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Abstract

During the devel opment of network protocols and distributed
applications, their performance has to be analyzed in appro-
priate environments. Network emulation testbeds provide a
synthetic, configurable network environment for comparative
performance measurements of real implementations. Realis-
tic scenarios have to consider hundreds of communicating
nodes. Common network emulation approaches limit the
number of nodes in a scenario to the number of computersin
an emulation testbed. To overcome this limitation, we intro-
duce a virtual node concept for network emulation. The key
problem for node virtualization is a transparent, yet efficient
separation of node resources. In this paper, we provide a brief
survey of candidate node virtualization approaches to facili-
tate scalable network emulation. Based on the gathered in-
sights, we propose a lightweight virtualization solution to
achieve maximum scalability and discuss the main points re-
garding itsimplementation. We present extensive eval uations
that show the scalability and transparency of our approach in
both a traditional wired infrastructure-based, and in a wire-
less ad hoc network emulation scenario. The measurements
indicate that our solution can push the upper limit of emula-
tion scenario sizes by afactor of 20 to 30. Given our emula-
tion testbed consisting of 64 computers, this trandates to
possible scenario sizes of up to 1920 nodes.

. INTRODUCTION

During the design and implementation of distributed applica-
tions and network protocals, it is essential to analyze the im-
pact of various network environments on their performance.
While mathematical analysis and simulations are commonly
used in early design stages, measurements are used to check
the theoretical results as soon as implementations become
available. Such measurements usually compare the perfor-
mance of one implementation in different network environ-
ments or of different implementations in the same network
environment.

Comparative performance measurements in rea environ-
ments are considered problematic for two reasons. First, es-

peciadly in scenarios with mobile nodes and wireless
networking, it ishard to obtain multiple comparable measure-
ment runs. Secondly, resource requirements prohibit mea
surements in larger scenarios. Therefore, there is strong
demand for synthetic network environments that can be pa-
rametrized in order to reproduce an original or fictitious net-
work.

The process of introducing network properties that differ
from the actual properties of the hardwarein useiscalled net-
work emulation. A network emulation tool is software capa
ble of altering network traffic in a specified way. A facility
consisting of a combination of flexible networking hardware
and suitable emulation toolsis called network emulation test-
bed. Network protocols and distributed applications subject-
ed to performance measurements in a network emulation
testbed are called software under test.

Comparative performance measurements for mobile com-
puting scenarios, e.g. the evaluation of an ad hoc routing pro-
tocol, typicaly require large scenarios with hundreds of
nodes. The analysis of new applications for traditional infra-
structure-based networks, e.g. alarge-scale location service,
may also require a high number of nodes, since both the end
systems and the intermediate systems of the underlying infra-
structure have to be considered.

Common network emulation systems assume that one
communicating nodein an emulation scenario correspondsto
one physical computer in an emulation testbed. This severely
limits the scalability, since testbeds with the required number
of hundreds of computers are typically not available.

However, anumber of applications aiming at resource-poor
devices, e.g. in mobile computing scenarios, only need afrac-
tion of the resources that a testbed node can provide. There-
fore, we propose to run severa instances of the software
under test on a single testbed node (“physical node,” pnode).
Each instance of the software under test has to be provided a
separate execution environment (“virtual node,” vnode). In
this paper, we provide a brief survey of candidate approaches
for node virtualization. Based on these approaches, we
present a transparent, yet lightweight and thus very scalable
solution to node virtualization for network emulation test-
beds. Our implementation not only supports scalable emula
tion of networks consisting of point to point links but also



shared media based networks such as mobile ad hoc net-
works.

The remainder of this paper is structured as follows. The
Network Emulation Testbed, which we use as a basis for our
scalable network emulation approach, is introduced in
Section I1. In Section 111, we provide a brief survey of candi-
date node virtualization approaches. We choose one of the
candidate approaches for our implementation, which we dis-
cussin Section V. In Section V, we provide extensive mea-
surements showing the scalability of our approach for two
important kinds of scenarios. emulation of infrastructure-
based networksand MANETs (mobile ad hoc networks). Fur-
thermore, we discuss the achievable degree of transparency
for the software under test. We discuss related work in
Section VI. Finally, we conclude the paper in Section V1.

II. OVERVIEW OF THE NETWORK
EMULATION TESTBED

The Network Emulation Testbed (NET) [1] at the University
of Stuttgart provides the basis for our scalable network emu-
lation approach. It consists of 64 PC-nodes connected by a
monolithic, programmable gigabit switch, and a separate ad-
ministration network for setup and control (see Fig. 1). Using
IEEE 802.1Q VLAN (virtual LAN) technology, the gigabit
switch is able to create an arbitrary connection topology be-
tween the nodes. Each point-to-point link or shared media
network segment in an emulation scenario, e.g. a WLAN
(wireless LAN) channel, is mapped to a uniquely tagged
VLAN.
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Figure 1. The Network Emulation Testbed.

Custom network emulation tools running on each node in-
troduce the desired artificial network properties. They pro-
vide the service level abstraction of an unreliable datagram
serviceto the software under test (see Fig. 2). Thisisthe low-
est possible emul ation abstraction feasible to be implemented
in software. Thetool isimplemented as avirtual network de-
vice driver, and therefore completely transparent to imple-
mentations on the network layer. As a result, the protocol

stack including the network layer and al higher layers can be
considered as software under test.

On atestbed node, several VLANS represent several virtual
network interfaces, each of which is assigned a separate in-
stance of the emulation tool. The tool enables the configura-
tion of arbitrary bandwidth limitations, delays, and frame
error loss ratios. Additionally, to enable the realistic emula
tion of shared media networks, the effects of a MAC (media
access control) layer can be reproduced. At the present time,
this tool is capable of emulating |IEEE 802.3 (Ethernet) [2].
We are currently extending the tool to allow the emulation of
the ad hoc mode of |EEE 802.11 WLAN.
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Figure 2. Software under test and network emulation tools
on aphysical nodein NET.

A central scenario controller dynamically updates the pa-
rameters of the distributed network emulation tools. For MA-
NET emulation, this includes changing connection quality
and thus frame error rates between communicating nodes.
The connection quality isautomatically derived fromthesim-
ulated node mobility [3].

Without node virtualization, each nodein an emul ation sce-
nario is mapped to a physical node of NET, which limits the
scenario sizeto 64.

[11. APPROACHESTO NODE
VIRTUALIZATION

In general, node virtualization providesaway to schedulefor-
merly exclusive hardware resources to a number of consum-
ers. With respect to network emulation, our consumers are
execution environmentsfor software under test, whichisto be
subjected to emulated network properties. We derive the fol -
lowing requirements from node virtualization and network
emulation:

1. Our paramount goal is scalability. This requires minimal
virtualization overhead in order to preserve resources for
the software under test.

2. If two (or more) vnodes inside the same pnode communi-
cate, they should make use of efficient intra-pnode com-
munication. This requirement supports our paramount



goal 1 by minimizing overhead due to the virtualization
process.

3. An execution environment introduced by node virtualiza-
tion should be as transparent as possible for the software
under test. Thisisimportant to support performance mea-
surement of unmodified real implementations.

In the following, we present candidate node virtualization ap-

proaches and discuss their suitability regarding scalable net-

work emulation. They al have in common that they allow
multiple instances of software under test to be executed on
top of the emulation abstraction interface shownin Fig. 2. For
the discussion, we assume that the network stack is part of the
kernel space, asis prevalent in commodity operating systems.

Finally, we evaluate each approach for its suitability based on

our requirements. The presented approaches can be classified

into two main categories. virtual machines and virtual net-
work stacks.

A. Virtual Machine

A straightforward way to introduce node virtualization is us-
ing a virtual machine (VM) approach. Instead of running an
operating system (OS) directly on the bare hardware, a shim
of softwareisinserted in between. This software — the virtual
machine monitor (VMM) — schedules access of multiple
guest operating systems to exclusive hardware resources
managed by the VMM (Fig. 3).
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Figure 3. Virtual machine approach.

In order to support emulated network parameters, we need
to insert our emulation tool on top of network interface driv-
ers inside each guest operating system. For communication
with other vnodes on the same and other pnodes, a software
switch forwards frames correspondingly.

1. Classical Virtual Machine

Classical virtual machines such as Plex86 [4] or VMware
Workstation [5] have in common that they support unmodi-
fied operating systems, and thus network stacks, in each guest

instance. Therefore, they provide transparency with respect to
software under test. However, context switches between guest
OS and VMM happen whenever privileged commands are
trapped. Since network communication causes such context
switches, classical VMs imply considerable virtualization
overhead limiting scalability. This is especially an issue for
VMs, that do not virtualize acertain kind of system hardware,
but e.g. the system call interface of the host OS, e.g. User-
ModeLinux (UML) [6] or UMLinux (now FAUmachine) [7].
Even with a modified host OS such VMs only show compa-
rable performance to e.g. VMware [8].

2. Lightweight Virtual Machine

Lightweight virtual machines such as VMware ESX [9],
Denali [10] or Xen [11] directly access the host hardware
without a host OS in order to reduce virtualization overhead.
However, they may require custom or ported guest operating
systems and are thus only partly transparent.

B. Virtual Network Stack

The virtual machine approach described in the previous sub-
section actually virtualizes more than is needed for network
emulation. It would be sufficient to provide virtual execution
environments for just the software under test, i.e. for exactly
those layers above the emulation abstraction interface
(Fig. 2). This can be accomplished with virtual network
stacks (Fig. 4). In order to extend the virtualization of net-
work and transport layer also to the application layer, sets of
processes get associated with a certain network stack in-
stance. Consequently, a vnode consists of the following sets:
a set of processes on application layer, a set of sockets on
transport layer, and a routing table on network layer.
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Figure 4. Virtua network stack approach.

In contrast to virtual machines, there is no more need for
separate virtual network devices and their drivers. The emu-
lation tool itself can appear as severa instances of a virtual
network device. In tight cooperation, a software switch for-



wards frames appropriately in order to allow communication
between any vnodes. The virtualization overhead for virtual
network stacksisaslow as possible. Compared to virtual ma-
chine approaches, there are no redundant context switches
and copy operations.

1. Duplicated Network Stack

Duplicated network stacks such as vimage [12] alow the
flexible execution of different network stack implementations
on the same pnode. However, they need extensive modifica-
tionsto becomefully virtualized and are thus hardly transpar-
ent.

2. Virtual Routing

Virtua routing [13], [14] requires only the essential vari-
ables, that have to be allocated separately for each stack in-
stance, to be touched. Thus, virtual routing is more
transparent than duplicated network stacks. Though multiple
instances are supported, only one specific implementation of
astack can be executed on asingle pnode at atime. Yet, using
different implementations on different pnodes remedies this
partial flexibility.

C. Summary and Selected Approach

Tab. 1 shows a summary of the discussion in the previous
subsections. We rate each approach on a scale of three levels
with plus denoting good fulfillment, a circle denoting partial
fulfillment, and minus denoting restrictions with respect to
our reguirements.

Table 1: Comparison of candidate virtualization

approaches.

>
Z|g 5
virtualization approach % 5 E_
BT |s
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B.1. duplicated network stack + |+
B.2. virtual routing + |+ °

For deriving the most suitable approach, we evaluate the
fulfillment of our requirementsin order of descending priori-
ty. Whilevirtual machine approaches can befully transparent
and flexible, they do not fully comply with our paramount
goa scalability. Virtual network stack approaches fulfill the
requirement of low virtualization overhead and efficient intra-
pnode communication. Of the two alternatives, virtua rout-
ing is more transparent. We thus consider virtual routing best
suited for scalable network emulation.

V. IMPLEMENTATION

Virtual routing as discussed in the previous section fitsour re-
quirements best. Hence, we choose virtual routing along with
a custom software switch that enables communication be-
tween any vnodes in an emulation scenario. Linux 2.4 serves
as operating system for the implementations. In the follow-
ing, we describe the two main blocks of our approach travers-
ing the layers from bottom to top.

A. Software Communication Switch

In the context of our network emulation testbed, each soft-
ware switch introduces a “ stacked” sub-switch using the em-
ulation network connection as an uplink to the emulation
switch (cp. to Fig. 1). A software switch resembles the func-
tionality of a hardware Ethernet switch. It mediates both be-
tween vnodes located on the same pnode as well as between
vnodes located on different pnodes. This provides transparent
switching between any vnodes in a scenario.
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Figure 5. Pnode configuration examples: link based (top),
shared media based, e.g. MANET, (bottom).

In contrast to the software bridge already existing in Linux,
we need one uplink to areal device and multiple local ends.
Therefore we designed a custom Linux kernel module pro-
viding instances of avirtual switch network device “vnmux”
(virtual node multiplexer) (Fig. 5). In order to get an uplink,
this device can beinternally bound to the driver of areal net-
work device (NIC). The latter could also be atagged VLAN
device which isin turn bound to area network device. The
bound device is put into promiscuous mode to be able to re-
ceive frames destined for local vnode devices. The emulation
hardware switch takes care of filtering. It deliversonly locally
targeted frames after its learning phase, so that the software
switch only has to process framesiit redlly is responsible for.



Processing frames is done without extra copying of payload
data. Thisis essential to fulfill our requirement 2 for efficient
intra-pnode communication. Switching decisions work with
constant destination lookup time resulting in a complexity of
O(1). At the upper interface of the switch, virtual network de-
vices provided by emulation tool instances (“netshX”) regis-
ter themselves to generate local switch “ports.”

B. Virtual Routing

Virtual routing instances are located on top of our emulation
tool’svirtua network devices. Those virtual routing instances
and applications on top of them represent possible software
under test. We base our implementation on kernel patchesfor
“Virtual Routing and Forwarding” (VRF) [15] version 0.100
by James R. Leu. VRF provides multiple instances of for-
warding information bases as well as mechanisms to associ-
ate network devices, IPv4 UDP/TCP sockets, and processes
with instances. User space tools exist for instance mainte-
nance and for associating devices and processes with instanc-
es. Despite all these features, virtual routing is still not
sufficiently transparent for application processes and com-
mon routing daemon implementations.

Therefore, we extend system interfaces that operate on
routing tables — some IOCTL s and the protocol route-netlink
—to work on the specific routing table of the VRF instancethe
calling process is associated with. Additionally, we extend
the ip_queue feature of the protocol netlink-firewall to allow
gueueing of I1Pv4 packets to one process within each VRF in-
stance. Thereby we gain full transparency for unmodified net-
work applicationsincluding routing daemons, that potentially
need to overhear certain packets with the help of ip_queue.

To implement all of the above mentioned functionality,
only limited modifications to a standard Linux 2.4.24 source
tree are necessary. The modifications comprise 1409 lines of
code, which consist of 416 additions, 980 changes, and 13 de-
letions.

V. EVALUATION

In the following we provide an extensive evaluation of the
building blocks as well as of the complete implemented sys-
tem. All measurements are performed on pnodes in our test-
bed equipped with an Intel Pentium 4 2.4 GHz processor, 133
MHz frontside bus, 512 MB main memory, and an Altima
AC9100 Gigabit Ethernet adapter in a 32 bit, 33 MHz PCI
bus. Passing through the different network stack layers from
bottom to top, we start our eval uation with the software com-
munication switch at the datalink layer and show the accura-
cy of our network emulation tool in variably virtuaized
scenarios. Network and transport layer are treated twice due
to two considered types of network requiring different routing
algorithms: first for awiredinfrastructure based network, sec-

ondly for a wireless ad-hoc network. The evaluation aims at
showing the scalability of the system by comparing the non-
virtualized casesto variably virtualized cases of the same sce-
narios. We would like to point out that the software under test
is by no means limited to protocols on the network layer. Af-
ter all, our load generators are processes on application layer
communicating through sockets with the transport layer. Of
course, more complex applications such as peer to peer sys-
tems can also be analyzed in our emulation environment
without modification.

A. Software Communication Switch
Our software communication switch is a core component in
our scalable emulation environment, since it has to switch
frames quickly and at the lowest overhead possible. In order
to show that it fulfills the expectations, we measure both the
duration of switching decisions and the resulting throughput.
The scenario for measuring the duration of switching deci-
sions consists of two pnodes connected by a point to point
link provided by a tagged VLAN. One of the pnodes hosts
one switch instance as the test subject. We vary the number of
vnode devices attached to local ports of the switch instance
between 1 and 64. The other pnode generates |oad by inject-
ing randomly sized frames targeted at the software switch
ports.
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Figure 6. Duration of unicast switching decision versus
number of vnode devices.

Fig. 6 shows the efficiency of unicast switching decisions.
The average measured duration isabout 98 ns, independent of
the number of vnode devices per switch. The profiled ma-
chine code comprises 24 instructions, which take at least
about 50 CPU clock cycles on the superscalar out-of-order
core of an Intel Pentium 4, if al datais available in the first
level cache [16]. At afrequency of 2.4 GHz, 50 clock cycles
take about 20 ns. This marks alower bound for the execution
time. Taking cache misses into account, our measured aver-
age duration constitutes a reasonable value. A few spikesin



the maxima up to 1388 ns are due to cache effects having im-
pact on such short measured intervals. Since the average is
close to the minimum of 88 ns, all maxima appear rarely. We
conclude from these measurements that our implementation
of the switching decision, and therefore the core functionality
of the software switch, is highly efficient.

The scenario for measuring switch throughput consists of
one pnode with one switch instance and a varying number of
vnode devices attached. As before, the switch also has an up-
link to atagged VLAN to cover al pathsin the implementa-
tion. We vary frame sizes between 64 and 1500 Bytes. Fig. 7
shows constant throughput for unicast frames which only de-
pends on the frame size. Small frames imply more overhead
and thus less throughput. For comparison we measured a
memory bandwidth of 1020 MByte/s with STREAM [17].
Obvioudly, frame handling overhead is the limiting factor in
switch throughput. Nevertheless, a throughput of about
3 GBit/s can serve as an upper limit for aggregate link band-
width inside one pnode and is 3 times larger than the external
uplink over the Gigabit Ethernet network interface.
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Figure 7. Unicast frame throughput versus number of vnode
devices.

For broadcast frames their administration structure sk_buff
(not the payload) has to be cloned on delivery for each local
recipient. Thisis necessary since the receive path assumes ex-
clusive administrative frame data structures. We also eval uate
switch throughput for broadcast frames. The throughput for
the starting value of 2 vnode network devicesisdlightly lower
than for the unicast case because an additional frame clone
has to be transmitted on the uplink (Fig. 8). With an increas-
ing number of vnode devices per pnode, throughput decreases
due to the overhead of cloning. Yet, aggregate switch
throughput stays significantly above the memory bandwidth.
However, in order to avoid any decrease, we plan to investi-

gate possible improvements by sharing administration struc-
tures of broadcast frames between vnodes on the same pnode.
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Figure 8. Broadcast frame throughput versus number of
vnhode devices.

B. Network Emulation Tool

Our network emulation tool is able to accurately enforce
specified network properties consisting of bandwidth limita-
tion, delay, and frame loss ratio [1]. In this section, we show
that our tool remains accurate in the virtualized case up to a
machine dependent limit for the degree of virtualization.

The scenario for measuring the accuracy of emulated net-
work properties consists of a varying number of vnodes on a
single pnode. n vhodes are interconnected in a chain of n—1
full duplex links having either limited bandwidth or specific
delay in each direction (similar to Fig. 12). To measure loss
ratio only one direction of each link is configured to lose
frames.

In order to measure the accuracy of bandwidth limitation,
we put load on each link by measuring maximum TCP
throughput concurrently. Fig. 9 shows the results consisting
of the measured average link bandwidth with minimum and
maximum over al links, i.e. TCP flows. Depending on the
number of vhodes, the specified bandwidth is accurately en-
forced by our network emulation tool. Up to an emulated
bandwidth of 5 MBit/s, at least 64 vnodes can be hosted on a
single pnode without loss of accuracy. 8 to 16 vnodes can be
safely interconnected at 54 M Bit/s and at least 4 vnodes can
be hosted on a pnode in a Fast-Ethernet scenario with
100 MBit/s.

We measure ICMP round trip times (RTT) on each link
concurrently to investigate the accuracy of delay emulation.
Since the full duplex links are symmetric, the actual delay re-
sultsfrom half the measured RTT. Theresultsin Fig. 10 indi-
cate that delay is emulated accurately independent of the
number of vnodes per pnode. Thus, the emulation of delay
scales perfectly with the degree of virtualization. The mea-
sured deviations from the average delay values stay within



bounds of 5ms and are due to the granularity of the timer
used to introduce the delay [1].
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Figure 9. Enforced versus specified bandwidth for different
numbers of vnodes.
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Fig. 11 depicts measurement results showing the fidelity of
emulated frame loss ratio. We put load on each link concur-
rently using adaptive ping. On average, frame loss emulation
scaleswell with the number of vhodes per pnode. Minimaand
maxima—especially at alossratio of 80 or 90 % —are outliers
and the deviation is below or equal to 2.7 for all measuring
points.

We conclude from our measurements that our network em-
ulation tool is able to accurately enforce specified network
properties over awide range of virtualization degree.

C. Wired Infrastructure Based Network
Emulation

Having treated the data link layer in the previous section, we
now continue our evaluation of the network and transport lay-
er inawired infrastructure based network emulation scenario.
The system model is described first. Afterwards, we present
measurement results for the network and then the transport
layer. Additionally, we report on the system utilization caused
by executing multiple vnodes on the same pnode.

Fig. 12 showsthe network topology of the scenario. It con-
sists of alinear chain with a varying number of router nodes.
Point to point links connecting the routers are full duplex and
have an emulated limited bandwidth of 100 MBit/sin each di-
rection. Each router uses static routing table entries to reach
its predecessors and successors in the chain. We conduct two
types of experiments for a scenario. First, we measure in a
scenario with real pnodes to obtain reference values. Second-
ly, we place all routersinside vhodes on a single pnode except
the last router, which resides on a separate pnode without any
virtualization. Thereby we show that communication over the
software switch works transparently, and mixing of arbitrari-
ly configured pnodes is possible. Note that the layers of the
real network stack implementation are always traversed on
communication even if the network traffic does not leave the
left pnode but for the last hop. For each packet forwarding on
each vnode, the network layer is traversed once on the input
and once on the output path. If appropriate, traversal reaches
up to the application layer on each vnode.

pnode 1 pnode 2

Figure 12. Infrastructure emulation scenario, virtualized
case.

On network layer, we measure ICMP round trip time de-
lays. The ping utility executed on the leftmost router sends
ICMP echo requests through the router chain to the rightmost
router. Fig. 13 showslinear increase of the mean ICMP round
trip time delay with an increasing number of hopsin the rout-



ing chain. Theleft y-axis corresponds to the results of thisin-
frastructure based scenario. The figure aso contains
measurement results for the wireless ad-hoc scenario dis-
cussed in the next section. For the variant with pnodes only,
we had 48 of 64 nodes available at the time of the experiment.
For the virtualized variant of the scenario, the slope is more
flat than with pnodes only. This is because the software
switch haslower communication delay than the hardware em-
ulation switch. The emulation tool could compensate for that,
if aparticular scenario requiresinter-node delays to be exact-
ly the same. Delays occur within time bounds depicted in
Fig. 14. A comparison to the mean values in Fig. 13 shows
that mean and minima fall close together, i.e. maxima occur
rarely and are due to route cache misses.
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On transport layer, we measure TCP throughput over the
router chain with a block size of 1 kByte (Fig. 15). For the
pnode-only chain, the throughput should stay constant over
different numbers of hops. However, it starts decreasing at 41
hops. This might be due to TCP behavior on paths with a

pathologically large number of hops. For the virtualized sce-
nario, we observe different behavior in each direction. On the
reverse direction (rx) from the last router on a pnode to the
first router on a vnode, throughput starts dropping at 46
vnodes due to resource contention. On the forward path,
throughput drops earlier at 21 vnodes. Thisis due to the fact
that the TCP source is virtualized: Both the sending TCP pro-
tocol withitstimersin theleftmost vnode and all the other vn-
odes compete for the same resources of their shared pnode.
This confirms that TCP adheres to the smart sender/dumb re-
ceiver protocol design rule [18].
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Figure 15. Throughput versus number of vnodes.
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Figure 16. Remaining system compute performance versus
number of vnodes.

Measurements for throughput already showed deviation
from the redlity, if too many vnodes are hosted on the same
pnode. In order to gain insight into system utilization, we
measured the remaining idle performance on the pnode host-
ing vnodes while executing the two previously mentioned ex-
periments. The results of all measurement runs are
normalized to the result for one vhode per pnode resembling
the unvirtualized case. Fig. 16 shows only one plot per
throughput measurement, since the TCP load generator mea-



sures both directions (rx and tx in Fig. 15) back-to-back. In
genera, theremaining idle performance decreaseswith an in-
creasing number of vnodes per pnode. Thisisan indicator for
possible resource contention due to virtualization.

Hosting too many vnodes per pnode leads to severe re-
source contention which can lead to measurement artifacts.
Sinceweareinterested in realistic results, the number of host-
ed vnodesislimited. For the above measurements, the earliest
undesirable deviation from the unvirtualized case happensfor
TCP throughput at anumber of 20 vnodes (Fig. 15). We con-
clude that our approach supports 20 IP-router instances per
pnode connected at a bandwidth of 100 MBit/s on each link.
Given our testbed hardware with 64 pnodes and the scenario
above, we thus can support scenario sizes of up to
1280 nodes.

D. Wireless Ad hoc Network Emulation
Wireless ad hoc networks typically consist of alarge number
of communicating devices, which are often resource-poor. By
using node virtualization, wireless ad hoc scenarios can be
emulated with a meaningful number of devices on an afford-
able smaller number of computers in an emulation testbed.
Hence, we evaluate the scalability of our approach for the em-
ulation of such scenarios. As before, we describe the system
model, followed by evaluation results for the network and
transport layer as well asfor system utilization.

Fig. 17 shows the emul ation scenario. For comparison with
theinfrastructure scenario, we configured the virtual node po-
sition and the emulated wireless network transmission range
— depicted by dotted circles— such that the connectivity of the
nodes resembles a chain. This is accomplished by a frame
lossratio for ingress traffic of zero for frames from reachable
neighbors, and one for all others, as described in [3]. The
wireless links between nodes are full duplex and have alim-
ited bandwidth of 11 MBit/s. Here, we do not emul ate the ef-
fects of a MAC layer, i.e. there are no frame collisions.
Incorporating a MAC layer emulation as mentioned in
Section I requires more resources and could reduce scalabil-
ity. In this scenario, we use AODV-UU [19] version 0.7.2 as
software under test. AODV-UU is an implementation of the
ad hoc on-demand distance vector routing protocol. One in-
stance of the routing daemon is executed on each node. In
contrast to most routing daemon implementations, AODV-
UU uses a small kernel module to overhear and queue rele-
vant packets for accessing them in user space, and re-route
packets after route establishment. In order to maintain the
VRF ID on each routing decision, we had to add one line of
code to the module specifying the ID as additional key com-
ponent on route lookup. We consider this to be almost com-
pletely transparent for the software under test. Similar to the
infrastructure scenario, we measure this scenario once with

only pnodes and once with all vnodes on a single pnode, ex-
cept the last node, which resides on a separate pnode.
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virtualized case.

On network layer, we measure ICMP round trip time delays
between the leftmost and the rightmost node in the scenario.
Results are averaged over 10* echo/reply cyclesfor each hop
count. Theright y-axisin Fig. 13 correspondsto the measure-
ment results for mean delay times. Starting with one hop we
observe expanding ring search in combination with binary ex-
ponential backoff for outgoing route requests as described in
[20], which is implemented by AODV-UU. Beyond the de-
fault time to live threshold, route requests work without ex-
panding ring search leading to ICMP delays with linear
increase starting at ten hops. Vnodes within the same pnode
communicate efficiently observing shorter delays and thus
leading to amore flat slope. Theright y-axisin Fig. 13 corre-
spondsto minimaand maximain ICMP delay times. Maxima
resemble multiples of the mean values due to route cache
misses on route establishment. Minima show very flat linear
increase being observed for established routes with route
cache hits.
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Figure 18. Throughput versus number of vhodes.

Measurement results for the transport layer are depicted in
Fig. 18. TCP throughput starts deviating from the reference



values in the unvirtualized scenario variant at about 30 hops.
Asaresult of thelower limited bandwidth compared to thein-
frastructure scenario in the previous subsection, more virtual
nodes can be executed on a pnode without interference. Also
TCP timing does not seem to be as critical so that both trans-
mission directions behave similarly in the virtualized variant.

Remaining idle performance for the virtualized MANET
scenarioisshown in Fig. 16. In addition to the forwarding op-
eration on network layer as per the previous infrastructure
based scenario, one ad hoc routing daemon is executed on ap-
plication layer on each vnode. This results in higher system
utilization, the more vnodes are hosted on a pnode. The con-
seguence is remaining idle performance of about 20 % at a
maximum of 30 vnodes.

Similar to the infrastructure based scenario, the earliest un-
desirable deviation from the readlistic reference values hap-
pens for TCP throughput (Fig. 18). We conclude that our
approach supports 30 ad hoc routing instances per pnode con-
nected at a bandwidth of 11 MBit/s on each link. Given our
testbed hardware with 64 pnodes, we thus can support scenar-
i0 sizes of up to 1920 nodes for similar wireless scenarios.

VI. RELATED WORK

In this section, we review existing scalable network emula-
tion approaches. All approaches have in common that they
place components of the software under test to certain, differ-
ent positions within an emulated network scenario. We clas-
sify the architectures to build the emulated network in
centralized and distributed.

A. Centralized Network Emulation

Centralized approaches emulate a whole scenario within a
single instance of a network emulation tool. The traffic that
can be handled by the central instance constitutes the upper
limit for the scalability of these approaches.

Ns-e[21] isan emulation extension of the well-known net-
work simulator ns-2 [22]. The scalability of ns-e depends on
the amount of traffic in the scenario. For atypical MANET
experiment, ascenario size of about 50 nodesis possible[23].
To some extent, this can be aleviated by extending the dis-
crete event simulation into aparallel engine[24].

ModelNet [25] is a paralel network emulator. Its primary
design is to emulate a given network topology of point-to-
point links. The topology is partitioned among a cluster of
emulation computers. Each cluster node processes network
packets through internal arbitrarily connected links and rout-
ing instances. Computers running the software under test
have to be externally connected to the central emulation clus-
ter. Several instances of the software under test can run on
each such edge node, which makes the approach scalable.
However, the interface to the emulated network is based on

socket calls, which restricts the software under test to the ap-
plication layer. Existing implementations of network proto-
cols cannot be analyzed but have to be specifically re-
implemented for the cluster nodes. This is aso true with
MobiNet [26], which isan extension to emulate MANET sce-
narios. The presented 802.11 MAC emulation in MobiNet is
completely centralized and only works on a single core node.
For a MANET scenario the authors report scalability up to
200 emulated nodes with re-implemented MANET routing
protocol.

VBET [27] is an approach designed for emulating a net-
work scenario on a single computer. It makes use of User
Mode Linux (UML) [6] in order to provide virtual machines
as execution environment for multiple virtual nodes on one
computer. In combination with additional network emulation
tools, it is possible to connect software under test to an emu-
lated scenario. Connecting multiple of such vBET computers
could allow larger scenarios. However, the use of UML’s vir-
tual machine concept introduces considerable overhead and
thus limits the number of virtual nodes per computer. The au-
thors report a maximum throughput for their software switch
between vnodes of 128 MBit/s, which is an order of magni-
tude below our approach. vBET is more suitable for qualita-
tive analysis than comparative performance anaysis.

B. Distributed Network Emulation
Distributed approaches connect several instances of a net-
work emulator together to form a comprehensive scenario.

Empower [28] alows the emulation of multiple routing in-
stances on one computer, making up alink-based or wireless
network topology. Each connection to the emulated network
ismapped to a physical link of an existing hardware network
interface. The authors equip each testbed node with severa
network cards to increase scalability. The number of network
interfaces per pnode limits the number to a few vnodes per
pnode.

Entrapid [29] and Alpine [30] virtualize the network stack
in user space and thus provide multiple execution environ-
ments for software under test on asingle computer. In combi-
nation with network emulation tools connecting such
virtualized stacks, the emulation of network scenariosis pos-
sible. However, the software under test has to be adapted in
order to interact with the user space network stacks. The
packet processing in user space also introduces considerable
timing inaccuracies, compared to real network stacks. Thus,
these approaches are more suitable for testing than perfor-
mance evaluation.

Vimage [12] virtualizes the network stack in the kernel.
While common operating systems support one single in-
stance of anetwork stack, vimage supports multiple indepen-
dent instances. To accomplish this, the stack is modified to
have all formerly global instance variables independently



available for each stack instance. Processes are associated
with a certain network stack instance. Thus, the virtualization
istransparent for software under test on the application layer.
In combination with the network emulation tool dummynet
[31], it is possible to emulate link-based scenarios in a scal-
able way. However, modifying all instance variables and ac-
cess to them incorporates substantial changes to the network
stack and thus the software under test. In [32] the authors re-
port TCP throughput of 420 MBytes/s over 15 routing hops
on asingle machinewith aslightly faster processor than used
in our evaluation. Though scaling significantly better than a
VMware based virtualization approach, the throughput was
measured in a best case without any introduction of emulated
network properties such as bandwidth limitation or delay and
is thus hardly comparable to our results. Emulated network
properties are however essential for network emulation and
imply emulation overhead due to timer management reducing
the accumulated throughput that can be realistically emulat-
ed.

The emulation testbed Netbed [33] supports scalable net-
work emulation by introducing virtual nodes[34] onthe basis
of BSD jails [35] and multiple routing tables [13]. Netbed
aims at emulating scenarios with fixed links. While it is pos-
sibleto link real wireless nodes to an emulated scenario [36],
there is no support for the emulation of wireless networks.

VII. SUMMARY AND CONCLUSION

Network emulation testbeds provide a synthetic, configurable
network environment for comparative performance measure-
ments of distributed applications and protocols. Common ap-
proaches limit the scenario size to the number of computers
in the testbed, whereas meaningful emulation scenarios often
require hundreds of communicating nodes. Testbeds of such
sizes are hardly available.

In this paper, we propose to execute multiple instances of
the software under test on a single testbed computer. There-
fore, weintroduce virtual nodes providing the software under
test with a virtual execution environment with respect to the
network stack. From a set of candidate node virtualization ap-
proaches, we choose the most lightwei ght approach fulfilling
our paramount goal for scalability. In addition to our emula-
tion software tools, we implemented an efficient software
communication switch and extensions to “Virtual Routing
and Forwarding” for Linux by James R. Leu. We provide an
extensive evaluation of the implemented network emulation
system. For awired infrastructure-based and a wireless mo-
bile ad hoc network emulation scenario, our measurement re-
sults show that node virtualization can increase the possible
scenario size by the factor 20 or 30, respectively. Given our
testbed hardware with 64 physica emulation nodes, this
trang ates to scenario sizes of up to 1920 nodes.

Clearly, for scenario sizes of several hundred nodes, it isno
more possible for an experimenter to manually map the nodes
from an emulation scenario to the available testbed comput-
ers. Thus, our next step is an automated mapping based on
constraints that evolve from the requirements of a scenario
description and offerings of the testbed hardware. While we
investigated the possible degree of virtualization by compar-
ing measurementsto the non-virtualized variant of a scenario,
this procedure is not always desired or even possible. There-
fore, we will introduce quality criteria for realistic network
emulation which can be monitored while executing an exper-
iment. In case of undesired resource contention due to virtu-
alization, the experimenter will be informed and may decide
to modify the mapping of vnodes to pnodes in order to pre-
vent contention in another emulation run.

ACKNOWLEDGMENTS

Thiswork is partially funded by the Deutsche Forschungsge-
meinschaft (German Research Foundation) under grant DFG-
GZ RO 1086/9-1.

AVAILABILITY

The source code of our implementationsis publicly available
under the terms of the GNU general public license at our
NET-project web page: http://net.informatik.uni-stuttgart.de.

REFERENCES

[1]  Herrscher, D. and K. Rothermel. 2002. “A Dynamic Network Scenar-
io Emulation Tool.” In Proceedings of the 11th International Confer-
ence on Computer Communications and Networks (ICCCN '02),
(Miami, October), 262-267.

[2]  Herrscher, D., S. Maier, and K. Rothermel. 2003. “ Distributed Emula-
tion of Shared Media Networks.” In Proceedings of the 2003 Interna-
tional Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’03), (Montréal, Quebec, Can-
ada, July), 226-233.

[3] Herrscher, D., S. Maier, J. Tian, and K. Rothermel. 2004. “A Novel
Approach to Evaluating Implementations of Location-Based Soft-
ware”” In Proceedings of the 2004 International Symposium on Per-
formance Evaluation of Computer and Telecommunication Systems
(SPECTS’ 04), (San Jose, CA, USA, July), 484-490.

[4] Lawton, K. 2000. “plex86: an i80x86 virtual machine” In Proceed-
ings of the 4th Annual Linux Showcase & Conference, (Atlanta, Geor-
gia, USA, October).

[5]  Sugerman, J., G. Venkitachalam, and B.-H. Lim. 2001. “Virtualizing
I/0O Devices on VMware Workstation’s Hosted Virtual Machine Mon-
itor.” In Proceedings of the 2001 USENIX Annual Technical Confer-
ence, (Boston, Massachusetts, USA, June), 1-14.

[6] Dike, J.2000. “A user-mode port of the Linux kernel.” In Proceedings
of the 4th Annual Linux Showcase & Conference, (Atlanta, Georgia,
USA, October).



[7

(8

(9

(10

[11]

[12]

[13]

[14]

[19]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Buchacker, K. and V. Sieh. 2001. “Framework for Testing the Fault-
Tolerance of Systems Including OS and Network Aspects” In Pro-
ceedings of the Third | EEE International High-Assurance System En-
gineering Symposium (HASE 2001), (Boca Raton, Florida), 95-105.
King, S.T., G.W. Dunlap, and PM. Chen. 2003. “Operating System
Support for Virtual Machines.” In Proceedings of the 2003 USENIX
Annual Technical Conference, (San Antonio, Texas, June), 71-84.
Waldspurger, C.A. 2002. “Memory Resource Management in VM-
ware ESX Server.” In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI’ 02), (Boston, MA, USA,
December), 181-194.

Whitaker, A., M. Shaw, and S.D. Gribble. 2002. “Scale and Perfor-
mancein the Denali Isolation Kernel.” In Proceedings of the 5th Sym-
posium on Operating Systems Desigh and |mplementation (OSDI’ 02),
(Boston, MA, USA, December).

Barham, P, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neu-
gebauer, 1. Pratt, and A. Warfield. 2003. “ Xen and the Art of Virtual-
ization.” In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP 03), (Bolton Landing, New York, USA,
October), 164-177.

Zec, M. 2003. “Implementing a Clonable Network Stack in the
FreeBSD Kernel.” In Proceedings of the 2003 USENIX Annual Tech-
nical Conference, (San Antonio, Texas, June), 137-150.

Scandariato, R. and F. Risso. 2002. “Advanced VPN support on
FreeBSD systems.” In Proceedings of the 2nd European BSD Confer-
ence (BSDCon Europe 2002), (Amsterdam, the Netherlands, Novem-
ber).

Kourai, K., T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sugawara,
and S. Chiba. 2003. “Secure and Manageable Virtua Private Net-
works for Endusers.” In Proceedings of the 28th Annual |EEE Inter-
national Conference on Local Computer Networks (LCN '03), (Bonn/
Koénigswinter, Germany, October), 385-394.

Leu, JR. 2004. Linux Virtual Routing and Forwarding, http://linux-
vrf.sourceforge.net/.

Intel. 2004. |A-32 Intel Architecture Optimization Reference Manual,
(USA).

McCalpin, J.D. 1995. “Memory Bandwidth and Machine Balance in
Current High Performance Computers.” |EEE Technical Committee
on Computer Architecture (TCCA) Newsletter, (December), 19-25.
Peterson, L.L. and B.S. Davie. 1996. Computer Networks: A Systems
Approach. Morgan Kaufmann Publishers.

Lundgren, H., E. Nordstrém, and C. Tschudin. 2002. “Coping with
Communication Gray Zones in |[EEE 802.11b based Ad hoc Net-
works.” In Proceedings of the 5th ACM International Workshop on
Wireless Mobile Multimedia (WoWMoM'’ 02), (Atlanta, Georgia, USA,
September), 49-55.

Perkins, C.E., E.M. Belding-Royer, and S.R. Das. 2003. “Ad hoc On-
Demand Distance Vector (AODV) Routing (work in progress).” Inter-
net Draft, Internet Engineering Task Force, (February).

Fall, K. 1999. “Network Emulation in the Vint/NS Simulator.” In Pro-
ceedings of the Fourth |EEE Symposium on Computers and Commu-
nications (ISCC’'99), (Red Sea, Egypt, Jduly), 244-250.

Bredlau, L., D. Estrin, K. Fal, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. 2000. “Advances
in Network Simulation.” |EEE Computer, 33(5), (May): 59-67.

Ke, Q., D.A. Maltz, and D.B. Johnson. 2000. “Emulation of Multi-
Hop Wireless Ad Hoc Networks.” In Proceedings of the 7th Interna-
tional Workshop on Mobile Multimedia Communications
(MoMuC 2000), (Tokyo, Japan, October).

(24]

[29]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(39]

(36]

Riley, G.F, R.M. Fujimoto, and M.H. Ammar. 1999. “A Generic
Framework for Perallelization of Network Simulations.” In Proceed-
ings of the 7th International Symposium on Modelling, Analysis and
Smulation of Computer and Telecommunications Systems
(MASCOTS 99), (College Park, Maryland, March), 128-135.

Vahdat, A., K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase,
and D. Becker. 2002. “ Scalability and Accuracy in aLarge-Scale Net-
work Emulator.” In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI’ 02), (Boston, MA, USA,
December).

Mahadevan, P, A. Rodriguez, D. Becker, and A. Vahdat. 2004.
“MobiNet: A Scalable Emulation Infrastructure for Ad Hoc and Wire-
less Networks.” Technical Report CS2004-0792, Department of Com-
puter Science, University of California, San Diego, (June).

Jiang, X. and D. Xu. 2003. “vBET: aVM-Based Emulation Testbed.”
In Proceedings of the ACM SGCOMM 2003 Workshops, (Karlsruhe,
Germany, August), 95-104.

Zheng, P. and L.M. Ni. 2002. “EMPOWER: A Scalable Framework
for Network Emulation.” In Proceedings of the 2002 International
Conference on Parallel Processing (ICPP’02), (Vancouver, B.C.,
Canada, August), 185-192.

Huang, X.W., R. Sharma, and S. Keshav. 1999. “The ENTRAPID Pro-
tocol Development Environment.” In Proceedings of the Conference
on Computer Communications (INFOCOM 99), volume 3, (New
York, NY, USA, March), 1107-1115.

Ely, D., S. Savage, and D. Wetherall. 2001. “Alpine: A User-Level In-
frastructure for Network Protocol Development.” In Proceedings of
the 3rd USENIX Symposium on Internet Technologies and Systems
(USITS2001), (San Francisco, California, USA, March).

Rizzo, L. 1997. “Dummynet: A simple approach to the evaluation of
network protocols” ACM Computer Communication Review, 27(1),
(January), 31-41.

Zec, M. and M. Mikuc. 2004. “ Operating System Support for Integrat-
ed Network Emulation in IMUNES?” In Proceedings of the 1st Work-
shop on Operating System and Architectural Support for the on
demand IT InfraSructure (2004 OASS), (Boston, MA, October), 3—
12.

White, B., J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. 2002. “An Integrated Ex-
perimental Environment for Distributed Systems and Networks.” In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI’02), (Boston, MA, USA, December), 255—
270.

Guruprasad, S., L. Stoller, M. Hibler, and J. Lepreau. 2003. “ Scaling
Network Emulation with Multiplexed Virtua Resources” SIG-
COMM 2003 Poster Abstract, (August).

Kamp, P-H. and R.N.M. Watson. 2000. “ Jails: Confining the omnip-
otent root.” In Proceedings of the 2nd International System Adminis-
tration and Networking Conference (SANE 2000), (Maastricht, The
Netherlands, May).

White, B., J. Lepreau, and S. Guruprasad. 2002. “L owering the Barri-
er to Wireless and Mobile Experimentation.” In Proceedings of the
First Workshop on Hot Topics in Networks (Hotnets-1), (Princeton,
New Jersey, USA, October).



	On Node Virtualization for Scalable Network Emulation
	Keywords: software performance evaluation, network emulation, mobile ad hoc networks, scalability...
	Abstract
	I. Introduction
	II. Overview of the Network Emulation Testbed
	III. Approaches to Node Virtualization
	A. Virtual Machine
	B. Virtual Network Stack
	C. Summary and Selected Approach

	IV. Implementation
	A. Software Communication Switch
	B. Virtual Routing

	V. Evaluation
	A. Software Communication Switch
	B. Network Emulation Tool
	C. Wired Infrastructure Based Network Emulation
	D. Wireless Ad hoc Network Emulation

	VI. Related Work
	A. Centralized Network Emulation
	B. Distributed Network Emulation

	VII. Summary and Conclusion
	Acknowledgments
	Availability
	References

