenarios. In our implementation, it is possible to change the 
standard associations and / or introduce new ones. 

 
2) Determine the trip chain parameters 

The parameters to be determined are: probabilities of 
transitions between activities, visiting probabilities of 
locations, and durations of activity executions at the locations. 
These parameters are obtained by comparing client positions 
with coordinates of points of interest. Thus, we process trace 
entries of every user in chronological order and check the 
following: 

- If a client stays within a point of interest longer than a 
threshold value (minimal activity execution time), we 
then detect an activity by: 
• Finding the corresponding activity; 
• Incrementing the counter for this activity; 
• Incrementing the counter for this activity at this 

location; 
• Incrementing the number of transitions between the 

previous activity and the current activity. 
- If a client departs from a point of interest (i.e. his or her 

position is no longer within the previous point of 
interest): 
• Update durations of executing the activity at this 

location (in our implementation, we obtain the 
minimal and maximal values (Fig. 4); as an option, 
we could also use the average or the weighted 
average). 

After the trace data is processed completely, we calculate 
the selection probabilities for locations within every activity 
(location’s preference) by dividing the counter for the activity 
at the location by the counter for the activity. We calculate the 
probabilities of transitions between two activities by dividing 
the count of transitions between the activities by the total 
count of transitions from the source activity. 

It is important to note that by applying the described 

method for vehicles, we primarily detect the “parking” 
activity. To further differentiate between activities, we must 
additionally process movements of car drivers after parking. 

 
3) Determine the parameter θ of path selection model 

To determine this parameter, we need to count how many 
times a particular transportation link is used for a trip between 
two given locations. Then θ needs to be calibrated for each 
pair of vertices between which the trips are performed. For 
calibration, a method of numerical maximization (e.g., the 
method of steepest ascent) can be used, as described in [42]. 
Then the single value for the system can be calculated as the 
weighted average of the calibrated θi. 

For vehicles, we also need to consider traffic volumes on 
transportation links, since they impact link costs in our model. 
So far, we do not provide the calibration of θ in our prototype, 
but its implementation is planned as described. 

 

X. CONCLUSION 
Many authors have shown that user mobility has a 

significant impact on the performance of MANETs [9], [12], 
[24], [40]. Hence, it needs to be appropriately reflected in 
simulations. In this paper, we have focused on mobility 
modeling in outdoor scenarios and proposed a comprehensive 
approach. Out approach considers a geographic model of the 
simulation area, user trip sequences with path selection 
decisions, and user movement dynamics. We have 
implemented it in our publicly available framework for 
mobility modeling [11]. It is a stand-alone application which 
produces mobility traces for various MANET simulation or 
emulation tools, such as NS-2 [8], GloMoSim [19], or 
Network Emulation Testbed [20]. 

We made our implementation easy-to-use. Hence, it 
supports processing of digital maps in common formats, 
random generation of user trips in the area, and a number of 
movement dynamics models for pedestrians and vehicles with 
typical parameters. Obviously, the random generation of user 
trips is only introduced to minimize the model creation 
overhead. To produce user trips more accurately, the 
framework can also derive trip model parameters from actual 
position traces. 

In future work, we plan on using our approach in 
simulations and emulations of MANET outdoor scenarios in 
order to obtain more accurate evaluation results. 
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