

Update-Propagation in gestaffelten und verteilten Caches
Marko Vrhovnik

Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik

Institut für Parallele und Verteilte Systeme (IPVS), Abteilung Anwendersoftware (AS),
Universitätsstrasse 38, D-70569 Stuttgart

Marko.Vrhovnik@studi.informatik.uni-stuttgart.de

Einleitung
In der Forschungsgruppe NEXUS der Universität Stuttgart [5] wird eine offene Plattform für ortsbezo-
gene Anwendungen entwickelt. Durch die Offenheit können beliebige Datenanbieter ihre Informatio-
nen durch die NEXUS-Plattform bereitstellen. Eine Föderations-Middleware verbirgt vor einer An-
wendung die Verteilung der Daten und kombiniert Daten verschiedener Anbieter in geeigneter Weise.
Zur Beschleunigung des Datenzugriffs werden in der NEXUS-Plattform Zwischenspeicher (Caches)
eingesetzt, u.a. in der Föderations-Middleware, als auch in mobilen Endgeräten, auf denen NEXUS-
Anwendungen typischerweise ausgeführt werden. Durch eine solche Staffelung und Verteilung von
Caches können Daten „näher“ an eine Anwendung positioniert und entsprechend schneller geliefert
werden. Um die Konsistenz zwischengespeicherter Daten sicherstellen zu können, müssen Aktualisie-
rungen auch in den Caches vollzogen werden. In dieser Diplomarbeit wurde der Lösungsraum zur
Propagation von Aktualisierungen (Updates) zu den jeweiligen Caches durchleuchtet. Dabei wurden
verschiedene Cache-Konsistenzsemantiken erstellt und Strategien entwickelt, wie diese im NEXUS-
System umgesetzt werden können. Ferner wurde untersucht, welche Auswirkungen die einzelnen Lö-
sungsansätze auf die Autonomie der einzelnen Komponenten der NEXUS-Plattform haben.

Die Architektur der NEXUS-Plattform
Die NEXUS-Plattform besteht aus drei Ebenen (Abbildung 1): der Anwendungs-, der Föderations- und
der Dienstebene.

Verzeichnis:
Area Service

Register

Datenanbieter:
Spatial Model

Server

Lokationsdienst

Andere Dienste

Anwendungs-
ebene

Föderations-
ebene

Dienst-
ebene

NEXUS-Knoten
 Cache

Mobiles Endgerät

Cache
 Anwendung

Mobiles Endgerät

Cache
 Anwendung

Abbildung 1: Architektur der NEXUS-Plattform

Die Föderationsebene wird aus mehreren unabhängigen NEXUS-Knoten (Föderationsknoten) gebildet.
Ein Föderationsknoten nimmt Anfragen von Anwendungen entgegen, die typischerweise auf einem
mobilen Endgerät (mobilen Client) ausgeführt werden und verteilt diese an die entsprechenden Kom-
ponenten der Dienstebene. Dazu wird das Area Service Register benötigt, ein Verzeichnis, das die

Adressen der Datenanbieter, das von ihren Daten abgedeckte Gebiet und die von ihnen gespeicherten
Datentypen enthält. Damit kann ein Föderationsknoten herausfinden, welche Datenanbieter für eine
bestimmte Anfrage zuständig sind. Der Föderationsknoten leitet die Anfrage an diese weiter und fasst
das Ergebnis für die Anwendungen zusammen. Bei den Komponenten der Dienstebene handelt es sich
um autonome Server, die von verschiedenen Anbietern aufgestellt und über das Area Service Register
der NEXUS-Plattform bekannt gemacht werden. Daten über statische Objekte wie Gebäude, Straßen
oder Verweise auf ortsrelevante Webseiten werden von sog. Spatial Model Servern gespeichert. Für
mobile Objekte, die ihre Position häufig ändern, steht der Lokationsdienst zur Verfügung. Ferner ver-
fügt die NEXUS-Plattform über weitere Dienste, die hier nicht näher betrachtet werden.

Das Caching-System der NEXUS-Plattform
Sowohl ein Föderationsknoten als auch ein mobiler Client kann einen Cache besitzen, in dem Ergeb-
nismengen von Anfragen temporär zwischengespeichert werden, um künftige Datenanforderungen
potentiell schneller bedienen zu können. Der Cache-Inhalt eines Föderationsknotens umfasst dabei
Daten aller Anfragen, die über ihn abgewickelt werden, wohingegen der Cache-Inhalt eines mobilen
Clients auf lokale Anfrageergebnisse der Anwendungen, die auf ihm ausgeführt werden, beschränkt
bleibt. Im Unterschied zu einem Web-Cache werden im NEXUS-System nicht einzelne Objekte, son-
dern Ergebnismengen referenziert, die ein bestimmtes Anfrageprädikat erfüllen. Deshalb müssen Ca-
che-Inhalte semantisch mit Hilfe von Prädikaten (Cache-Descriptions) beschrieben werden, damit bei
einer vorliegenden Anfrage entschieden werden kann, ob eine angeforderte Datenmenge im Cache
verfügbar ist, oder neu geladen werden muss.
Um die Konsistenz einer zwischengespeicherten Ergebnismenge gewährleisten zu können, müssen
Datenänderungen in allen betroffenen Caches nachgezogen werden, wenn die Ursprungsdaten in der
Dienstebene aktualisiert werden. Dabei muss berücksichtigt werden, dass mobile Clients lediglich
über eine schwache, unzuverlässige Netzwerkverbindung verfügen, die zudem mit anderen mobilen
Clients geteilt werden muss. Ferner ist zu beachten, dass Aktualisierungen an eine potentiell beliebig
hohe Anzahl mobiler Clients propagiert werden müssen. Im Gegensatz dazu kann ein Föderationskno-
ten eine permanente, zuverlässige Netzwerkverbindung mit hoher Bandbreite nutzen, um mit den
Komponenten der Dienstebene zu kommunizieren.

Cache-Konsistenzsemantiken

In der Diplomarbeit werden Lösungen zu folgenden drei Cache-Konsistenzsemantiken vorgestellt:

 Strong: Ein Cache-Inhalt stimmt immer zu 100% mit den Ursprungsdaten überein.

 Delta: Ein Cache-Inhalt kann für die Dauer von ∆-Zeiteinheiten veraltet sein. Folglich reflektiert
eine Ergebnismenge im Cache einen Datenbankzustand, der vor ∆-Zeiteinheiten gültig war.

 Weak: Die Konsistenz eines Cache-Inhalts ist unbekannt. Eine zwischengespeicherte Ergebnis-

menge reflektiert in diesem Fall einen gültigen Datenbankzustand aus der Vergangenheit.

Erhaltung der Cache-Konsistenz eines Föderationsknotens

Die drei Cache-Konsistenzsemantiken lassen sich auf Seiten eines Föderationsknotens mit Hilfe von
Strategien realisieren, die von Lösungsansätzen abgeleitet worden sind, die beim Caching im Web [4]
sowie beim Caching in Client-Server Datenbanksystemen [2], [3] eingesetzt werden. Zur Umsetzung
der Konsistenzstufe Weak wird ein Validierungsansatz verwendet, bei dem ein Föderationsknoten
Datenänderungen von einem Spatial Model Server zu bestimmten Zeitpunkten abfragt. Bei der Kon-
sistenzstufe Delta wird ein hybrider Ansatz eingesetzt, bei dem Datenänderungen sowohl von einem
Föderationsknoten heruntergeladen, als auch von einem Spatial Model Server automatisch an einen
Föderationsknoten propagiert werden. Eine effiziente Umsetzung der Konsistenzstufe Strong ist mit
einem Server-Invalidierungsansatz möglich, bei dem Föderationsknoten über Datenänderungen, die
ihren Cache-Inhalt betreffen, automatisch von einem Spatial Model Server informiert werden.

Erhaltung der Cache-Konsistenz mobiler Clients

Bei der Erhaltung der Cache-Konsistenz mobiler Clients hat sich ein Lösungsansatz bewährt, der von
Strategien abgeleitet worden ist, die beim Caching im Web in drahtlosen Systemumgebungen einge-
setzt werden [1]. Hierbei propagiert die Föderations-Middleware zu periodisch festgelegten Zeitpunk-
ten Datenänderungen per Broadcast an alle verfügbaren mobilen Clients. Dabei wird angenommen,
dass ein Föderationsknoten je einer Basisstation des drahtlosen Zugangsnetzes zugeordnet ist. Auf
diese Weise können die Cache-Inhalte beliebig vieler mobiler Clients, die sich innerhalb der Reich-
weite der Basisstation befinden, gleichzeitig aktualisiert werden, was diesen Ansatz skalierbar macht.
Damit keine irrelevanten Datenänderungen propagiert werden, verwaltet die Föderations-Middleware
semantische Beschreibungen, welche die Cache-Inhalte mobiler Clients repräsentieren. Die Föderati-
ons-Middleware sichert einem mobilen Client zu, dass er über alle Datenänderungen informieren wird,
die seinen Cache-Inhalt betreffen. Der Zeitpunkt der Propagation dieser Informationen hängt aller-
dings von der zu Grunde gelegten Cache-Konsistenzsemantik ab.

Literatur
[1] G. Cao. A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.

IEEE Transactions on Knowledge and Data Engineering, 15(5): 1251-1265, 2003.

[2] T. Härder and A. Bühmann. Datenbank-Caching – Eine systematische Analyse möglicher
Verfahren. Informatik – Forschung und Entwicklung, 2004.

[3] A. Keller and J. Basu. A Predicate-Based Caching Scheme For Client-Server Database Archi-
tectures. The VLDB Journal, 5: 35-47, 1996.

[4] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison-Wesley, 2002.

[5] http://www.nexus.uni-stuttgart.de

