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Abstract— The complexity and heterogeneity of cooperating
object applications in ubiquitous environments or of applications
in the sensor network domain require the use of generic models
and architectures. These architectures should provide supportfor
the following three key issues: flexible installation, management
and reconfiguration of components in the system; optimization
strategies whose implementation usually involves the proper
management of cross-layer information; and proper adaptation
techniques that allow for the self-configuration of nodes and com-
ponents in the system with minimal human intervention. In this
paper, we present one possible instance of such a generic model
and architecture and show its applicability using Sustainable
Bridges, a sensor network application that requires the analysis of
complex sensor data to achieve its goal of effectively monitoring
bridges for the detection of structural defects.

I. I NTRODUCTION

The continuous miniaturization process of computing de-
vices combined with the proliferation of sensor networks, have
led to an increase on the number of devices that are able
to sense their environment, process it and communicate their
results. The cooperation and coordination tasks of applications
running in such environments present the application and
system developer with new challenges that need to be resolved
[1].

In theEmbedded WiSeNTs project [2], twelve European
universities have joined forces to study environments com-
posed of a large number of cooperating objects that interact
with each other to accomplish a common task. These objects
might be composed primarily of sensors, building the tradi-
tional sensor networks found in the literature, be embedded
in their surroundings, in what is usually called pervasive or
ubiquitous environments, or be inmersed in a combination of
both worlds. The difference in mentality of these communities
has lead to the development of two types of approaches:data-
centric andservice-centricsolutions.

In general,data-centric approaches are chosen in environ-
ments where the naming of data and the use of data types
within the network play a more important role than the specific
device that might be responsible for its processing. Therefore,
there is a dissociation of data and network device which can be
used to dynamically select the appropriate location where data
processing is performed. Therefore,data-centric approaches
are best suited for database-like operations like aggregation
and data dissemination.

In the literature, there are two different kinds ofdata-
centric processing techniques. The first one uses the
query/response (or request/reply) paradigm, so that the net-
work of cooperating objects only sends responses to specific
queries issued by the user [3]. The second technique assumes
that queries are “stored” in the network and are provided with
an associated lifetime. During their lifetime, each deviceis
responsible for the processing of the stored query and sends
messages to the issuer of the query (also called sink) whenever
the condition specified in the query is met [4]. Therefore, both
pull-based and push-based approaches can be used in data-
centric environments.

Although the absolute position of devices within the net-
work do not play an important role from the perspective of
the issuer of the query, good topology management techniques
need to be used in order to maximize the lifetime of individual
devices.

In contrast, service-centric approaches are mostly con-
cerned with the definition of the interface orAPI in order
to provide certain functionality for the user. Depending onthe
specific fields there are other additional characteristics that
need to be mentioned. For example, in the field of pervasive
computing, the miniaturization of devices as well as resource-
limitation play an important role, whereas in classic client-
server architectures no such restrictions apply.

In such environments, the transport mechanisms are hidden
from the user applications (such as in traditional networked
environments), but a certain cooperation among the nodes in
the network allows for the processing of data. The difference
to data-centric approaches lies in the kind of programming
techniques needed to interact with the network. In aservice-
centric environment, the application developer is supposed to
have and use a clear specification of services offered by the
network.

The complexity that arises from the interaction of comput-
ing devices in such settings have led the researchers in the
Embedded WiSeNTs project to define cooperating objects
in such a way that the breadth of challenges (and hopefully
some solutions) can be easily inferred. For this purpose, we
propose a generic model and architecture that can be used in
arbitrary environments where cooperating objects interact.

The goal of this paper is, therefore, three-fold: (1) Provide
a more formal definition of cooperating objects; (2) identify
the key characteristics that software developed for cooperating



objects needs to have; (3) provide a generic network model and
object architecture that would allow for the easy development
and deployment of software in sensor network environments.

The remainder of this paper is structured as follows: Section
II provides a definition of cooperating object and derives some
requirements for a generic model and architecture. SectionIII
explains our network model that defines possible interactions
among cooperating objects. The specifics of the object archi-
tecture are left for section IV, whereas section V provides an
example usage of our model using the Sustainable Bridges
application. Finally, section VI gives some insight on related
work and section VII concludes this paper and discusses future
work.

II. D EFINITION OF COOPERATINGOBJECTS

As already specified in some internal documents of the
Embedded WiSeNTs project, a cooperating object is a
collection of:

• sensors,
• controllers (information processors),
• actuatorsor
• cooperating objects

that communicate with each other in order to accomplish a
common task in a more or less autonomic way.

More precisely,sensorsare devices that act as inputs to
the cooperating objects and are able to gather and retrieve
information either from other cooperating objects or from the
environment they are inmersed in.

Controllers are devices that act as data or information
processors and cooperate withsensorsandactuatorsin order
to be able to interact with their environment. Furthermore,
controllers are equipped with a storage device that allows
them to perform their tasks. The amount of “effort” devoted
by a particular controller to either information processing
or storage tasks is determined on an individual basis. This
way, the cooperating object network might be composed of
controllers that provide information processing capabilities,
whereas others might specialize in storing data efficiently.

Actuators are devices that act as output producers and
are able to interact and modify their environment using, for
example, some kind of electromechanical device.

Obviously, if sensors, controllers and actuatorsneed to
interact with each other in a distributed environment, eachof
them needs to be equipped with communication capabilities
which, depending on the type of cooperating object network,
might be based on wired or wireless technology.

Finally, the inclusion of othercooperating objectsas part of
the definition of cooperating object itself indicates that these
objects can combine theirsensors, controllersandactuatorsin
a hierarchical way and are, therefore, able to create arbitrarily
complex structures.

In order to illustrate this definition more precisely, imagine
that a cooperating object is used to collect temperature gradi-
ents of flammable liquid within an industrial plant. When the
gradient achieves certain pre-defined thresholds, safety pipe
valves must be opened to minimize the risks of an explosion.

In this scenario, we have two cooperating objects: one that
continuously measures temperatures and another one that
actuates in the environment by manipulating valves. The first
one is an example of a classical sensor network with embedded
controllers, whereas the second one would be traditionally
described as an “actuators and controllers network”.

For the specific implementation of cooperating objects,
there is nothing in the definition above that forces all three
entities (sensors, controllers and actuators) to be physically
independent devices. In fact, in the case of sensor networks,
where the primary focus is set on gathering data from the
environment and not so much on acting on it,actuatorsare
usually relegated to a second plane and sensors and controllers
are put together in a single device. Therefore, hardware for
sensor networks usually looks like the MICA family of Fig. 1,
where the integration of sensing devices and controllers isdone
on a single board.

Fig. 1. MICA Family from Crossbow Technology Inc.

Cooperating objects need certain system software that takes
care of basic functionality such as communication, event
handling and generation, as well as the scheduling of the
installed components. For the purposes of this paper, we adopt
the definition ofcomponentused in TinyOS [5], the standard
system software found on the MICA-family of Fig. 1 and
extend it to fit our needs. In TinyOS, components are modular
pieces of software that, by means of interface specifications,
can be wired together to implement a complex application.
Components offer and require certain functionality and are
able to generate or handle events. In our generic architecture
(proposed in section III), we assume the presence of adaptation
components which control the installed components in the
system based on cross-layer information such as roles.

A role defines the function of a node based on properties
such as hardware capabilities, network neighborhood, location
etc. The types of cooperating objects defined above (sensors,
controllers and actuators) are some examples of role assign-
ments. Other examples for roles areSOURCE, AGGREGATOR,
and SINK for aggregation applications,CLUSTERHEAD,
GATEWAY, andSLAVE for clustering applications. In previous
work [6] we describe a generic specification language and an
algorithm for efficient role assignment.



Requirements for a Generic Model and Architecture

Using the definition we have just described, it seems clear
that in typical cooperating object applications, the network
itself, that is, the collection of cooperating objects involved in
solving the problem at hand, is heterogeneous. An application
developer will have to deal with sensors, controllers, actuators,
etc. and probably will need to deal with the complexity of hav-
ing hybrid network topologies, where some of the cooperating
objects interact with each other using wireless technology,
whereas others might be connected to an infrastructure.

Moreover, the applications themselves are heterogeneous
[7], [8], so that their requirements change drastically from
one another. In some cases, due to the fact that applications
are installed for extended periods of time, their requirements
might change over time and the system software needs to be
quickly adapted to the new application requirements.

Finally, depending on the environment where the application
is deployed, the system itself might change rapidly. Parameters
like mobility, network density, etc. play a crucial role forthe
selection of the appropriate algorithm to solve efficientlythe
task at hand, but these parameters are, under some environ-
ments, highly dynamic.

To ease the development of sensor network applications, a
generic framework is, therefore, necessary. Such a framework
has to support thedata-centric modelof sensor network
applications and their need forreconfigurationand flexibility.
However, sensor networks are heterogeneous and new appli-
cations and hardware platforms continuously evolve. Thus,a
generic framework has to beextensibleandflexible to manage
new application requirements. It should provide mechanisms
for the parametrization of generic componentsso that they
can meet the requirements of specific applications. If this
is not sufficient, newapplication-specific componentshave
to be installed on the sensor nodes. The code of these new
components has to be distributed efficiently in the network to
avoid wasting energy.

Finally, applications react differently to changes in their
environment, e.g., changes in the mobility of nodes. They
also have different optimization parameters, e.g., energyor
latency. The framework must then be able toadapt to these
conditions and support optimizations, especially becauseof the
resource limitations found in sensor networks. One approach is
to perform cross-layer optimizations by allowing components
to interact closely.

Therefore, in order to provide a generic model and archi-
tecture, we need to provide: a network model, that describesa
collection of cooperating objects and interactions among them,
and an object architecture that describes the internal charac-
teristics of each device that composes each cooperating object
and allows itself toconfigure its components, providecross-
layer optimizationsandadapt to changes in its environment.

III. N ETWORK MODEL

For the description of the network and its components as
defined in section II, our network model is best described as
a tupleM = (G,FN , IN ,FE , IE ,P), where:

• G = (N,E) is a communication graph that represents
the physical connectivity of devices in the network in the
usual way;

• FN is the set of functions that define and map the
properties of each node inG;

• IN is the set of domains for all functionsFi ∈ FN ;
• FE is the set of functions that define and map the

properties of each communication link inG;
• IE is the set of domains for all functionsFj ∈ FE ; and
• P is the set of primitives that represent emergent prop-

erties of the network.
A basic cooperating objectis a graph consisting of only

one physical device (node)ni ∈ N and no communication
links. It is defined as:C = ({ni}, ∅), where ni is of type
sensor, controller, or actuator.

A subgraphC = (N ′, E′) of G with N ′ ⊆ N and E′ =
{(a, b) ∈ E : a, b ∈ N ′} is said to be acooperating object if
C is connected, that is,∀N1, N2 ⊂ N ′ with N1, N2 6= ∅, N1∪
N2 = N ′, N1 ∩ N2 = ∅ : ∃(a, b) ∈ E′ : (a ∈ N1 ∧ b ∈ N2) ∨
(a ∈ N2 ∧ b ∈ N1). Note thatC always contains all existing
communication links ofG for all nodesN ′. Figure 2 shows
an example of a network with several cooperating objects.

CO1 CO3

CO2

bwidth=431

comp={C2,C3,C5,C7}

bwidth=35

comp={C1,C2,C7}
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basic cooperating object

COx cooperating object x

communication link

Fig. 2. Sample Network Model

FN is a set of (possibly multivalued) functions of the form
Fi : N×N → Ii, whereFi ∈ FN , N is the set of nodes ofG,
and Ii ∈ IN is the domain of functionFi. Analogously,FE

is a set of (possibly multivalued) functions of the formFj :
N ×E → Ij , whereFj ∈ FE , E is the set of communication
links of G, andIj ∈ IE is the domain of functionFj . The first
argument of the functions denotes the node the information
is stored on, and the second argument denotes the entity the
information is about.

Finally, let P be a set of primitivesPi ∈ P that define
properties of basic cooperating objects and their links as a
whole. Typical primitives are defined using logic expressions,
as shown in the examples below.

The specific set of functions defined in each case depend
greatly on the application, but there are standard functions both
in FN andFE that need to be defined by all applications:

• Froles : N × N → Iroles is a multivalued function
that assigns one or more roles to each node in the
network. The type of a physical device as defined above,
is then simply a specific role assignment to a node. The
membership to a cooperating object can be expressed as
a role, too.



• Fcomp : N × N → Icomp is a multivalued function
that assigns one or more components to each node. The
set of components defines the functionality of the node
and, therefore, the type of work it can perform. Fig. 2
shows several cooperating objects that store information
about components. For example, the basic cooperating
object furthest to the right has componentsC1, C2 and
C7 installed.

• Fdata : N × N → Idata is a multivalued function
that assigns one or more data items to each node in
the network. This information is maintained and updated
by each algorithm in order to provide a means for
exchanging information among components in a standard
way.

• Fpol : N × N → Ipol is a multivalued function that
assigns one or more policies to each node. These policies
are used for adaptation purposes, as explained in the next
section.

• Fbwidth : N ×E → Ibwidth is a function that assigns the
link capacity to each edge in the network. For example,
in Fig. 2, the basic cooperating object furthest to the right
has a communication link with bandwidth 431 toCO2.

As an example of a primitiveP ∈ P, consider the definition
of Prole conn(r, k, ni) as the set of basic cooperating objects
with a given roler ∈ Irole found in at mostk-hops from basic
cooperating objectni. See [9] for a formal definition.

Primitives can also be used to obtain information about
the composition of a cooperating object. For examples, the
primitive PBCO(co) determines the set of nodes that belong
to a cooperating objectco, andPFC(co, Fi) applies function
Fi ∈ (FN ∪FE) to all nodesn ∈ N that belong to cooperating
objectco.

Applying the definitions described in this model, it is possi-
ble to obtain a “global view” of the network and to know what
is installed in each cooperating object, what kind of objects are
found in the network and how they operate with each other.
Depending on the specific location where data, algorithms
and policies are stored and executed, it is possible to define
different processing techniques using the same formalisms. For
example, the processing of data centralized in single controller,
or distributed among several controllers and/or cooperating
objects can be specified in our model by storing the values
of certain functions in its corresponding location.

IV. OBJECTARCHITECTURE

In order to support the generic requirements described in
section II (flexible reconfiguration, optimization and adapta-
tion capabilities), as well as to fit the model defined in the
previous section, we need support from the internal config-
uration of the different cooperating objects available in the
network. For this purpose, our proposed architecture, which
we callTinyCubus [9], is composed of three parts: the Tiny
Cross-Layer Framework, the Tiny Configuration Engine and
the Tiny Data Management Framework.

A. Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic inter-
face to support the parametrization of components that use
cross-layer interactions. As described in [10], strict layering
is not practical for wireless sensor networks, and thus for
cooperating objects, because certain optimizations mightnot
be applicable. Therefore, the purpose of this framework is to
manage a copy of cross-layer information among cooperating
objects in astate repository.

This state repositoryallows for the clean separation of the
data itself and the components that publish or subscribe to
it. Using the more formal definition of previous sections, the
state repositoryphysically stores some values of functions in
FN∪FE , so that they can be used by other cooperating objects.

Name Type Publishers Subscribers Data
roles Iroles (system) req:C3 n1 → {r1}

n2 → {r1, r2}
comp Icomp (system) (system) n1 → {C1, C2, C7}
pol Ipol (system) (system) n1 →

(S1, (10, 27, 35))
temp float C1,C5 req:C4,C5 n3 → 24.01
bwidth int C2 req:C5 (n1, n3) → 42

opt:C3

TABLE I

SAMPLE STATE REPOSITORY OF NODEn1

Table I shows the contents of a sample state repository
where cross-layer information is kept. The system keeps
information about thenameof the data item, itstype, a list of
publishersof each data item, a list of optional and required
subscribersto it, and the value of the function itself. Required
subscribers are components that cannot properly function if
the data item they are subscribed to is no longer available,
whereas optional subscribers might benefit from a particular
data item, but do not need it.

Finally, the state repositoryalso stores some derived in-
formation, such as topology data, neighboring cooperating
objects, etc. that belong to the set of primitivesP defined
above as part of the network model.

B. Tiny Configuration Engine

In some cases the separation of code and data as provided
by the Tiny Cross-Layer Framework might not be enough for
some applications. Installing new components, or swapping
certain functions is necessary, for example, when new func-
tionality such as a new processing or aggregation function
for sensed data is required by the application. The Tiny
Configuration Engine addresses this problem by distributing
and installing code in the network. Its goal is to support the
configuration of arbitrary components with the assistance of
the topology manager.

The topology manager is responsible for the self-
configuration of the network and the assignment of specific
roles to each node (Froles in our model). It also publishes
topology information using the state repository that describes



the neighborhood of cooperating objects, the status of com-
munication links and the availability of certain components in
other neighboring nodes.

Additionally, the configuration engine needs to provide
enough capabilities for the efficient reconfiguration of a co-
operating object, which involves the implementation of boot-
strapping code and the ability to load and install components
on the fly.

The configuration engine may benefit from cross-layer in-
formation such as the specific roles available in the network
to provide more efficient implementations of code distribution
algorithms and component installation techniques, as shown
in [9].

C. Tiny Data Management Framework

The Tiny Data Management Framework is an Adaptation
Framework that also provides a set of data management
and system components. For each type of standard data
management component such as replication/caching, prefetch-
ing/hoarding, aggregation, as well as each type of system com-
ponent, such as time synchronization and broadcast strategies,
it is expected that several implementations of each component
type exist. The Tiny Data Management Framework is then
responsible for the selection of the appropriate implementation
based on the current information contained in the system.

The cube of Fig. 3, called ’Cubus’, combines optimization
parameters (O1, O2, . . .), such as energy, communication la-
tency and bandwidth; application requirements (A1, A2, . . .),
such as reliability or consistency level; and system parameters
(S1, S2, . . .), such as mobility or node density. For each
component type, algorithms are classified according to these
three dimensions. For example, a tree based routing algo-
rithm is energy-efficient, but cannot be used in highly mobile
scenarios with high reliability requirements. The component
implementing the algorithm is tagged with the combination of
parameters and requirements for which the algorithm is most
efficient.
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The Tiny Data Management Framework selects the best

suited set of components based on current system parameters,
application requirements, and optimization parameters. This
adaptation has to be performed throughout the lifetime of the
system and is a crucial part of the optimization process.

In order to accomplish this optimization process, we need
two different parts: the Adaptation Framework itself, shown
on the left-hand side of Fig. 3, and the set of components it
manages, shown on the right-hand side.

The adaptation framework contains three entities: a set of
parameters, a set of policies and the adaptation components
themselves. The set of parameters is used to provide a classifi-
cation of the available components and, as depicted in Fig. 3,
form a three-dimensional space (cube) where components can
be mapped to. This mapping is performed using experimental
evaluation of each component in combination with the ap-
propriate parameters. This way, we know which components
and/or combination of components perform best for a given
system parameter, optimization parameteror application re-
quirementsparameter.

The second entity found in the adaptation framework, the
available policies, are used to adapt and exchange components.
These policies are rules with certain threshold values that
indicate the operations that need to be performed to trigger
changes in the configuration of objects and, therefore, in the
set of components installed in a cooperating object. Fig. 3
shows two different kinds of policies for parametersS2 and
O1. For S2, there are policiesP1, P2, P3 andP4 that specify
the position of two threshold values. These thresholds define
three areas (“low”, “medium” and “high”) and the different
policies specify the set of operations that need to be performed
with parameterS2 changes from one area to the next. For
example, ifS2 was “low” and is now “medium”, the operations
defined inP1 are executed.

Finally, the third entity found in the adaptation framework
are the system components that implement the policies and
parameter checks needed to accomplish adaptation. For some
of the defined parameters, this implies the necessity of having a
system monitorthat checks certain parameters (some of which
are stored in the state repository) at regular intervals so as to
trigger the right adaptation policy when needed.

The right-hand side of Fig. 3 shows the interfaces that
need to be specified by the components that are available
for adaptation. These components are obviously the most
important part of the adaptation framework since they are the
ones that provide the functionality, algorithms, etc. thatneed
to be adapted. The following pieces of information need to be
provided to the adaptation framework by each component that
wants to be adaptable: a set of code dependencies, a set of
data dependencies, a set of meta-data items and a mapping to
the adaptation Cubus.

The first element, the set of code dependencies is specified
best by a set of interfaces and a dependency graph. As shown
in Fig. 3, this defines a graph of dependent components that
also need to be installed, uninstalled, modified, etc. if the
component is adapted. Of course, the dependencies to other
components in the system can be extracted automatically by
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a compiler and stored as part of the component definition.
Secondly, the set of data dependencies indicates which

pieces of data provided by other components are needed by
the component. For example, Fig. 3 shows that the component
on the right-hand side requires information about the roles
available in the network, temperature values and bandwidth
information. As for the set of code dependencies, data de-
pendencies can be extracted at compile-time by analyzing the
code in the component and at run-time by looking at the
subscription information contained in the state repository of
the Tiny Cross-Layer Framework.

Third, the set of meta-data items describes the internal
properties of the component, such as its code size, the names
and types of symbols contained in the component and a
relocation table that is needed to place the component at
arbitrary locations within a cooperating object. This informa-
tion is needed because if components need to be installed,
uninstalled, etc., the adaptation framework needs to be able to
relocate them dynamically based on the current set of installed
components.

Finally, there is some information that needs to be provided
by the component regarding the mapping to the adaptation
framework. These are data items such as the specifics of
the classification within the three dimensions of the Cubus,
threshold values for policies and changes, and even certain
policies that need to be taken into account by the adaptation
components.

Note that the entities described in the object architecture
and the concepts presented as part of the network model are
tightly coupled. Fig. 4 shows the relationship between the
concepts of section III and the architecture described in this
section. In this picture, we can see our network of cooperating
objects on the left with 6 basic cooperating objects and three
compound ones. The right-most device has certain information
stored in it: the adaptation components with the right set of

parameters and components needed for the proper functioning
of the device, and a series of cross-layer data provided by
some of the available components.

V. SAMPLE APPLICATION: SUSTAINABLE BRIDGES

Let us now use an example to describe how the model
and architecture would look like for a specific application:
Sustainable Bridges.

The goal of the Sustainable Bridges project [11] is to
provide cost-effective monitoring of bridges using staticsensor
nodes in order to detect structural defects as soon as they
appear. A wide range of sensor data is needed to achieve this
goal, e.g., temperature, relative humidity, vibrations character-
istics, as well as noise detection and localization mechanisms
to determine the position of cracks. In order to perform this
localization, nodes sample noise emitted by the bridge at a rate
of 40 kHz and, by using triangulation methods, the position
of the possible defect is determined. This process requiresthe
clocks of adjacent sensors to be synchronized within 60µs

of each other. Finally, sensors are required to have a lifetime
of at least 3 years so that batteries can be replaced during the
regularly scheduled bridge inspections.

Fig. 5 shows the topology of the network and the different
cooperating objects needed to monitor the bridge.CO1 and
CO2 are responsible for the monitoring of the columns of the
bridge and contain several devices that cooperate with each
other to reach consensus about sensor information.CO3 and
CO4 are responsible for the monitoring of the bridge “edges”,
and all other devices ensure the connectivity of the network.

In each of these devices and cooperating objects, and based
on the description of the project given above, we need the
following five major components (more thoroughly described
in [12]): cluster management, event localization, time syn-
chronization, data aggregation and acoustic emission analysis
components.
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The Cluster managementcomponent for sensor data fusion
is needed by each of the cooperating objects of Fig. 5 that
monitor critical parts of the bridge. In this setting, each
basic cooperating object (or device) is responsible for the
sensing of potential structural defects using acoustic emission
analysis and, if a potential problem is detected, each device
communicates with its cluster head to find out whether or not
other devices in the same cooperating object have also reached
the same conclusion. If so, a possible defect event is generated
and propagated through the network.

TheEvent localizationcomponent determines using triangu-
lation mechanisms and acoustic emission data from the bridge,
the position of cracks and defects on the structure. For this
component, usage of clustering information is critical so that
the triangulation mechanisms achieve a degree of accuracy
(within a couple of meters) that would allow a person to know
the location of a possible defect.

The Time synchronizationcomponent allows for the com-
parison of complex time series (acoustic emission waves)
gathered by the acoustic emission sensors. Unless the different
devices and cooperating objects are synchronized with each
other, the same event detected by several sensors indepen-
dently cannot be correctly compared since the acoustic waves
are shifted on the time axis. Furthermore, higher time synchro-
nization is required within cooperating objects, whereas this
requirement is not so crucial for cooperating objects further
apart.

The Data aggregationcomponent is able to summarize
data retrieved by the sensors in the bridge on-the-fly using
the topological information stored in each device about the
network.

The Acoustic emission analysiscomponents work with
different degrees of accuracy and complexity on the acoustic
waves produced by the sensors in order to determine the
presence, magnitude and complexity of potential structural
defects on the bridge.

These components store some cross-layer information in the

state repository of each cooperating object. This data is either
produced or consumed by one or more of the components
we have just described. Besides generic information needed
by all applications such as theroles of each device (for
example cluster heads), thetopology and routing information
that defines the connectivity of the network, andnode vital
information such as the battery level or link reliability, the
Sustainable Bridges application has the following application-
specific data:

Acoustic emission datathat identifies the time, magnitude
and characteristics of potential cracks detected in the structure,
as well as history of past detections.Temporal datasuch as the
current time, accuracy of the last synchronization round and
time to the next wave synchronization.Dependencies among
componentsbased on subscriptions to data. For example,
the topology information needs to be used by the acoustic
emission analysis component to find out the set of neighbors
it needs to contact in order to analyze a possible defect. The
data aggregation component needs information about roles,
the topology of the network and time synchronization data in
order to be able to compare different acoustic waves.

Finally, the adaptation engine contains information such as
thedependenciesamong components, andpolicies (with their
correspondingthreshold values) needed to determine when it
is necessary to perform a certain type of analysis. Based on
this information, the adaptation framework might decide that
certain low-cost low-accuracy analysis can be performed at
the sensor itself, whereas if a certain threshold is reached,
more complex analysis might need to be performed at the
cluster head or at a central computer located outside the
network. Since acoustic emission waves are too complex to
be sent efficiently to the central computer for analysis, it is
more desirable to trigger the installation of the right analysis
component at the location of the bridge that needs it.

VI. RELATED WORK

SensorWare [13] and Impala [14] aim at providing function-
ality to distribute new applications in sensor networks. For this
purpose, they create abstractions between the operating system
and the application, although both differ slightly from each
other. SensorWare does not support adaptation and cross-layer
interactions, as it is the case in our generic architecture and
does not provide models of the network.

In Impala, new code is only transmitted on demand if there
is a new version available on a neighboring node. Furthermore,
if certain parameters change and an adaptation rule is satisfied,
the system can switch to another protocol. However, this
adaptation mechanism only supports simple adaptation rules.
Although it uses cross-layer data, Impala does not have a
generic, structured mechanism to share it and so, is not easily
extensible.

The MobileMan project [15] is a system that aims at
creating a cross-layer architecture similar to ours. However,
MobileMan is not targeted towards sensor networks and as-
sumes environments typical of mobile ad-hoc networks, which
are, in the general case, not so limited in terms of resources. In



addition, MobileMan focuses on data sharing between layers
of the network protocol stack and, therefore, does not include
the configuration and adaptation capabilities found in our
architecture.

EmStar [16] is a software environment for Linux-based
sensor nodes that, like MobileMan, assumes the presence of
higher-end nodes as part of the sensor network. EmStar also
contains some standard components for routing, time syn-
chronization, etc., but it is not able to provide the adaptation
mechanisms available in our architecture.

Finally, regarding the modeling of cooperating object net-
works, it is worth mentioning that there is no available
literature that attempts to combine a network model with a
local architecture that supports it. For example, [17], [18],
[19] only deal with models for the simulation of sensor
networks and obviate the need for models that also incorporate
actuators and more general cooperating objects. Although [20],
[21] try to provide taxonomies and models for more generic
sensor networks, they only consider the modeling of network
characteristics and never consider the actual characteristics
of the nodes themselves or the type and amount of software
(components) installed in each system which, for cooperating
objects in general and sensor networks in particular, playsa
crucial role, since resource-limitation is one of the intrinsic
characteristics of such systems.

VII. C ONCLUSION AND FUTURE WORK

Given the complexity of the definition of cooperating ob-
jects and the heterogeneity of cooperating object applications,
let them be just sensor network applications or more complex
sensor-actor systems, there is a need for a generic model and
architecture that allows us to tackle the complexity of such
systems. In this paper, we have presented such a generic model
and architecture that can be used for cooperating object ap-
plications in service-oriented environments as well as in data-
centric environments, such as sensor networks. Furthermore,
we have shown the integral parts of our proposed model and
architecture by using Sustainable Bridges, a complex sensor
network application.

In terms of future work, there is a need to provide a clear
classification of cooperating object applications in general and
sensor network applications in particular that will allow us to
better show the applicability of our model to a wide variety
of application domains. In addition, the use of actuators will
eventually need the modeling of real-time applications and
control-loops that fall a little short on our current view of
component dependencies and are, therefore, hard to model
using the described architecture.
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