Efficient Forwarding of Symbolically Addressed
Geocast Messages

Frank Durr, Christian Becker, and Kurt Rothermel
Institute of Parallel and Distributed Systems (IPVS), Universitat Stuttgart
UniversitatsstraBe 38, 70569 Stuttgart, Germany
{duerr,becker,rothermel } @informatik.uni-stuttgart.de

Abstract— Geocast is used to send messages to all hosts located
in a geographic area. This target area can be defined either by
geometric figures like polygons or by symbolic addresses like city
names or room numbers.

Geographic routing algorithms, which forward messages based
on geographic information, can be used to forward geocast
messages. If routing of symbolically addressed messages is based
on geometric coordinates, complex mappings between symbolic
addresses and their geometric extent as well as complex geometric
operations are required. Therefore, we propose a routing algo-
rithm for symbolically addressed geocast messages that operates
directly on a symbolic location model. This approach does not
require any geometric information for message forwarding, and
forwarding decisions can be realized efficiently by comparably
simple operations.

I. INTRODUCTION

Geocast is a communication mechanism that allows to send
messages to all hosts located in a geographic target area. For
example, geocast can be used to inform all people close to a
fire to keep their windows shut, or to distribute the conference
agenda and presentation slides to everyone in the conference
room.

Geocast messages can be addressed either by geometric fig-
ures or by symbolic names like city names or room numbers.
From a user’s perspective, symbolic addressing has several
advantages over geometric addressing. Since people are using
symbolic addresses in everyday life, they are more intuitive to
use than abstract geometric figures. Therefore, many geocast
applications can be based on symbolic addressing. Conse-
quently, we believe that symbolic addressing is an important
alternative to geometric addressing.

Even if symbolic addresses are used at the geocast service
interface, geocast routing can still be based on geometric
addresses if symbolic addresses are mapped to geometric
addresses before a message is handed over to geocast routing.
However, to be able to perform this mapping we need a com-
plex location model that associates every symbolic location
with its geometric extent. A global geocast service that is also
suitable for indoor usage requires a detailed three-dimensional
model leading to substantial modeling effort. Moreover, with
geometric routing forwarding decisions require the comparison
of geometric figures, which may be rather costly operations,
even if approximated geometries as proposed in [1] are used.

Therefore, we propose an alternative geocast routing ap-
proach for symbolically addressed messages purely based on

symbolic location information. The most important advantage
of this approach is that symbolic addresses need not be
translated to geometric ones, thus, a simple symbolic location
model such as proposed in [2] is sufficient. Moreover, message
forwarding only requires comparably simple operations rather
than geometric operations and therefore can be implemented
efficiently. Additionally, our approach can be implemented
without modification of the widely deployed IP infrastructure
since it is implemented in an overlay network.

The remainder of the paper is structured as follows. We
discuss existing geocast routing algorithms in Sec. II. In
Sec. III we introduce the symbolic addressing scheme and
underlying location model on which we will base our routing
algorithm. Then, we propose an overlay network architecture
in Sec. IV and present how the overlay network is constructed
in Sec. V. The major contribution of our paper, a symbolic
routing algorithm, is presented in Sec. VL. In Sec. VII we
present the evaluation of our algorithm and then conclude the
paper with a short summary and an outlook on future work.

II. RELATED WORK

In this paper, we concentrate on routing algorithms for
infrastructure-based systems. In [3], three classes of geo-
cast routing approaches for infrastructure-based systems are
proposed: the multicast-based approach, the directory-based
approach, and geographic routing.

The multicast-based approach subdivides the world into
partitions with unique multicast addresses. A host joins the
multicast groups of all partitions including the host’s position.
Messages are sent by mapping target areas to multicast groups.
In theory this approach could also be used for symbolically ad-
dressed messages by associating every symbolic location with
a multicast address. However, for a global and fine-grained
symbolic addressing scheme, many multicast addresses are
necessary, which are only available in IPv6. Moreover, the set
up and maintenance of large numbers of multicast trees can
lead to substantial overhead for establishing multicast trees,
and can result in large routing tables.

The directory-based approach stores the geographic areas
covered by subnetworks in a directory. With this directory, the
addresses of all subnetworks covering the target area can be
determined. However, forwarding messages to these subnet-
works using unicast is inefficient, and using multicast leads to
the problems described for the multicast-based approach.

Geographic routing uses geographic information for mes-
sage forwarding. A geographic routing approach based on geo-
metric information is described in [4]. This approach forwards
messages along the edges of a tree of special geocast routers,
each one responsible for certain geographic areas. As already
mentioned in Sec. I, geometric forwarding requires detailed
geometric location models and complex operations to make
forwarding decisions. A symbolic routing approach using
only symbolic location information avoids these problems. [5]
describes such an approach but uses a comparably simple tree-
based location model. Our symbolic routing approach uses a
more powerful lattice-based model as described in Sec. III and
an appropriate routing algorithm.

In contrast to the infrastructure-based geocast routing al-
gorithms described above, approaches for mobile ad hoc
networks (MANETS) as described in [6] are based on fun-
damentally different assumptions leading to a different class
of algorithms. In contrast to these approaches, we aim at a
global geocast service, which is only feasible using a routing
infrastructure.

III. SYMBOLIC ADDRESSING SCHEME

In this section, we introduce a symbolic addressing scheme
based on a generic symbolic location model proposed in [7].

The location model is a hierarchy defined by the spatial
containment relationships between symbolic locations. The
location [; from the set of locations L is a descendant of the
location [, (denoted by I3 < l9) if [is spatially contained in 5
where [5 is called an ancestor of l1. A location is called a child
of another location if it is a direct descendant of this location,
and it is called a parent if it is a direct ancestor. children(l)
and parents(l) denote the set of child and parent locations of
l, respectively. The hierarchy forms a lattice, i.e., each location
pair {l1,lo} has a unique least upper bound (supremum)
denoted by [; U, and a unique greatest lower bound (infimum)
l1 Mls. 13 M Iy defines the spatial intersection of /1 and [,
while [; LI l5 is the smallest location that contains /; and [s.
T denotes the top element “everywhere” of the lattice and L
the bottom element “nowhere”. level(l) of location [is defined
as level(L) = 0; level(l) = max(level(ly), ..., level(l,)) + 1
with [1,...,l, € children(l) (cf. Fig 4).

Figure 1 shows a simple example of a building, where the
floors and wings are both part of the building, and therefore
are child locations of the location “Building”. This example
also contains overlapping locations, which cannot be modeled
by a simple tree-based model. For example, floor 1 (/) and
wing 1 (l2) overlap, and the intersection is l; M1y = [3.

Each location has a globally unique address, which is
formed by concatenating the addresses of the locations on
the path from the top of the lattice to this location. Since
multiple paths may exist in a lattice, a location may end up
with several addresses. For instance, room I4 in Fig. 1 has the
addresses a1 = /de/stuttgart/keplerstreet/5/
floorl/wingl/room38 and as = /de/stuttgart/
keplerstreet/5/wingl/floorl/room38.

top element ("everywhere")

usa | qe fr
| stuttgart
| keplerstreet
15
Building
floorl floor2
1 2 wingl wing2
\ Floor \ \ Wing \ Wing \ \ Floor
wingl\ /Eloorl
13 7
14 room38 " N\ roomd2
VF Room \ \ Room \
\\
bottom element

Fig. 1. Symbolic location model

router in underlay network Geocast Router in overlay network
>

[
Geocast Message
Server

geographic service area of
Geocast Message Server: /de/stuttgart/keplerstreet/5/floor2

Fig. 2. Architecture

IV. ARCHITECTURE

Here we present the architecture of our geocast infrastruc-
ture.

A. Components

Similar to [4] our system consists of three kinds of compo-
nents (cf. Fig. 2): hosts, message servers, and routers.

A geocast host (GH) is a daemon running on a mobile or
stationary device such as a personal digital assistant (PDA) or
PC, respectively. It is responsible for sending geocast messages
handed over by local applications to a geocast router for
forwarding. Moreover, it delivers geocast messages received
from the local message server to local applications. GHs know
their current positions in form of a symbolic address from a
positioning system.

Geocast Message Servers (GMS) are responsible for dis-
tributing geocast messages to all GHs within certain access
networks. The geographic area covered by the access network
of a GMS, say n, is called its service area s(n). This service
area can be small like a single floor of a building covered
by a wireless LAN, or large like the area covered by a GSM
cell. Since a certain area may be covered by multiple access
networks, multiple GMSs may be responsible for the same
or overlapping areas. The focus of this paper is on forwarding
messages by geocast routers from the sending GH to the GMSs
in the target area rather than on the local distribution within an
access network. Therefore, we assume that a GMS distributes
received geocast messages to GHs by simply multicasting the

messages to all GHs within its attached access network. For
instance, a GMS that is responsible for an access network
in form of a wireless LAN covering a building forwards a
received geocast message addressed to a floor of this building
to all GHs residing in this wireless LAN. This can be done by
forwarding the messages to a well-known IP multicast group
scoped to the GMS’s access network. GHs have to join this
group, and mobile GHs have to ensure that they re-join the
group whenever they move to another access network. Since
GHs know their geographic position, they can filter messages
so that only GHs withing the target area actually deliver the
message to geocast applications. In the example, only GHs
on the addressed floor would deliver the message. Further
optimizations of this local delivery within access networks are
beyond the scope of this paper. The mobility of GHs may also
lead to message loss if a GH changes access networks during
message transfer. The algorithms in this paper provide best
effort semantics and therefore do not take counter measures
to deal with lost or corrupted messages.

Geocast routers (GR) forward messages from the sending
GH to all GMSs with service areas overlapping target area
t(m) of message m. That means, to ensure the correctness
of our approach, m has to be forwarded to each GMS n
with s(n) Mt(m) # L since there are possibly GHs in the
intersection of s(n) and t(m).

B. Overlay Network Architecture

GRs are organized in a hierarchical overlay network that
resembles the lattice structure of the underlying location model
as shown by the example in Fig. 3a. Each GR is associated
with a service area that corresponds to a location in the
location model. The service area of GR r is denoted by s(r).
For example, s(r3) = l3 in Fig. 3a. We assume that a GR’s
service area is configured statically, i.e., GRs are explicitly
assigned to some location of the location model. The parent
and child GRs of r in the router hierarchy are defined as
follows:

{r" € R | s(r') € children(s(r))}
{r" € R|s(r") € parents(s(r))}

childrouters(r) =

parentrouters(r) =

In Fig. 3 for instance, the parent GR of r3 is r1, and the child
GRs of r3 are ry4, 75, and rg.

Obviously, it is not reasonable to assign a different GR
to each location. However, the description of our algorithm
becomes much simpler if we assume an individual GR for
each location. Therefore, we distinguish between physical and
virtual GRs. While there is a one-to-one mapping between
locations and virtual GRs, a physical GR can implement mul-
tiple virtual GRs. For instance, a physical GR may implement
a virtual building GR as well as virtual floor GRs of this
building, virtual room GRs of this building, etc. In particular,
a physical GR that is configured to be the GR of a location,
say [, is also implicitly assigned to each descendant location
I’ with I’ < I if no other physical GR is configured to be the
GR of I’. In our example, the physical GR assigned to the
building by its configuration also implements a virtual floor

symbolic service area of GR

GR rresponsible
o location for location
target area

making forwarding decision
___ path known from
target area address

—>» message flow

Fig. 3. Geocast Router hierarchy a) Full architectural knowledge b) Minimal
architectural knowledge of GR 719 c) Extended architectural knowledge of
GR 719

GR of this building if no other physical GR is assigned to
this floor by its configuration. Clearly, only messages are to
be sent over the network if the sending and receiving virtual
GRs are implemented by different physical GRs.

In order to make forwarding decisions, GRs must know a
portion of the GR hierarchy and location model. The minimal
architectural knowledge GR r must know is defined as follows:

o LMn={] e L|l>s(r)}Uchildren(s(r)) including the

symbolic addresses of these locations

« the spatial containment relation < between every pair of

known locations: [< lo for all l1,1s € L?ﬁn

o RMn = childrouters(r)Uparentrouters(r) including the

service areas of these GRs

The required knowledge about the location model is either
configured statically or queried from a spatial model service
such as the one described in [8]. In Fig. 3b for instance,
the minimal architectural knowledge of GR ryy consists of
the locations Lffiion ={ly,13,14,15,17,l10, 13}, including their
symbolic addresses, the containment relationships between
these locations, and the GRs R:Plion = {r7, 710,713} including
their service areas.

Since GRs are organized in an overlay network, messages
need not traverse the hierarchy, but a GR can send a message
directly to any other GR. For instance, a city GR might
send a message directly to another city GR without traversing
a state GR. Further extended architectural knowledge, i.c.,
additionally known GRs together with their service areas
and ancestor locations allows to define such shortcuts in the
hierarchy. For instance, it might be reasonable to add the (few)
country GRs to the architectural knowledge of GRs to reduce
the load of the top GR. In Fig. 3c, we added location [and
GR 7 to the minimal architectural knowledge of 1o to define
a shortcut between r1g and rg.

V. OVERLAY NETWORK CONSTRUCTION

In this section we present how the overlay network is set
up and how it reacts to topological changes caused by GRs

joining or leaving the network whether voluntary or by failure.

The overlay is constructed top down. That means for in-
stance first the links from the earth GR to the country GRs are
established, then links from country GRs to state GRs, etc. In
order to join the overlay network, a GR, say rpew, must know
some other bootstrap GR, say rgotstrap, that is already part
of the overlay network. This GR can be configured manually.
For instance, the earth or country GRs should be well-known.
Alternatively, an expanding ring search or anycast on the IP
layer can be used to find a bootstrap GR without knowing it a
priori. With anycast, for instance, all GRs join a well-known
anycast group. If r.w sends a message to this group, it is
delivered to the topologically closest GR with respect to the IP
network, and this GR is used as bootstrap GR. Via ryotstraps
Thnew Can contact its parent GRs in parentrouters(rpew) by
sending a special registration message including s(rpew) to
the locations in parents(s(rew)) using the routing algorithm
described in Sec. VI. The addresses of these locations can
be determined from the addresses of ry.y’s service area by
cutting of of the last part. When a GR in parentrouters(ryey)
receives a registration message, it sends its IP address back to
Thew. FOT instance, a city GR sends a registration message
including its service area address to the GR of the state the
city is located in, and this GR returns its IP addressed to 7pey-
Now, ryew knows its parent GRs and these GRs know about
their new child GR and its service area. That means, these
GRs have completed their minimal architectural knowledge,
and 7,y 1s integrated into the GR hierarchy.

In order to let the overlay network survive node and link
failures and to adapt to changes of the overlay network
topology caused by changes of service areas, we use a soft
state approach. Every GR continuously monitors its parent and
child GRs using periodically sent “heartbeat” messages from
child GR, say r., to parent GR, say r,, and vice versa. A
successfully received heartbeat messages renews the overlay
network link. If r;, has not received a heartbeat message from
r. for some time, it assumes that . is unavailable or has
changed its service area. Therefore, r, removes r. from its
architectural knowledge. Since now no GR is associated with
r.’S service area anymore, r;, assumes to be assigned to this
area as it was before r, had joined the overlay network. If, for
instance, a state GR fails and does not send heartbeat messages
to its country GR anymore, the country GR also takes the role
of the state GR. When r,. is up again, it reclaims to be assigned
to this area and reestablishes an overlay network link between
T, and 7. as described previously.

If 7. has not received a heartbeat message from r, for
some time, it assumes that 7, is unavailable or has changed
its service area. Therefore, 7. tries to find a new parent GR
using the process described above. Finally, . registers at some
available GR, say r,, assigned to an ancestor location of its
service area. If for instance a state GR fails, its city GRs
eventually register at the country GR that takes the role of the
failed state GR. When r,, recovers and renews its parent link
with r, by sending a registration message to r, as described
above, 7, informs r, that it should register with r, again. In

our example, the country GR informs all city GRs that they
should register with the state GR that has recovered.

Since heartbeat messages are small and can be often pig-
gybacked onto forwarded traffic, the overhead of maintaining
the hierarchy can be kept small.

Links to GRs of the extended architectural knowledge, i.e.,
shortcuts to non-parent and non-child GRs, can be established
similarly by sending a special message to a geographic area,
say [. GR r with s(r) = [responds with its IP address, and the
sending GR can add r to its extended architectural knowledge.

In order to deliver geocast messages to access networks via
GRs, GMSs have to register with GRs. This registration is
described in detail in Sec. VI-C.

VI. SYMBOLIC ROUTING ALGORITHM

Now, we present our geographic routing algorithm for
symbolically addressed messages.

The routing algorithm has to guarantee that geocast message
m addressed to target area t(m) reaches each GR 7 € Ry,
with Ry ¢,y = {r | s(r) < t(m)}, i.e., every GR whose service
area is within the target area. The GRs in Ry(,,) forward m to
the GMSs in the target area, which registered with these GRs.

The routing algorithm consists of two phases:

1) Forwarding to the target area: geocast message m is
forwarded to a GR r € Ry(y).

2) Distribution within the target area: starting from r, m
is forwarded to all GRS in Ry ().

Algorithm 1 shows the algorithm executed by each GR r.
On receiving a geocast message, r first checks if message
forwarding is in phase 2 by checking a flag in the header
of the geocast message indicating the current phase (line 2).
If the flag indicates phase 1, then r switches to phase 2 if
its service area is completely within the target area (line 3).
r then forwards the message according to the current phase
(line 4,7) and additionally forwards the message to the GMSs
for delivery if message forwarding is in phase 2 (line 5).

procedure forward(m)
2 if phase(m) =2 or s(r) < t(m) then
phase(m) < 2

4 forward_phase2(m)
forward_to_gms(m)
6 else
forward_phasel(m)
8 fi
Algorithm 1. Routing algorithm executed by GR r

A. Phase 1: Forwarding to Target Area

The basic idea for phase 1 is as follows. Each GR r
searches for another GR 7’ responsible for a location on a
path leading from its service area s(r) to the target area t(m)
in the hierarchy, where s(r’) is closer to t(m) than s(r) with
respect to the number of locations between the service areas
and t(m). Consequently, m eventually reaches 7, with
$(T¢(m)) = t(m). This router in Ry(y,) starts phase 2.

level 4 I O symbolic location

level 3 GR r associated
@ with location
target area
service area of GR

"""""""""" </ [é"l;"wf' M\
level 2
[\,
making forwarding decision

N\
17 »—» path 1

level 1
»¥» path 2
level 0 bottom ;
(nowhere) (least-ascending path)

Fig. 4. Routing along least-ascending path

Since our location model is a lattice, possibly multiple paths

from s(r) to t(m) exist. Pst((:;l) denotes the set of lattice paths

from s(r) to t(m). Each path p € P:(:;) has a culmination
point p, which is the location on pat% p on the maximum
level. In the search for the next GR, r only considers GRs

responsible for locations on least-ascending paths LP;((:;I)J C

P with

wp € [PYY |0 € P Hlevel(p) < level () (1)

That means, path p € Pst((g) is least-ascending if the level

of its culmination point is minimal compared to the levels

of the culmination points of other paths in P:((T’;l). It follows

that all least-ascending paths LPqt ((:?)J have the same minimal
culmination point ppni,. Since the supremum is by definition
the least upper bound of two locations, it holds pui, =
s(r)Ut(m). In Fig. 4, LP;((Tm)J consists of one least-ascending
path, which is path 2 leading through Iy = pp,in. Choosing
a least-ascending path form the number of possible paths
increases the scalability of the system. In the GR hierarchy, the
number of GRs that exist per level decreases with increasing
level. By selecting a least-ascending path, the level of the GRs
involved in message forwarding is kept as low as possible,
which reduces the load put on higher-level GRs.

The forwarding algorithm for phase 1 is shown in Alg. 2.
The goal of this algorithm is to find a GR responsible for a
location on a least-ascending path that is as close as possible
to the target area location with respect to the number of
intermediate locations in the lattice. The message is sent
directly to this GR using the underlying network. In other
words, instead of traversing all GRs responsible for locations
on the least-ascending path, a shortcut is chosen if possible.

First, GR r determines the culmination point py,;, of the
least-ascending paths LP:((K)J by calculating the supremum of
its service area location and the target area location (line 2).
Then, r searches for a location ! between pp, and t(m)
for which a GR is known. The GR closest to t(m) is
the wanted next destination 7,ex;. In Fig. 5 this is GR rs,
which is for instance closer to t(m) than ry. The function
search from target area (line 3) implements this
search. It starts at the target area location and searches in
the direction of py,;, using a breadth-first strategy. This search
only considers locations on paths in the hierarchy leading from

t(m) t0 Pmin-

symbolic
location
GR rassociated
with location
service area s(r) of

GR making forwarding decision
target area

. considered in
Pmin\ search_from_target_area

considered in
search_towards_service_area —

Fig. 5. Forwarding to target area

If r cannot find a GR on a path from t(m) t0 Pmin,
then r continues searching on the least ascending paths from
Pmin towards the service area of r by using the function
search towards_ sa (line 5). This search also uses a
breadth-first strategy to find a GR closest to pi,. This GR is
also closest to t(m). In Fig. 5, this is GR r1, which is closer
t0 Pmin than 7,. Clearly, this function will always find a GR
because at least one parent GR lies on a path leading from
Pmin t0 s(r) (rp in Fig. 5).

procedure forward_phasel(r)
) Pmin S(T) L t(m)
Tnext <—search_from_target_area(Pmin, t(m))
s if rpexs = @ then
Tnext <—search_towards_sa(Pmin, S(7))
6 fi
sendmsgto(m, Tpext)

Algorithm 2. Routing algorithm for phase 1 executed by GR r

To illustrate this algorithm, consider the example in Fig. 3
where a message is addressed to location lg. Assume that
GR r19 has the extended architectural knowledge depicted in
Fig. 3c. Pmin 18 l3. While searching from the target area lg
towards Pin, 710 finds GR rg, which is the GR closest to
the target area on a least-ascending path from s(rig) to t(m).
Therefore, r19 forwards the message directly to rg, skipping
for instance r7. Figure 3b shows the same situation, but now
r10 only has the minimal architectural knowledge. Since 71
cannot find a GR on a path from ppi, = I3 to t(m), it
continues the search on all paths from P, to s(rip) and
finds r7 to which it forwards the message.

B. Phase 2: Forwarding in Target Area

In phase 2, the message is distributed within the target
area by GRs whose service areas are completely within the
target area of the message. Formally, message m has to be
forwarded to each GR r’/ with s(r’) < t(m). We achieve
this using the following algorithm: Each GR r in the target
area forwards the message to all GRs in parentrouters(r)
and GRs in childrouters(r), except for the one from which r
received the message and those with service areas that are not
completely within the target area.

C. Forwarding Messages to Geocast Message Servers

In phase 2, message m with target area t(m) reaches each
GR r with s(r) < t(m). These GRs forward m to each GMS
n whose service area s(n) overlaps the target area since there

symbolic
location

GRr

responsible

for location
GMS n

n°—° registered

with GR r

target area

Fig. 6. Forwarding to Geocast Message Servers

are possibly GHs in the intersection of s(n) and t(m), and n
must forward m to these GHs. In order to save bandwidth, a
message should not be delivered to a GMS more than once
by different GRs. The following algorithm assures this.

GMS n registers with each GR r whose service area s(r)
is covered by n’s service area s(n), i.e., with each GR r with
s(r) < s(n). Note that the total number of GMSs registered
with one GR is small if we assume that the number of GMSs
covering a certain location is small. Therefore, the number of
GMSs a GR has to consider when a message is forwarded and
the number of message copies forwarded to GMSs by a GR
are also small. The number of GRs at which a GMSs has to
register may be large depending on the size of s(n). Therefore,
GMSs use the algorithm described above to send registration
messages by geocast to the target area t(m) = s(n) rather
than sending it by unicast.

To make sure that message m with target area t(m) is
forwarded to GMS n not more than once, we determine the so-
called designated router 1(y) 5(n) for each pair (t(m),s(n)).
Only 7¢(;),s(n) forwards m to n. The algorithm is shown in
Alg. 3. N denotes the set of GMSs that have registered at
GR r. First, the intersection of the target area and the GMS’s
service area is calculated for each registered GMS in line 3. r
is the designated router ¢ () () if this intersection is equal to

the service area of r. In this case, r forwards m to n (line 4).

procedure forward_to_gms(m)
2 foreach n € N do
if t(m)Ms(n) =s(r) then
4 sendmsgto_gms(m, n)
fi
6 od

Algorithm 3. Forwarding messages to Geocast Message Servers

Figure 6 shows an example for the registration of GMSs
and message forwarding to GMSs at designated GRs. GMS
n with service area s(n) = I registers with each GR r with
s(r) <s(n), i.e., r4, 15, 76, and 77, by sending a registration
message via geocast to address /b. Now consider a message
to /a, i.e., t(m) = l4. The intersection of s(n) and t(m) is
s(n) Mt(m) = 3. Since s(rg) is I3, r¢ is the designated GR
Tt(m),s(n) that delivers m to n.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our routing
algorithm by measuring the local forwarding decision time.

160
140
120
100
80
60
40
20 | E
| | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
number of multi-parent locations/total number of locations

time [usec]

average forwarding decision

Fig. 7. Average forwarding decision time

In order to make fast forwarding decisions, the lattice
operations < and LI have to be implemented efficiently.
Especially phase 1 is critical since in this phase GRs have
to calculate one supremum to determine pp,i, and compare
several locations using <. Phase 2 is comparably simple. A GR
just forwards the message to all child and parent GRs in the
target area. Additionally, GR r must decide in phase 2 whether
to forward a message to a registered GMS n by testing for
s(n) Mt(m) = s(r). This infimum can be found “in practical
constant time” [9] by encoding the lattice or by marking each
location ! with s(n) M1 = s(r) in the local lattice for each
registered GMS n in a preprocessing step. Therefore, phase 2
is not critical and we focus our evaluation on phase 1.

In our performance evaluation, the location model and GR
hierarchy consists of 7 levels, including the top and bottom
level. Every location on levels greater one has 16 child
locations. Forwarding decision times are measured at GRs
on level 1 since their service areas have the most ancestors,
and therefore we expect them to have the longest forwarding
decision times. For the same reasons, also the target area is
selected from locations on level 1.

We use two prototypical implementations for lattice op-
erations. Implementation 1 (IMP1) navigates directly on the
lattice to calculate U and <. Implementation 2 (IMP2) encodes
the locations of the lattice to bit strings with the algorithm
proposed in [9] in a preprocessing step. Lattice operations are
then implemented by code comparisons. We randomly select
100,000 pairs of GRs and target areas, measure the forwarding
decision time at these GRs and calculate the average value.
All tests are executed on a workstation with one 1.2 GHz
Sun UltraSPARC III processor. For space restrictions we
only present the results for GRs with minimal architectural
knowledge.

Figure 7 shows the forwarding decision times for IMP1 and
IMP2. Since we designed our algorithm to work on a flexible
lattice-based location model that can also model overlapping
locations rather than on a simple tree-based model, we vary
the ratio of multi-parent locations (locations denoting inter-
sections) to single-parent locations to see the influence on the
forwarding decision time. That means, we start with a tree-
shaped lattice (0% multi-parent locations) and add additional
links between locations on different levels randomly in a way
that the lattice properties are preserved.

We see that for IMP1 the forwarding decision time grows

with the number of multi-parent locations whereas IMP2
performs almost equally well on different lattices. IMP1
calculates s(r)Ut(m) by enumerating the set ancestors(s(r))N
ancestors(t(m)) and then selecting the location on the min-
imum level from this set. For the comparison /; < ls, IMP1
tests for Iy € ancestors(ly) and ls € ancestors(ly). Clearly,
the number of ancestor locations influences the performance of
IMP1. Since the number of ancestors grows with the number
of multi-parent locations, IMP1 is slower for greater ratios
of multi-parent locations to single-parent locations. For IMP2
the number of multi-parent locations influences the length
of location codes. However, this only slightly influences the
efficiency of code comparisons needed to calculate U and <.

For a tree-shaped model (0% multi-parent locations) we
measure forwarding decision times of 83 us and 34 us for
IMP1 and IMP2, respectively. That means, a GR can make
approximately 12,000 and 29,400 forwarding decisions per
second on average using IMP1 and IMP2. In contrast to our
symbolic forwarding approach geometric forwarding has to
compare geometric target and service areas. On the same ma-
chine it takes 44 us and 227 ps to compare two polygons with
4 and 20 vertices, respectively. In our scenario, a geometric
GR 7 has to do 1 comparison in the best case (r’s service
area) and 17 comparisons in the worst case (16 child areas +
r’s service area) to make a forwarding decision. That means,
for polygons with 4 vertices our algorithm is approximately
0.5 to 9 times faster for IMP1 and 1.3 to 22 times faster for
IMP2; for polygons with 20 vertices our algorithm is 2.7 to
46.4 and 6.7 to 113.5 times faster. Note that a polygon with 4
vertices may only approximate a symbolic area poorly leading
to misrouted messages if geometric forwarding is used. At
the expense of longer forwarding decision times, a service or
target area can be approximated more exactly by polygons with
more vertices. With symbolic forwarding we can use the exact
symbolic target area to address messages without efficiency
penalty.

Regarding the number of possible forwarding decisions and
the fact that a reasonable GR hierarchy has many GRs at lower
levels (e.g., many street and building GRs), the load of low-
level GRs is no problem. The load of high-level GRs like
state or country GRs is more critical. This load will stay low
as long as most senders are located geographically close to
the addressed area since then most messages can be handled
by GRs on lower levels and need not traverse for example a
state or country GR. Like [10] we assume that the relevance of
location-specific information decreases as distance increases.
Therefore, we can assume that most senders address nearby
areas. This makes bottlenecks at high-level GRs unlikely.

Another reasonable assumption is the existence of hotspot
locations that are addressed frequently. Such hotspots may
occur for instance in big cities like New York. Hotspots can
be handled efficiently using the described possibility to define
shortcuts in the hierarchy. Since shortcuts by-pass high-level
GRs (cf. Fig. 3c), the load of these GRs is reduced further.
In future work we are going to investigate strategies for the
automatic installation of such shortcuts.

VIII. SUMMARY AND FUTURE WORK

We presented a routing algorithm for symbolically ad-
dressed geocast messages that is based on a symbolic location
model and addressing scheme. This algorithm does not rely
on any geometric information for forwarding. Consequently,
a simple symbolic location model suffices, which can be set
up easily compared to a complex geometric model. Since
the algorithm operates on routers in an overlay network, it
can be implemented without changing the existing IP router
infrastructure. Scalability is assured by using a hierarchy of
routers resembling the location hierarchy. In our evaluation
we showed that our algorithm can be implemented efficiently,
so a router can make fast forwarding decisions.

The presented symbolic routing algorithm is the first step
towards a fine-grained geocast routing approach. Beside ge-
ographic attributes, we are going to integrate further object
attributes like the object type into our addressing scheme in
order to address groups of objects within a geographic area,
e.g., all taxis in the vicinity of the central station. In order
to forward such messages, geographic multicast protocols are
required, which are subject of our future work.

ACKNOWLEDGMENTS

Frank Diirr gratefully acknowledges the financial support
by the Deutsche Forschungsgemeinschaft within the Center of
Excellence 627 “Spatial World Models for Mobile Context-
Aware Systems”.

REFERENCES

[1] J. C. Navas and T. Imielinski, “On reducing the computational cost
of geographic routing,” Rutgers University, Department of Computer
Science, Tech. Rep. DCS-TR-408, Jan. 2000.

[2] B. Brumitt and S. Shafer, “Topological world modeling using semantic
spaces,” in Proceedings of the Workshop on Location Modeling for
Ubiquitous Computing, UbiComp 2001, Sept. 2001, pp. 55-62.

[3] T. Imielinski and J. C. Navas, “GPS-based geographic addressing,
routing, and resource discovery,” Communications of the ACM, vol. 42,
no. 4, pp. 86-92, 1999.

[4] Julio C. Navas and T. Imielinski, “Geocast — geographic addressing and
routing,” in Proceedings of the Third Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom ’97),
Budapest, Hungary, Sept. 1997, pp. 66-76.

[5] J. Roth, “Semantic geocast using a self-organizing infrastructure,” in
Innovative Internet Community Systems (I2CS), Leipzig, Germany, June
2003, pp. 216-228.

[6] C. Maihofer, “A survey on geocast routing protocols,” IEEE Communi-
cations Surveys and Tutorials, vol. 6, no. 2, 2004.

[7]1 F. Diirr and K. Rothermel, “On a location model for fine-grained geo-
cast,” in Proceedings of the Fifth International Conference on Ubiquitous
Computing (UbiComp 2003), Seattle, WA, Oct. 2003, pp. 18-35.

[8] D. Nicklas, M. GroBmann, T. Schwarz, and S. Volz, “A model-based,
open architecture for mobile, spatially aware applications,” in Pro-
ceedings of the 7th International Symposium on Spatial and Temporal
Databases (SSTD 2001), Redondo Beach, CA, July 2001.

[9] D. D. Ganguly, C. K. Mohan, and S. Ranka, “A space and time

efficient coding algorithm for lattice computations,” IEEE Transactions

on Knowledge and Data Engineering, vol. 6, no. 5, pp. 819-829, Oct.

1994.

B. Xu, A. Ouksel, and O. Wolfson, “Opportunistic resource exchange in

inter-vehicle ad-hoc networks,” in Proceedings of the IEEE International

Conference on Mobile Data Management (MDM 2004), Berkeley, CA,

Jan. 2004, pp. 4-12.

[10]

