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1 Introduction

With the proliferation of sensor networks and sensor network applications dur-
ing the last few years, the overall complexity of such systems is continuously
increasing. Sensor networks are now heterogeneous in terms of their hardware
characteristics and application requirements even within a single network. In
addition, the requirements of current applications are expected to change over
time. All of this makes developing, deploying, and optimizing sensor network
applications an extremely difficult task. In the TinyCubus project we research a
necessary infrastructure to support the complexity of such systems.

TinyCubus consists of a data management framework, a cross-layer frame-
work, and a configuration engine. The data management framework allows the
dynamic selection and adaptation of system and data management components.
The cross-layer framework supports data sharing and other forms of interaction
between components in order to achieve cross-layer optimizations. The configu-

ration engine allows code to be distributed reliably and efficiently by taking into
account the topology of sensors and their assigned functionality.

2 Overall Architecture

The overall architecture of TinyCubus mirrors the requirements imposed by the
applications and the underlying hardware. As shown in figure 1, TinyCubus

is implemented on top of TinyOS [3] using the nesC programming language
[1], which allows for the definition of components that contain functionality
and algorithms. We use TinyOS primarily as a hardware abstraction layer. For
TinyOS, TinyCubus is the only application running in the system. All other
applications register their requirements and components with TinyCubus and
are executed by the framework.

2.1 Tiny Data Management Framework

The Tiny Data Management Framework provides a set of data management and
system components, selected on the basis of the typically data-driven nature of
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Fig. 1. Architectural components in TinyCubus

sensor network applications. For each type of standard data management com-
ponent such as replication/caching, prefetching/hoarding, aggregation, as well
as each type of system component, such as time synchronization and broadcast
strategies, it is expected that several implementations of each component type
exist. The Tiny Data Management Framework is then responsible for the selec-
tion of the appropriate implementation based on the information obtained from
the system.

The cube of figure 1, called ’Cubus’, combines optimization parameters, such
as energy, communication latency, and bandwidth; application requirements,
such as reliability; and system parameters, such as mobility. For each compo-
nent type, algorithms are classified according to these three dimensions. For
example, a tree based routing algorithm is energy-efficient, but cannot be used
in highly mobile scenarios with high reliability requirements. The component
implementing the algorithm is tagged with the combination of parameters and
requirements for which the algorithm is most efficient. Eventually, for each com-
bination a component will be available for each type of data management and
system components.

The Tiny Data Management Framework selects the best suited set of com-
ponents based on current system parameters, application requirements, and op-
timization parameters. This adaptation has to be performed throughout the
lifetime of the system and is a crucial part of the optimization process.

2.2 Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic interface to support para-
meterization of components using cross-layer interactions. Strict layering (i.e.,



each layer only interacts with its immediately neighboring layers) is not practical
for wireless sensor networks [2] because it might not be possible to apply certain
desirable optimizations. For example, if some of the application components as
well as the link layer component need information about the network neighbor-
hood, this information can be gathered by one of the components in the system
and provided to all others.

If layers or components interact with each other, there is the danger of loos-
ing desirable architectural properties such as modularity. Therefore, in our ar-
chitecture the cross-layer framework acts as a mediator between components.
Cross-layer data is not directly accessed from other components but stored in a
state repository.

Other examples of cross-layer interactions are callbacks to higher-level func-
tions, such as the one provided by the application developer. TinyOS already
provides some support with its separation of interfaces from implementing com-
ponents. However, the TinyOS concept for callbacks is not sophisticated enough
for our purposes, since the wiring of components is static. With TinyCubus com-
ponents are selected dynamically and can be exchanged at runtime. Therefore,
both the usage of a component and callbacks cannot be static; they have to
be directed to the new component if the data management framework selects
a different component or the configuration engine installs a replacement for it.
TinyCubus extends the functionality provided by TinyOS to allow for the deref-
erencing and resolution of interfaces and components.

2.3 Tiny Configuration Engine

In some cases parameterization, as provided by the Tiny Cross-Layer Frame-
work, is not enough. Installing new components, or swapping certain functions
is necessary, for example, when new functionality such as a new processing or
aggregation function for the sensed data is required by the application. The
Tiny Configuration Engine addresses this problem by distributing and installing
code in the network. Its goal is to support the configuration of both system and
application components with the assistance of the topology manager.

The topology manager is responsible for the self-configuration of the network
and the assignment of specific roles to each node. A role defines the function of a
node based on properties such as hardware capabilities, network neighborhood,
location etc. A generic specification language and a distributed and efficient role
assignment algorithm is used to assign roles to the nodes.

Since in most cases the network is heterogeneous, the assignment of roles to
nodes is extremely important: only those nodes that actually need a component
have to receive and install it. This information can be used by the configuration
engine, for example, to distribute code efficiently in the network.

3 Application Studies

Three specific sensor network applications play an important role in the research
performed at the University of Stuttgart: Sustainable Bridges [5], Cartalk 2000



[4], and our in-house application called ‘Sense-R-Us’. These applications are be-
ing studied as canonical examples for a wide range of applications that deal with
static and mobile sensor nodes. Their analysis allows us to identify requirements
and characteristics that apply to applications that fall in this category.

The goal of the Sustainable Bridges project is to provide cost-effective moni-
toring of bridges using static sensor nodes in order to detect structural defects as
soon as they appear. A wide range of sensor data is needed to achieve this goal,
e.g., temperature, relative humidity, swing level, vibrations, as well as noise de-
tection and localization mechanisms to determine the position of cracks. Nodes
are stationary and are placed manually at well-known positions. In order to
perform the localization, nodes sample noise emitted by the bridge at a rate of
40 kHz and, by using triangulation methods, the position of the possible defect
is determined. This process requires the clocks of adjacent sensors to be syn-
chronized within 15-25 µs of each other. Finally, sensors are required to have a
lifetime of at least 3 years so that batteries can be replaced during the regular
bridge inspections.

In contrast, the goal of the Cartalk 2000 project is to develop a cooperative
driver assistance system based on mobile ad-hoc inter-vehicle communication.
The vehicle should warn the driver of road obstacles, slowing-down traffic, or
bad road conditions a vehicle ahead has detected. It supports the driver on
highway entry, lane merging, and in right of way scenarios when the situation
can become unclear. Since sensors are integrated into cars, they are mobile with
respect to each other. A wide range of highly dynamic sensor data, e.g., speed,
position, and tire pressure, is gathered continuously. The processing of data must
be performed in a timely manner and immediately sent to other drivers that
might be interested in it. Thus, time-constrained communication is important
for the system since data must be forwarded to the appropriate cars at the right
time. In contrast to the Sustainable Bridges application, energy constraints are
less severe in this application since sensor nodes are directly connected to the
electric system of the car.

The ‘Sensor-R-Us’ application aims at building a Smart Environment in our
department using motes. Base stations are installed in all rooms and serve as
location beacons and gateways to the mobile nodes carried around by the em-
ployees. Using a PC based GUI, the position and status (‘in a meeting’, e.g.) of
persons or sensor information like room temperature can be queried. The query
processing capability of Sensor-R-Us is much higher than of the other two appli-
cations: In addition to simple selection, projection, and aggregation, queries can
be stored in a node, and their execution can be triggered by a sensor or timer
event. Results of a query can also be stored in a node and be used as ‘virtual
sensors’.

3.1 Comparison of the Applications

All applications need some common functionality: routing, query processing,
and data aggregation. Concerning Query Processing and Data Aggregation, they
use simple queries that may be triggered by sensor or timer events and simple



aggregation functions. Sense-R-Us needs the most advanced Query Processing
and Data Aggregation component to provide local storage of query results and
more advanced or user-defined aggregation functions.

Routing is needed in all applications, but differs the most. In Sustainable
Bridges a standard energy-efficient routing takes care of clusters and roles,
CarTalk uses two different geographic routing algorithms, and Sense-R-Us needs
a routing scheme which must come to terms with hybrid network topologies.

Nevertheless we have identified three functional blocks that can be imple-
mented as components and stored in the Cubus.

3.2 Dynamics of Parameters

By analyzing these three applications, we give reasons for the dimensions of the
Cubus.

In the Sustainable Bridges application, small Telos motes with only 48kB
program flash are used. Several complex functions for analyzing the sampled
data are needed which do not fit into the flash at the same time. The good news
is that their usage frequency varies highly. The TinyCubus monitors the usage
(system parameter) and can replace scarcely used components with dummies to
optimize for low program size.

The system environment of CarTalk changes rapidly: a vehicle can wait with
hundreds of other vehicles on a car park or it can run on a lonely highway,
meeting others only every 10 minutes. An adaptive routing and also probably
a clustering algorithm is obviously needed. When driving, energy is not a very
important problem, this changes if the vehicles does not move for some time. In
contrast, in circulating traffic CarTalk has high latency requirements which do
not apply while being on a parking lot. Thus, optimization criteria change.

In Sense-R-Us a mobile node of an employee might send information regularly
to the base station in the employee’s own room. While being in this room, the
information can be sent directly. But if the application detects that the mote is
outside the room of the employee for at least a few minutes, it tightens its security
requirements. The Cubus will adapt to this changed application requirement and
install a component that will sign each message to the base station to proof its
authenticity. On the system parameter side, topology changes will occur which
affects routing and possibly clustering.

4 Conclusion and Future Work

In this paper, we have described the architecture of TinyCubus, a flexible, adap-
tive cross-layer framework for sensor networks. Its specific requirements have
been derived from the increasing complexity of the hardware capabilities of sen-
sor networks, the variety and breadth found in typical applications, and the
heterogeneity of the network itself. Therefore, we have designed our system to
have the Tiny Data Management Framework, that provides adaptation capabil-
ities, the Tiny Cross-Layer Framework, that provides a generic interface and a



repository for the exchange and management of cross-layer information, and the
Tiny Configuration Engine, whose purpose is to manage the upload of code onto
the appropriate sensor nodes. We have underpinned the design of the cubus with
the analysis of three current applications regarding functionality and dynamic
parameters.

The implementation of TinyCubus is still under way and, although the proto-
types for the cross-layer framework and configuration engine are already partially
functional, there is still some work to do.
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