Update-Propagation in gestaffelten und verteilten Caches
Marko Vrhovnik

Universitdt Stuttgart, Fakultdt Informatik, Elektrotechnik und Informationstechnik
Institut fiir Parallele und Verteilte Systeme (IPVS), Abteilung Anwendersoftware (AS),

Universititsstrasse 38, D-70569 Stuttgart
Marko.Vrhovnik@studi . informatik.uni-stuttgart.de

Einleitung

In der Forschungsgruppe NEXUS der Universitdt Stuttgart [5] wird eine offene Plattform fiir ortsbezo-
gene Anwendungen entwickelt. Durch die Offenheit konnen beliebige Datenanbieter ihre Informatio-
nen durch die NEXUS-Plattform bereitstellen. Eine Foderations-Middleware verbirgt vor einer An-
wendung die Verteilung der Daten und kombiniert Daten verschiedener Anbieter in geeigneter Weise.
Zur Beschleunigung des Datenzugriffs werden in der NEXUS-Plattform Zwischenspeicher (Caches)
eingesetzt, u.a. in der Foderations-Middleware, als auch in mobilen Endgeréten, auf denen NEXUS-
Anwendungen typischerweise ausgefiihrt werden. Durch eine solche Staffelung und Verteilung von
Caches konnen Daten ,,ndher an eine Anwendung positioniert und entsprechend schneller geliefert
werden. Um die Konsistenz zwischengespeicherter Daten sicherstellen zu kdnnen, miissen Aktualisie-
rungen auch in den Caches vollzogen werden. In dieser Diplomarbeit wurde der Losungsraum zur
Propagation von Aktualisierungen (Updates) zu den jeweiligen Caches durchleuchtet. Dabei wurden
verschiedene Cache-Konsistenzsemantiken erstellt und Strategien entwickelt, wie diese im NEXUS-
System umgesetzt werden konnen. Ferner wurde untersucht, welche Auswirkungen die einzelnen Lo-
sungsansitze auf die Autonomie der einzelnen Komponenten der NEXUS-Plattform haben.

Die Architektur der NEXUS-Plattform

Die NEXUS-Plattform besteht aus drei Ebenen (Abbildung 1): der Anwendungs-, der Fdderations- und
der Dienstebene.

Mobiles Endgerat Mobiles Endgerat

O - Anwendungs-
Anwendung W Anwendung w ebene

Verzeichnis: Fbdderations-
Area Service ”~ ebene

Register

- Dienst-
Datenanbieter: Lokationsdienst Andere Dienste ebene
Spatial Model

Server H

Abbildung 1: Architektur der NEXUsS-Plattform

Die Foderationsebene wird aus mehreren unabhingigen NEXUS-Knoten (Foderationsknoten) gebildet.
Ein Fdderationsknoten nimmt Anfragen von Anwendungen entgegen, die typischerweise auf einem
mobilen Endgeréat (mobilen Client) ausgefiihrt werden und verteilt diese an die entsprechenden Kom-
ponenten der Dienstebene. Dazu wird das Area Service Register bendétigt, ein Verzeichnis, das die



Adressen der Datenanbieter, das von ihren Daten abgedeckte Gebiet und die von ihnen gespeicherten
Datentypen enthélt. Damit kann ein Foderationsknoten herausfinden, welche Datenanbieter fiir eine
bestimmte Anfrage zustindig sind. Der Foderationsknoten leitet die Anfrage an diese weiter und fasst
das Ergebnis fiir die Anwendungen zusammen. Bei den Komponenten der Dienstebene handelt es sich
um autonome Server, die von verschiedenen Anbietern aufgestellt und iiber das Area Service Register
der NEXUS-Plattform bekannt gemacht werden. Daten iiber statische Objekte wie Gebédude, Strallen
oder Verweise auf ortsrelevante Webseiten werden von sog. Spatial Model Servern gespeichert. Fiir
mobile Objekte, die ihre Position hdufig dndern, steht der Lokationsdienst zur Verfiigung. Ferner ver-
fiigt die NEXUS-Plattform iiber weitere Dienste, die hier nicht ndher betrachtet werden.

Das Caching-System der NEXUS-Plattform

Sowohl ein Foderationsknoten als auch ein mobiler Client kann einen Cache besitzen, in dem Ergeb-
nismengen von Anfragen temporir zwischengespeichert werden, um kiinftige Datenanforderungen
potentiell schneller bedienen zu kénnen. Der Cache-Inhalt eines Foderationsknotens umfasst dabei
Daten aller Anfragen, die iiber ihn abgewickelt werden, wohingegen der Cache-Inhalt eines mobilen
Clients auf lokale Anfrageergebnisse der Anwendungen, die auf ihm ausgefiihrt werden, beschrénkt
bleibt. Im Unterschied zu einem Web-Cache werden im NEXUS-System nicht einzelne Objekte, son-
dern Ergebnismengen referenziert, die ein bestimmtes Anfragepridikat erfiillen. Deshalb miissen Ca-
che-Inhalte semantisch mit Hilfe von Préadikaten (Cache-Descriptions) beschrieben werden, damit bei
einer vorliegenden Anfrage entschieden werden kann, ob eine angeforderte Datenmenge im Cache
verfiigbar ist, oder neu geladen werden muss.

Um die Konsistenz einer zwischengespeicherten Ergebnismenge gewihrleisten zu kdnnen, miissen
Datendnderungen in allen betroffenen Caches nachgezogen werden, wenn die Ursprungsdaten in der
Dienstebene aktualisiert werden. Dabei muss beriicksichtigt werden, dass mobile Clients lediglich
iiber eine schwache, unzuverldssige Netzwerkverbindung verfligen, die zudem mit anderen mobilen
Clients geteilt werden muss. Ferner ist zu beachten, dass Aktualisierungen an eine potentiell beliebig
hohe Anzahl mobiler Clients propagiert werden miissen. Im Gegensatz dazu kann ein Foderationskno-
ten eine permanente, zuverldssige Netzwerkverbindung mit hoher Bandbreite nutzen, um mit den
Komponenten der Dienstebene zu kommunizieren.

Cache-Konsistenzsemantiken

In der Diplomarbeit werden Losungen zu folgenden drei Cache-Konsistenzsemantiken vorgestellt:
= Strong: Ein Cache-Inhalt stimmt immer zu 100% mit den Ursprungsdaten {iberein.

= Delta: Ein Cache-Inhalt kann fiir die Dauer von A-Zeiteinheiten veraltet sein. Folglich reflektiert
eine Ergebnismenge im Cache einen Datenbankzustand, der vor A-Zeiteinheiten giiltig war.

=  Weak: Die Konsistenz eines Cache-Inhalts ist unbekannt. Eine zwischengespeicherte Ergebnis-
menge reflektiert in diesem Fall einen giiltigen Datenbankzustand aus der Vergangenheit.

Erhaltung der Cache-Konsistenz eines Fdderationsknotens

Die drei Cache-Konsistenzsemantiken lassen sich auf Seiten eines Foderationsknotens mit Hilfe von
Strategien realisieren, die von Losungsansétzen abgeleitet worden sind, die beim Caching im Web [4]
sowie beim Caching in Client-Server Datenbanksystemen [2], [3] eingesetzt werden. Zur Umsetzung
der Konsistenzstufe Weak wird ein Validierungsansatz verwendet, bei dem ein Foderationsknoten
Datendnderungen von einem Spatial Model Server zu bestimmten Zeitpunkten abfragt. Bei der Kon-
sistenzstufe Delta wird ein hybrider Ansatz eingesetzt, bei dem Datendnderungen sowohl von einem
Foderationsknoten heruntergeladen, als auch von einem Spatial Model Server automatisch an einen
Foderationsknoten propagiert werden. Eine effiziente Umsetzung der Konsistenzstufe Strong ist mit
einem Server-Invalidierungsansatz moglich, bei dem Foderationsknoten iiber Datendnderungen, die
ihren Cache-Inhalt betreffen, automatisch von einem Spatial Model Server informiert werden.



Erhaltung der Cache-Konsistenz mobiler Clients

Bei der Erhaltung der Cache-Konsistenz mobiler Clients hat sich ein Losungsansatz bewihrt, der von
Strategien abgeleitet worden ist, die beim Caching im Web in drahtlosen Systemumgebungen einge-
setzt werden [1]. Hierbei propagiert die Foderations-Middleware zu periodisch festgelegten Zeitpunk-
ten Datendnderungen per Broadcast an alle verfiigbaren mobilen Clients. Dabei wird angenommen,
dass ein Foderationsknoten je einer Basisstation des drahtlosen Zugangsnetzes zugeordnet ist. Auf
diese Weise konnen die Cache-Inhalte beliebig vieler mobiler Clients, die sich innerhalb der Reich-
weite der Basisstation befinden, gleichzeitig aktualisiert werden, was diesen Ansatz skalierbar macht.
Damit keine irrelevanten Datendnderungen propagiert werden, verwaltet die Foderations-Middleware
semantische Beschreibungen, welche die Cache-Inhalte mobiler Clients reprasentieren. Die Foderati-
ons-Middleware sichert einem mobilen Client zu, dass er iiber alle Datendnderungen informieren wird,
die seinen Cache-Inhalt betreffen. Der Zeitpunkt der Propagation dieser Informationen hingt aller-
dings von der zu Grunde gelegten Cache-Konsistenzsemantik ab.

Literatur

[1] G. Cao. A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
IEEE Transactions on Knowledge and Data Engineering, 15(5): 1251-1265, 2003.

[2] T. Hérder and A. Biihmann. Datenbank-Caching — Eine systematische Analyse moglicher
Verfahren. Informatik — Forschung und Entwicklung, 2004.

[3] A. Keller and J. Basu. A Predicate-Based Caching Scheme For Client-Server Database Archi-
tectures. The VLDB Journal, 5: 35-47, 1996.

[4] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison-Wesley, 2002.

[5] http://www.nexus.uni-stuttgart.de



