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ABSTRACT 

Realistic visualizations of 3D city models require the availability of detailed 
geometric descriptions of the visible buildings. Especially, if virtual viewpoints 
from a pedestrian perspective have to be generated, texture images have to be 
additionally available. For this purpose geo-referenced terrestrial images have to 
be captured and mapped against the corresponding elements of the building 
model. By these means the large scale structure and the material of the building 
faces can be visually represented. In our approach this texture mapping is real-
ized using a programmable graphics processing unit. In contrast to the applica-
tion of standard viewers, this technique allows to model even complex geometric 
effects like self-occlusion or lens distortion. This allows for a very fast and flexi-
ble on-the-fly generation of façade texture using real world imagery. Our ap-
proach was implemented within a project aiming on the real-time visualization of 
urban landscapes, which will be discussed in the final part of the paper.  

INTRODUCTION 

Also as a result of the wide availability of commercial software products for the 
acquisition of 3D city models, the visualization of urban landscapes has been of 
major interest in the past years. Especially real-time applications are very popu-
lar nowadays, particularly if the data sets are streamed over the internet. Key 
markets for this kind of visualization are city planning and marketing, traffic 
management, three-dimensional car navigation, location-based services, enter-
tainment and education. Although abstract rendering techniques have been 
proposed especially for planning purposes (Döllner and Walther, 2003), a photo-
realistic visualization is in most cases preferred by the consumers. In addition to 
a correct geometric description, the structure and material of the building façades 
is particularly essential for a good visual impression. This type of information 
allows a user to orientate himself in the model especially in complex residential 
areas. 
For an area covering reconstruction of buildings, the acquisition is generally 
based on measurement from aerial stereo imagery or airborne laser scanning 
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data. A good overview of 3D building reconstruction software is e.g. given in 
(Baltsavias, Grün and van Gool, 2001). The models that result from aerial data, 
however, consist of only few polygons that feature no detail for the building 
façades. (Früh and Zakhor, 2003) present a method that merges ground based 
and airborne laser scans and images. The additional terrestrial data naturally 
leads to more detailed models but also considerably increases the size of the 
datasets. A more efficient technique to model the façades is to extract textures 
from terrestrial images and place them on the coarse, polygonal models. If this is 
done in a manual fashion, however, the texturing of a single building is a tedious 
task and can easily take up to several hours. For a large number of building fa-
çades, such an approach is consequently not applicable. 
In this article we present a new approach that automatically extracts façade tex-
tures from terrestrial photographs and maps them to geo-referenced 3D building 
models. In following sections the automatic provision of façade texture based on 
geo-referenced images is described. By using the functionality of 3D graphics 
hardware, the process of texture extraction and placement can be realized very 
efficiently. These approaches were realized within a project aiming on the real-
time visualization of urban landscapes, which will be discussed in the final part 
of the paper. 

MODEL BASED DETERMINATION OF EXTERIOR  
ORIENTATION FOR TERRESTRIAL IMAGES 

Frequently, texture mapping is realised by a GUI, which allows a human opera-
tor to select corresponding primitives between the available building model and 
the respective terrestrial images. If a large number of buildings have to be proc-
essed, this manual process is too time consuming. In order to automate this proc-
ess a co-registration of image and model data is required. In detail the 6 parame-
ters of the exterior orientation have to be determined. Based on these parameters 
of central-perspective transformation we are able to link object and image space 
and to provide the required texture information. 

Methods for Collection of Orientation Parameters 

In general, the exterior orientation can be determined either by a direct or an 
indirect approach. Within the direct method, the parameters of the exterior orien-
tation are measured at the time of exposure using appropriate sensors. While the 
position is usually determined by GPS measurement, the orientation angles can 
be collected by an inertial measurement unit. Such system configurations are e.g. 
used for direct geo-referencing of aerial camera systems (Cramer, 2003). One 
problem of this direct method is the sensitivity with respect to the quality of the 
measured orientation parameters and the calibration of the camera. Small errors 
of the exterior orientation can result in large discrepancies between the co-
registered image and the building model. In order to extract texture information 
at sufficient accuracy, high quality and thus expensive sensor components would 
be necessary. As we want to use low cost hardware like navigation grade GPS or 
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digital compass, the additional use of the indirect approach will be more suitable 
for orientation determination.  
In order to calculate the exterior orientation by the indirect method, 3D control 
point information is required. Still, for a task like texture mapping this informa-
tion can be extracted easily from the 3D building models, which are already 
available. For the indirect approach corresponding features like points or lines 
have to be provided. Airborne applications frequently are based on the applica-
tion of signalised points. In contrast, for terrestrial applications these one-
dimensional primitives are frequently occluded by objects like trees, cars or 
pedestrians. Additional problems can result during exact identification and 
measurement. For these reasons, linear features are usually more suitable to 
provide the required image to model correspondences (Figure 1). Additionally, 
linear features can be provided very accurate by standard image processing soft-
ware. 
 

 
   

model (3D-CAD) 

Scene 
captured 
by user 

 
Figure 1. Assignment of linear features between image and 3D model. 

Computation of Exterior Orientation Parameters  

When a set of corresponding linear features is available, a modified spatial resec-
tion (M-SR) is used to compute the parameters of the exterior orientation 
(Klinec, 2004). Since the non linear M-SR equations are solved by a least 
squares approach, coarse approximation values are required. These initial values 
can either be directly measured by low-cost sensors, or can be provided by ap-
plying a direct linear transformation (DLT). Since the DLT equations are a linear 
formulation of the standard colinearity equations, a direct solution of the prob-
lem is feasible. One disadvantage of the DLT is that it is over-parameterised if 
the interior orientation of the camera and the parameters for lens distortion are 
available. For this reason, the result of the DLT has to be refined by the M-SR 
method for exact calculation of the exterior orientation of the terrestrial images. 
Our modified spatial resection algorithm was implemented in C++, additionally 
the Intel® Math Kernel Library was used for efficient matrix operations.  
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HARDWARE-BASED FAÇADE TEXTURE EXTRACTION 

Once the exterior orientation and the camera parameters are available, the 3D 
object coordinates of the geo-referenced building model can be linked to the 
corresponding image coordinates using a world to image transformation (see 
Figure 2). Based on these correspondences, the presentation of the textured 
model by a standard VRML viewer is feasible. Nevertheless, the quality of vis-
ual realism is limited since these viewers only allow for simple transformations 
during texture mapping. As an example, complex geometric image transforma-
tions in order to model perspective rectification or lens distortion are not avail-
able. One option to solve this problem is to eliminate these effects before texture 
mapping by the generation of ‘ideal’ images, which are then used as an input for 
the standard viewer. 
In contrast, in our approach these distortions are eliminated on-the-fly by pro-
grammable graphics hardware. By these means, problems resulting from self-
occlusions can additionally be solved and multiple images can be integrated 
during texture mapping. Another benefit of our approach is that the façade tex-
ture is directly extracted from the original images; no intermediate images have 
to be generated and stored. Additionally, within the whole process image pixels 
are interpolated only once, which results in façade textures of higher quality. 
The approach described in this article is based on technologies that can be found 
in today’s commodity 3D graphics hardware. Graphics processing units (GPU) 
that are integrated in modern graphics cards are optimized for the transformation 
of vertices and the processing of pixel data. As they have evolved from a fixed 
function to a programmable pipeline design, they can now be utilized for various 
fields of applications. The programs that are executed on the hardware are called 
shaders. They can be implemented using high level programming languages like 
HLSL (developed by Microsoft) (Gray, 2003) or C for graphics (developed by 
NVIDIA) (Fernando and Kilgard, 2003). In our approach shaders are used to 
realize specialized projective texture lookups, depth buffer algorithms and an on-
the-fly removal of lens distortions for calibrated cameras. 

Texture Extraction and Placement 

Our approach uses the graphics rendering pipeline of the graphics card to gener-
ate quadrilateral texture images. In general, the function of the pipeline is to 
render a visualization of a scene from a given viewpoint based on three-
dimensional objects, textures and light sources. 
Because the texture images, which are mapped against the façades during visu-
alization, have to be represented by quadrilaterals, the polygons of the building 
are substituted by their bounding rectangles during the extraction process. For 
these bounding rectangles 3D world coordinates are available. This information 
is used to calculate the corresponding image pixels, which provide the required 
façade texture. 
In more detail, the first step is to set up the graphics rendering pipeline to draw 
the entire target pixel buffer of the final façade texture. For this purpose, the 
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transformation matrices are initialized with the identity, so that drawing a unit 
square will render all pixels in the target buffer as wanted. As no color informa-
tion is provided yet, a photograph must be assigned to the pipeline as an input 
texture from where to take the color information from. As mentioned above, the 
polygon’s projected bounding box defines the pixels to be extracted from the 
input texture. So in addition to the vertices, the texture coordinates of the four 
vertices of the unit square are specified as the four-element (homogenous) world 
space coordinates of the bounding box. Setting the texture transformation matrix 
with the aforementioned transformation from world to image space concludes 
the initialization. During rendering, the rasterizer of the GPU linearly interpo-
lates the four-dimensional texture coordinates across the quadrilateral. A per-
spective texture lookup in the pixel shader results in the perspectively correct 
façade texture (see Figure 2 and Figure 3). 
 

 

Figure 2. Projected 3D building model overlaid on the input photograph (left)
and the extracted facade textures (right). 

 
Figure 3. Resulting 3D building model with the extracted textures placed on the 

façade polygons. 

After the extraction, the textures need to be placed on the corresponding poly-
gons (see Figure 3). In order to find the two-dimensional texture coordinates for 
the polygon vertices, a function identical to glTexGen (Shreiner, 2003) of 
OpenGL is used.  
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Image Fusion 

A common problem is that parts of the building façades are not visible in the 
photograph due to self-occlusions. If this effect is not modeled correctly errone-
ous pixels are extracted from the respective texture image (see Figure 4). To 
avoid such artifacts, invalid pixels that belong to other polygons must be identi-
fied and marked. The color information from various positions is then combined 
to generate the final façade texture. 
 

 
By using the depth buffer algorithm, the closest polygon for each pixel in the 
photograph can be determined. We use a pixel shader to calculate the depth value 
and render it directly into a 32 bit floating-point depth texture. During texture 
extraction, this value is then read out in the extracting pixel shader using the 
same texture coordinates as for the color lookup. After the perspective divide is 
applied to the texture coordinates, the z-component holds the depth value for the 
current polygon pixel. A comparison of these two depth values then determines 
if the pixel in the color value belongs to the polygon. Figure 4 shows some re-

 
 

  
Figure 4. Original input image (top left). Automatically textured building model 

with occlusion culling disabled (top right) and enabled. Black pixels mark 
invalid texture pixels (bottom left). Texture mapping from multiple images 
with occlusion free pixels selected (bottom right). 
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sults where occluded pixel values have been masked out. When processing more 
then one photograph, the final color can be merged by using the closest, non-
occluded pixel in all images. Even though the approach is brute force, it is still 
very efficient with hardware support. 

Removal of Lens Distortions 

In order to link the 3D object coordinates of the building model to the terrestrial 
images for texture mapping, the parameters of camera calibration have to be 
available in addition to the exterior orientation. Especially for standard consumer 
type cameras, which are frequently used to collect the façade images, lens distor-
tion has to be considered to guarantee a correct world to image transformation. 
Additionally, uncalibrated lens distortion can result in straight object lines which 
are depicted as curved lines in the texture image. In our experiments the lens 
distortion of the camera is described by the parameter set introduced by (Brown, 
1971). These parameters are estimated based on the bundle adjustment program 
Australis (Fraser, 1997). 
Usually lens distortion provides the transformation of pixels from the distorted to 
the idealized image. Because our texture extraction process requires a transfor-
mation from the idealized to the distorted image, an iterative method has to be 
used. This approach can be implemented based on the graphics API Direct3D 9.0 
which defines dynamic flow control in Pixel Shader 3.0 (Microsoft, 2003). By 
these means, the lens distortion in the images can be corrected on-the-fly in the 
pixel shader.  

Results of the Texture Extraction 

The texture extraction algorithm was implemented in C++ with the graphics API 
Direct3D 9.0, which includes the high level shading language HLSL. The per-
formance analysis has been conducted on a standard PC with an Intel 4 3.0 GHz 
Processor, 1GB of DDR-RAM and a graphics card that is based on the ATI 9800 
GPU with 256 MB of graphics memory. With all features enabled, the extraction 
time for a model of approx. 146 polygons and 16 input images is still below one 
second. 

REAL-TIME VISUALIZATION OF URBAN LANDSCAPES 

With the techniques described in the previous sections it is possible to efficiently 
texture map 3D building models. The generation of urban landscapes with a 
large number of texture mapped building models is thus possible, but also results 
in new requirements for their real-time visualization. Within the project GISMO 
a model of the city of Stuttgart, Germany, was generated and integrated into a 
visualization application, which was also implemented. Since the project mainly 
aimed on high performance gains for flyovers, techniques like occlusion culling 
(Wonka and Schmalstieg, 1999), which are more efficient for walkthroughs were 
not integrated. Instead, the building data was pre-processed in order to optimize 
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the graphics rendering pipeline and a continuous level-of-detail approach was 
used for visualization of the underlying terrain data. 

Data Acquisition 

The 3D model of Stuttgart contains a digital terrain model of the city and the 
surrounding area of the size 50 * 50 km (see Figure 5). While the virtual view-
point remains in the city area, the visualization stretches as far as the virtual 
horizon. The resolution of the DTM is 10 meter for the inner city region and 30 
meter for the surrounding area. The corresponding aerial and satellite images 
have a ground pixel resolution of 0.8 and 5 meter, respectively. To speed up the 
rendering time, the ground textures needed to be sub-sampled to a resolution of 
approximately 1 meter for the city center while decreasing gradually towards the 
perimeter. 
 

 
Figure 5. Overview look of the urban landscape model of Stuttgart. 

 
The included building models are provided by the City Surveying Office of 
Stuttgart. They were photogrammetrically reconstructed in a semi-automatic 
process. For data capturing, the building ground plans from the public Auto-
mated Real Estate Map (ALK) and the 3D shapes measured from aerial images 
were used (Wolf, 1999). The resulting wireframe model contains the geometry of 
36,000 buildings covering an area of 25 km², meaning that almost every building 
of the city and its suburbs is included. The overall complexity of all the building 
models amounts to 1.5 million triangles. In addition to the majority of relatively 
simple building models, some prominent buildings like the historical New Palace 
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of Stuttgart are represented by 3,000 (and more) triangles. To improve the visual 
appearance, we captured the façade textures of 1,000 buildings that are located in 
the main pedestrian area. Approximately 8,000 ground based close-up photo-
graphs of the building façades were taken using a standard digital camera. The 
textures were extracted from the images, perspectively corrected, rectified and 
manually mapped on the corresponding planar façade segments. We managed to 
process the aforementioned 1,000 buildings in roughly 30 man-months. Because 
of the large size of the original texture dataset, we had to down-sample the tex-
tures to a resolution of approximately 15 centimeters per pixel. Buildings with no 
real captured façade textures were finally colored randomly with different colors 
for the façade and the roof. 

Visualization 

For rendering digital terrain models, a continuous level-of-detail approach is 
generally chosen (see e.g. (Lindstrom et al., 1996)). We have used the terrain 
rendering library libMini which is licensed under an open source license. The 
approach that is realized in the library recursively generates triangle fans from a 
view-dependent quad-tree structured triangulation (Roettger et al., 1998). It is 
very easy to integrate the library in other software packages as the API is simple 
to use. To suppress popping artifacts that can be otherwise experienced because 
of changes in geometry, a technique called geomorphing is applied which slowly 
moves newly introduced vertices from a position on the terrain to its final posi-
tion (Zach, 2002). 
The 3D building models are pre-processed for visualization in order to avoid 
unnecessary state changes. All buildings are pre-transformed to lie in the same 
coordinate system and buildings without textures are grouped together to form 
larger data units. Primitives are rendered as indexed vertices in a triangle list. As 
the position of the global light source does usually not change, we omitted the 
normal vector for each vertex and pre-lit all vertices. The memory requirement 
of the vector data could be reduced this way by 42%. 

Results of Real-Time Visualization 

The performance analysis of the visualization application has been conducted on 
a standard PC equipped with a 3.0 GHz Intel Pentium 4 processor, 1 GB RAM 
and an ATI X800 Pro compliant graphics card. In previous work we had used the 
impostor technique to accelerate the rendering of the building models (Kada et 
al., 2003). As performance has considerably increased with the latest hardware 
generations, we felt that the speed-up of the impostor approach does not justify 
its disadvantages (especially the occasional frame rate drops) anymore. Instead 
we preprocessed the data so that most of the models and textures were guaran-
teed to remain on the graphics memory. The time extensive paging of data in and 
out of dedicated graphics memory was consequently minimized. Running at a 
screen resolution of 1280*1024 the application almost reaches real-time per-
formance, meaning that approximately 15 to 20 frames per second are rendered. 
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Figure 6. 3D city model rendered in the real-time visualization environment. 

CONCLUSION 

Meanwhile, the availability of modern graphic cards allows high-end visualiza-
tion using reasonably priced standard hardware. Also due to this fact, real-time 
visualization of virtual 3D city models is now integrated in a growing number of 
applications. In addition to the great computational power of these systems, pro-
grammable graphics hardware also allows the direct implementation of complex 
algorithms. Within the paper the texture mapping of building façades using di-
rectly geo-referenced terrestrial images was implemented in programmable 
graphics hardware. By these means ‘photogrammetric’ tasks like the transforma-
tion and mapping of world to image coordinates were directly integrated in the 
graphics rendering pipeline to allow for a time efficient solution. This demon-
strates the potential of integrating techniques from computer graphic and photo-
grammetry for time critical applications like the link of virtual 3D models and 
real imagery for real-time visualization.  
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