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Abstract: With the proliferation of sensor technology and advances in wireless com-
munication, gathering, processing, and querying context information in mobile ad hoc
and sensor networks becomes attractive and feasible. To support context-aware ap-
plications in such networks, efficient processing techniques for frequently used func-
tionality, such as query and event management, are highly beneficial. In this paper,
we discuss the challenges in efficient processing of spatial queries in mobile ad hoc
and sensor networks. These comprise advanced query semantics based on inaccu-
rate position information, efficient protocols and algorithms for data storage and query
resolution, scalability with respect to network size, and support for mobile network
nodes. We outline our concepts for solving these issues and show how they can be
implemented in a suitable software architecture. Using current evaluation results, we
show that our prototype implementation fulfills the stated challenges.

1 Introduction

The integration of sensor technology into mobile communication devices allows captur-
ing the dynamic state of objects and phenomena in the physical world. Large amounts of
context information become available allowing the realization of context-aware applica-
tions. Because various functionality, such as query processing, event management, or road
navigation, is often used by such applications, their repeated implementation becomes a
tedious task. An underlying data management facility that provides such fundamental
services greatly simplifies application design. For location-aware applications in particu-
lar, spatial queries, such as range and k-nearest neighbor queries, are frequently used to
retrieve data items by referencing to their location. They may be used, for example, to re-
trieve all taxis in a particular region or the nearest tools to one’s own position in a factory
building. While our Nexus platform ([Gr05]) already supports spatial queries on a large
scale for infrastructure-based networks, an adequate query management facility does not
exist for mobile ad hoc and sensor networks (MASNs). In such networks, nodes have inte-
grated sensing, communication, and storage capabilities, but have to manage acquired data
autonomously in a highly distributed manner. Due to limited resources of network nodes
concerning energy, computing power, memory, and communication bandwidth, designing
efficient strategies for query processing poses new challenges.
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The focus of this paper is to discuss the major challenges in supporting spatial queries in
MASNs and to give an overview of our concepts for solving these issues. We do not intend
to describe algorithmic details, which we address in other work. Rather than that, our aim
is to give new impulses to context management issues of comparable complexity in related
fields of context-aware systems for mobile networks.

The rest of our paper is structured as follows: In Sec. 2 we describe the system model that
we use in the following discussions. Sec. 3 identifies the challenges related to query man-
agement in MASNs and Sec. 4 discusses related work. Our approach to tackle the stated
problems and the integration of our concepts into a software architecture are described in
Sec. 5 and 6, respectively. We discuss current evaluation results in Sec. 7 and conclude
our paper in Sec. 8 with a summary and implications for future work.

2 System Model

The system model comprises a MASN operating in a service area that we denote by A.
Two types of entities are located inside of A. Perceivable objects (POj) are an abstraction
for physical objects, persons, or services that may be observed by sensor nodes. They may
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Figure 1: System model.

move by self-propulsion (persons, robots) or by being at-
tached to carriers (persons, carts, conveyors). Mobile sen-
sor nodes (SNi) are part of the MASN and they may as-
sume different roles (observers, data servers and clients),
possibly multiple ones at a time. Observers are sensor
nodes that capture the state of perceivable objects in their
vicinity. They assemble a corresponding data object o j

consisting of the object identifier, object type, and ob-
served location of the corresponding perceivable object,
as well as the observation time. The observed location
may be estimated, for example, from the observer’s own position and the interpolated dis-
tance between the observer and the perceivable object. Data servers (DS k) store a subset
of data objects. Finally, clients provide access to the observed data by issuing spatial
queries. Our goal is to implement spatial queries based on the given system model using
only ad hoc communication between sensor nodes. Next, we discuss the challenges that
arise from sensor data acquisition to the assembly of the final query result.

3 Challenges

The characteristics of MASNs lead to three principal challenges that must be solved with
respect to the realization of a general spatial query management facility. First, algorithm
scalability is essential to assure operation in networks with increasing size. Second, node
mobility leads to the effect of moving data servers that must be compensated to retain the
integrity of the data store. That is, it must be guaranteed that all objects relevant for query



resolution can still be found. Third, we must support advanced query semantics to account
for inaccurate position information obtained from sensor observations.

With increasing size of the operated service area and number of sensor nodes, maintain-
ing efficient operation of the overall query management facility is essential. Appropriate
update propagation and storage protocols for acquired sensor data and strategies for ag-
gregating query results from a highly distributed object store are required. Spatial queries
are inherently suitable in that they support the design of a scalable solution. Because they
access data based on location information, a geometric index can be designed that has a
natural spatial relation to the coordinate system of the service area. In the case of range
queries, it is intuitively suitable to store data near the specified range. The same is true for
k-nearest neighbor queries, where objects nearest to a particular position are requested.
Storing data close to its origin consequently allows to confine the resolution of a spatial
query to a limited geometric region and provides the necessary scalability. Different mech-
anisms that provide a tradeoff between update propagation and query aggregation costs as
well as the granularity by which the data model is partitioned and replicated across sensor
nodes must be evaluated.

The increasing relevance of mobility in wireless network scenarios is a fundamental new
issue when conceiving a general query management platform. Because data from sensor
observations is stored directly on particular sensor nodes, data travels along with them and
eventually loses its spatial coherence. If no countermeasures are taken, the communication
overhead for finding particular data items increases constantly and eventually leads to
network congestions and to the depletion of the nodes’ energy. Relocation algorithms are
required to ”keep data in place” with minimum overhead in terms of communication costs
and latency to assure continuous data availability for the aggregation of query results.

Physical processes involved in every sensor measurement inevitably lead to the acquisition
of inaccurate sensor data. In the case of spatial data, the exact position of mobile objects
is generally unavailable. In addition, limited update rates and the communication skew on
each hop in a MASN aggregate to even greater inaccuracies. As a consequence, expressing
the position of an object solely by using point coordinates is an inadequate simplification.
In the case of a range query, the inclusion relation used to determine if the object is inside
of the specified range is limited to a point inclusion test. However, due to localization
errors, the object may be found in a particular location area that might only partially
overlap with the given range. A threshold decision may then be much more appropriate
to decide whether the object is considered to be inside or outside of the range. If the
position data of individual objects is too inaccurate, some applications may even want
to completely exclude these objects from the query result. The impact of inaccuracy on
the outcome of a query might be even stronger if inhomogeneous position distributions
are taken into account. The natural fact of position inaccuracies must be addressed by
advanced query semantics, leading to probabilistic spatial queries that combine location
areas with corresponding probability density functions.



4 Related Work

We classify existing work in the field of spatial query management into three categories:
location and query semantics, algorithms for spatial queries in stationary sensor networks,
location management and content location in mobile ad hoc networks.

In the first category, different query semantics were proposed based on interval calcula-
tions. The authors of [CP03] and [Ch04] introduce the notion of probabilistic threshold
queries. In [CKP03] a classification of probabilistic queries is given, including definitions
of probabilistic range and nearest neighbor queries. While the authors do not define spa-
tial queries in more than one dimension, their concepts constitute a theoretical basis for
the definition of spatial query semantics. Our work supports advanced query semantics
for range and k-nearest neighbor queries based on inaccurate locations that also allow for
excluding objects from query evaluation that do not possess a minimum accuracy.

In the second category, the Distributed Index for Features in Sensor Networks (DIFS,
[Gr03]) and the Distributed Index for Multidimensional Range Queries in Sensor Net-
works (DIM, [Li03]) implement range queries in sensor networks for one and more di-
mensions, respectively. Both approaches apply localized storage for the geometric do-
main, which is beneficial for network scalability and query efficiency. Further, the Peer-
Tree proposed in [DF03] was developed based on a centralized R-Tree that is used, e.g., in
[SR01]. It is suitable for different types of spatial queries, in particular, for nearest neigh-
bor queries. Most of these approaches concentrate on a single query type, and only the
Peer-Tree may potentially be used for several types of spatial queries. Further, mobility is
not addressed by any of the work, since all approaches are tailored to stationary networks.
Last, only point coordinates are supported in the resolution of a spatial query, which does
not allow to use more complex query semantics based on inaccurate positions.

In the third category, work that explicitly considers mobile nodes can be subdivided ac-
cording to two purposes: location management and content location. Location manage-
ment contains various approaches to query the position of network nodes for the pur-
pose of geometric routing. Representative work includes the Grid Location Service (GLS,
[Li00]) and the dead-reckoning-based location service proposed in [KD04]. Recent work
in content location in mobile ad hoc networks is provided in [SH04] and [TV04]. These
approaches allow to locate content by ID and have no support for spatial queries. As a
consequence, they require a very different type of index structure with no relation to one
required for spatial queries. Their work can be viewed supplementary to ours to provide a
full-featured location service supporting position queries in addition to spatial queries.

To the best of our knowledge, all previous contributions do not address the challenges
discussed in Sec. 3 in their combination. While spatial queries are implemented in the
second category, node mobility is not considered. The third category supports mobility, but
does not implement spatial queries. Finally, all approaches use just point coordinates and
do not consider probabilistic query semantics. We will now address each of the challenges
and show how they are solved in our architectural framework in Sec. 6.



5 Approach

5.1 Data Placement

We begin by defining a data placement strategy that is the basis for localized storage and
constitutes the primary element for network scalability. Next, we show how data storage
makes explicit use of that strategy during the observation of perceivable objects.

We recall from Sec. 2 that an observer captures the state of a perceivable object PO j in
form of a data object oj . Each oj contains the object identifier oj .id, object type oj .type,
observed location oj .loc, and observation time oj .time. The observed location is com-
posed of a location area and location probability density function (location pdf). The
object is known to be located somewhere within this location area, and the location pdf
defines the probability of being located in any subset of that area. Next, we subdivide the
service area A into disjunct data sectors (Figure 2.a) and define two associations. First,
we associate one data server DSk that is located inside of a data sector Sr with that sector.
Second, we associate data object oj with each data sector Sr that overlaps with oj .loc.
Note that multiple associations for the same object are possible (Figure 2.b). Finally, we
define that oj is mapped to data server DSk iff both DSk and oj are associated with Sr.
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Figure 2: Subdivision of service area and placement of data objects.

In the first step of the data storage protocol, an observer constructs a data object o j of
the form (oj .id, oj .type, oj .loc, oj .time) that encapsulates the state of the corresponding
perceivable object. Next, all data sectors are determined that overlap with the location
area oj .loc. In Figure 2.b, oj .loc overlaps with the data sectors Sr and Sr+1. According to
the associations defined previously, copies of the data object are sent to data servers DS k

and DSk+1. For that, a two-step routing is applied. In the first step, geometric routing,
such as Greedy Perimeter Stateless Routing (GPSR, [KK00]), delivers the data object to
a node inside of the respective data sector. Then, a local routing strategy is applied to
finally reach the data server associated with that sector. At each data server, the object is
inserted into the local database if a previous copy does not exist or its observation time is
more current1 than that of the existing copy. Note that each data object is annotated with
a lifetime (counting from the observation time) and considered stale once its lifetime has
elapsed. This way, copies that are not updated anymore (e.g. because the corresponding
perceivable object is no longer detected by any observer) will eventually be deleted.

1We assume that sufficiently synchronized clocks exist, e.g., provided by GPS or a synchronization algorithm
for mobile networks ([Röm01]).



5.2 Data Relocation

To maintain an efficient mapping between data servers and sectors, we use data relocation
to move the data of an old server DSold to a new server DSnew. A changeover condition
decides when relocation is initiated. A good strategy is to combine spatial and temporal
predicates. If a server moves too far away from its associated data sector, the condition
should trigger to limit the overhead for update and query routing. If a server remains
nearly stationary inside of its associated sector, a timeout should trigger to avoid that
single sensor nodes keep their server role for a long time and their energy is exhausted. In
the second step, an election algorithm is used to determine a suitable sensor node that is
eligible to become DSnew. For example, we may elect the node closest to the center of
the corresponding sector, or the node that is expected to remain inside of that sector for a
maximum time. In the final step, the contents of the database of DS old are transferred to
DSnew. Our strategy transfers only those data objects that we do not consider stale, that
is, whose lifetime has not yet elapsed. After relocation is complete, DSnew takes over and
thus guarantees storage locality.

5.3 Query Resolution Algorithms

We now describe two algorithms to resolve probabilistic range and k-nearest neighbor
queries. Both algorithms involve an initial step in which the query is sent from the client
to a proxy node that resolves the query on behalf of the client. For range and k-nearest
neighbor queries, the node located closest to the center of the query range R and the query
target position pNN respectively, is an appropriate choice. Using GPSR, this node may
be reached using greedy forwarding first, and then selecting the node visited twice during
perimeter mode, which is guaranteed to be the closest node to the respective position.
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Figure 3: Query algorithms for range and k-nearest neighbor query resolution.

Probabilistic range queries (pRQs) for a geometric range R are resolved at the proxy node
by aggregating the result from a number of partial pRQs. In the beginning, the proxy
determines the set of data sectors overlapping with R (Figure 3.a). Each data server as-
sociated with one of these sectors is queried using a partial pRQ. Similar to data storage,
routing to the data sectors is performed in two steps. At each data server, the partial pRQ is
resolved locally. The algorithms for local resolution of partial pRQs depend on the precise
query semantics and are out of the scope of this paper. Each partial result is returned to



the proxy that aggregates it into the final result. A timeout at the proxy terminates result
aggregation if not all partial pRQs succeed. Finally, the proxy sends the result to the client.

The resolution of probabilistic k-nearest neighbor queries (pNQs) at the proxy node in-
volves two phases: the heuristic phase finds initial nearest neighbor candidates, and the
aggregation phase creates the final result. During the heuristic phase, the goal is to find
k candidate objects that are close to the actual nearest neighbors. This is done by issuing
a partial pNQ in the data sector that contains the query position pNN (Figure 3.b). If no
k candidates are returned, circumjacent data sectors are queried with increasing distance
to pNN until k candidates are available. From these candidates, our algorithm constructs
the circle denoted by C with center pNN that completely contains the location areas of the
candidates. This property guarantees that all other objects that might be nearer to p NN

than any of the candidates are considered. During the aggregation phase, partial pNQs
are sent to all data sectors that overlap C. At each data server, a partial pNQ is resolved
that determines nearest neighbors from the objects stored in the server’s local database.
Up to k objects are returned to the proxy for each partial pNQ. The proxy aggregates re-
ceived objects into the final query result. Again, a timeout terminates the aggregation if
any partial result cannot be determined. Finally, the query result is returned to the client.

6 Software Architecture

Figure 4 shows the software architecture of our data management framework that imple-
ments the protocols and algorithms described in the previous section. The architecture is
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Figure 4: Software Architecture.

composed of two main parts:
routing and data manage-
ment. Routing comprises
two layers with increasing
level of abstraction with re-
spect to the specification of
routing goals. The Rout-
ing Executive Layer (REL)
is responsible for carrying
out low-level routing. It im-
plements variations of geo-
metric routing and extends
GPSR ([KK00]). It is able
to route a message to the
node nearest to a geomet-
ric region (Location Rout-
ing Module) or to a specific node (ID Routing Module). It implements scoped flooding
used to announce the location of database nodes, where the information is in turn used by
the ID Routing Module. The Routing Convergence Layer (RCL) interfaces with the REL
and data management and realizes complex routing goals. It provides the two-step routing
used for data storage and query resolution by invoking the RCL multiple times.



Data management implements the protocols and algorithms for data placement, data relo-
cation, and query resolution. The Data Storage Protocol (DSP) implements the functional-
ity described in Sec. 5.1. The DSP invokes the RCL possibly multiple times to route copies
of data objects to the data servers to which the object maps, and updates each copy in the
local database (Object DB) of these servers. The Server Management Protocol (SMP)
performs data relocation as described in Sec. 5.2. Finally, the Query Manager (QM) inte-
grates implementations of query algorithms, like the range and k-nearest neighbor query
algorithm. It is modular and allows to add and remove implementations as needed. Each
query algorithm can be invoked by applications and performs the resolution of a particular
query instance by invoking the RCL each time a partial query is resolved.

7 Performance Analysis

In this section we state quantitative results to discuss the performance of our architecture.
We have conducted our experiments in the ns-2 simulation environment using a service
area of 400 × 400 m. We deployed 80 sensor nodes and 160 perceivable objects in the
service area. Nodes and objects move according to the random waypoint mobility model
with a fixed default speed of 1.5 m/s and 30 seconds of pause time. The transmission range
of nodes is 150 m. We assume that a node is able to detect a perceivable object while its
physical distance to the object is less than or equal to 20 m. Further, the location computed
during an observation is assumed to be inaccurate by a disc with a radius of 10 m.
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Figure 5: Average query accuracy for k-nearest neighbor queries and different values of k.

Figure 5.a shows the average query accuracy in relation to the number of perceivable ob-
jects for k-nearest neighbor queries. Query accuracy is the fraction of the objects returned
by our algorithm that would also be returned from a global data structure containing the
most recently observed location of all perceivable objects. With increasing number of
these objects, the average distance between them decreases. Thus, there are more objects
with a similar distance to the query reference position pNN. As a consequence, ordering
objects by that distance is much more influenced by inaccurate position information. This
leads to a decrease in query accuracy with a growing number of objects, which may only
be compensated by higher observation rates or additional location fusion strategies (which
is out of the scope of this paper). Figure 5.b shows query accuracy as a function of node
speed. The results confirm that mobility has virtually no effect on query accuracy for
typical pedestrian speeds of up to 2.5 m/s.



Figure 6 shows results of various metrics as a function of the number of data sectors
for k-nearest neighbor queries. Minimal values of the metrics, which indicate optimal
performance of the algorithms, are found for small numbers of sectors. Average query
latency, defined as the time necessary from issuing the query to returning the result to the
client, is shown in Figure 6.a. It increases with the number of data sectors because more
partial queries are required to resolve a nearest neighbor query. Since we do not send
partial queries redundantly, the probability increases that at least one of them fails due to
unresolved routing. This leads to an increasing number of cases where query timeouts
occur at the proxy and thus, average query latency increases.
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Figure 6: Average query latency, query costs, and update costs.

Figure 6.b shows the average query costs, defined as the total number of packets required
to resolve a nearest neighbor query. Costs increases with the number of data sectors,
because more partial queries are required for a larger number of data sectors. Note that
with increasing k, query latency and query costs in Figure 6.a and 6.b increase because
more partial queries are required. This is a direct consequence from the circle C that is
determined according to Sec. 5.3, whose radius increases and which overlaps more data
sectors with larger values of k. Figure 6.c shows the update costs for increasing number of
data sectors, that is, the number of packets required to update a data object at potentially
multiple servers. In the case of 4 sectors, update costs are optimal. For more data sectors,
update costs increase because the location area computed by the data storage protocol
according to Sec. 5.1 overlaps with more data sectors. Note that the average number of
packets may be less than 1, since some observations are done by a data server that is
responsible for storing the data object it has created.

8 Conclusion

In this paper, we discussed the challenges for efficient and scalable processing of spatial
queries in mobile ad hoc and sensor networks. We have described our general approach
that solves the problems of algorithm scalability, node mobility, and query semantics by
exploiting localized data storage and efficient data relocation while taking into account
general query semantics defined on location areas and probability density functions. We
presented our software architecture that incorporates the algorithms into a general frame-
work for spatial query processing in mobile ad hoc and sensor networks. Finally, we
showed by quantitative analysis that our architecture achieves the stated goals.



Future work includes extension and optimization aspects. Extensions concern the inclu-
sion of a topologic model to account for restricted movement of objects, for example, in
urban areas. A more complex static data model requires partitioning approaches to con-
sider the limited storage capabilities of sensor nodes. Further, the incorporation of position
queries must be accomplished to provide all essential queries used in location-aware appli-
cations. Optimizations are to be done to packet aggregation on the update side, which we
expect will tremendously decrease network traffic. On the query side, we see the potential
for many optimizations when considering different timeout strategies together with partial
query planning based on object densities in different parts of the service area. Further, re-
dundant sending of partial queries may be used to increase query accuracy. Last, we have
already designed a suitable cleanup protocol that increases consistency of multiple copies
corresponding to the same perceivable object.
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