Adaptive System Software Support for
Cooperating Objects

Pedro José Marrén, Matthias Gauger, Andreas Lachenmann, Daniel Minder,
Olga Saukh, and Kurt Rothermel

IPVS, Universitat Stuttgart
Universitatsstr. 38
D-70569 Stuttgart, Germany
{marron, gauger, lachenmann, minder, saukh,
rothermel}@informatik.uni-stuttgart.de

Abstract. Efficient system software support is essential for cooperat-
ing object applications in order to cope with the complexity and het-
erogeneity of typical scenarios in this domain. In this paper, we argue
that adaptation capabilities should be an integral part of such system
software and present the TinyCubus framework as one possible solution
that provides the features required of system software for cooperating
objects.

1 Introduction

Ubiquitous computing and sensor/actuator network applications are mainly char-
acterized by their need to interact heavily with their environment. Cooperation
among the embedded systems used to support these types of applications is the
only way to perform complex tasks with the limited capabilities of each indi-
vidual node. The cooperating objects model is an abstraction that represents
systems that combine sensors, controllers and actuators to perform a variety of
tasks autonomically in a distributed environment. In this paper we present the
cooperating objects model and argue for the need of adaptive system software
support for its implementation in ubiquitous computing-type environments.

The remainder of this paper is structured as follows. In the next section we
explain the concept of cooperating objects in more detail and present our argu-
ments for the need of adaptive system software support. In section 3 we briefly
present TinyCubus, a flexible and adaptive cross-layer framework for TinyOS-
based sensor networks that provides mechanisms supporting the implementation
of cooperating objects. Finally, section 4 concludes this paper.

2 Cooperating Objects

2.1 Definition

Following the definition provided by the Embedded WiSeNTs consortium [1], a
cooperating object is a collection of sensors, controllers (information proces-
sors), actuators and other cooperating objects. The individual components of a

cooperating object communicate with each other in order to perform a common
task in a more or less autonomic way.

Sensors are devices that act as suppliers of input to the cooperating objects
and are able to gather and retrieve information either from other cooperating
objects or from the environment they are immersed in.

Controllers act as data or information processors and cooperate with sen-
sors and actuators for interacting with their environment. Controllers are also
equipped with a storage device that allows them to use previously collected
data for performing their tasks. The amount of “effort” a particular controller
devotes to either information processing or storage tasks is determined individu-
ally. This way, the cooperating object network might be composed of controllers
that provide information processing capabilities, whereas others might specialize
in storing data efficiently.

Actuators are devices that produce output and are able to actively interact
with and modify their environment using, for example, some kind of electro-
mechanical device.

Being able to include other cooperating objects as part of the definition of
a cooperating object allows the system to combine sensors, controllers and ac-
tuators hierarchically in arbitrarily complex structures. At the same time, the
definition does not force the three entities to be realized as physically indepen-
dent devices. In fact, in the case of classical sensor networks, actuators are often
relegated to a second layer whereas sensors and controllers are put together in
a single device.

Obviously, if sensors, controllers and actuators need to interact with each
other in a distributed environment, each device needs to be equipped with com-
munication capabilities. Depending on the type of cooperating object network,
the communication might be based on wired or wireless technology.

To illustrate the definition of cooperating objects, imagine a cooperating ob-
ject being used for collecting temperature gradients of flammable liquid within
an industrial plant. When the gradient achieves certain pre-defined thresholds,
safety pipe valves must be opened to minimize the risks of an explosion. In this
scenario, we have two cooperating objects: one that continuously measures tem-
peratures and another one that actuates in the environment by manipulating
valves. The first one is an example of a classical sensor network with embed-
ded controllers, whereas the second one would be traditionally described as an
“actuators and controllers network”.

2.2 The Need for Adaptive System Software

Cooperating objects need the support of system software that takes care of basic
functionality such as communication, event handling and event generation, as
well as the scheduling of the installed components. This simplifies the work of
the application developer and, depending on the specific solution, this basic
functionality can be provided either directly by the operating system or with
the help of a middleware solution.

While this kind of support is already provided by many established system
software implementations, we argue below that another critical factor, namely
the ability to adapt the application and system software to varying environmen-
tal conditions and changing user preferences, is not well addressed by prevalent
middleware and operating system solutions for cooperating objects.

Important properties of the environment of cooperating objects might change
over time. In some cases, this necessitates adapting the software of the sensors,
controllers or actuators to accommodate for these changes. One can imagine
scenarios where it is difficult or impossible to include code appropriate for all
possible environmental conditions. It might not even be desirable to do so as the
program memory of embedded systems is typically extremely constrained.

Analogous to potential changes in the environment of the cooperating ob-
jects, the user preferences might also change over time. One example is a user
deciding to analyze a certain subset of the sensor data in more detail. Again, it
is difficult to accomodate for all such changes in advance.

In many cases, it is not possible to have an a priori description of the de-
tailed topology of wireless sensor and actuator networks, since it is often desir-
able to deploy the nodes of the network in an ad-hoc manner. Moreover, existing
topologies can change at any time due to the mobility of nodes, changing com-
munication links or failing nodes. This makes it extremely difficult to program
the cooperating objects with software suitable for all possible situations. This is
aggravated by the heterogeneity expected for typical cooperating objects appli-
cations where not only the communication topology but also the availability of
individual types of objects changes with time.

To cope with changing environmental conditions, changing user preferences
and changing network topologies and to ease the development of applications for
cooperating objects, support by adaptive system software is necessary. It should
support the reconfiguration of applications, also providing mechanisms for the
parametrization of generic components in order to adapt them to specific appli-
cation requirements. If this does not suffice, an efficient mechanism to install new
application-specific components must be available on the cooperating objects so
that an explicit initiation of reconfigurations does not need to be triggered ex-
ternally. Instead, the system software should provide mechanisms for automatic
adaptation, for example, based on a predefined set of rules.

Cooperating objects operate in a heterogeneous environment and new appli-
cations and hardware platforms continuously evolve. For this reason, the system
software has to be extensible and flexible to cope with new platform and appli-
cation requirements.

Finally, applications react differently to changes in their environment, e.g.,
changes in the mobility of nodes. They also differ concerning their optimization
parameters, for example whether they favor low latency or low energy consump-
tion. The system software must be able to adapt the system operation to these
requirements and support the optimization requests of the applications, espe-
cially because of the resource limitations found in many cooperating objects.

One possible approach is to perform cross-layer optimizations thereby allowing
components to interact closely.

3 TinyCubus

TinyCubus, a flexible and adaptive cross-layer framework for TinyOS-based sen-
sor networks, aims to support the main building blocks of an adaptive system
software for cooperating objects as elaborated in the previous section. Specifi-
cally, these are flexible reconfiguration, optimization and adaptation capabilities.

TinyCubus consists of a data management framework, a cross-layer frame-
work, and a configuration engine. The data management framework allows the
dynamic selection and adaptation of system and data management components.
The cross-layer framework supports data sharing and other forms of interaction
between components in order to achieve cross-layer optimizations. The configu-
ration engine allows code to be distributed reliably and efficiently by taking into
account the topology of sensors and their assigned functionality.

The overall architecture of TinyCubus mirrors the requirements imposed by
the applications and the underlying hardware. As shown in figure 1, TinyCu-
bus is implemented on top of TinyOS [2] using the nesC programming language
[3], which allows for the definition of components that contain functionality
and algorithms. We use TinyOS primarily as a hardware abstraction layer. For
TinyOS, TinyCubus is the only application running in the system. All other
applications register their requirements and components with TinyCubus and
are executed by the framework.

[]{a] [x]

Q&“‘b)
& oy/m/m/5 8
MDY 26

- Application Components
l:l TinyCubus

HEH System Components
ol la l Data Mgmt. Components
i BB User Defined Components

Sys. Param.
Tiny Data Mgmt. Framework

Tiny Cross Layer Framework
Tiny Configuration Engine

=
> &

Z Salfallalfa

@ < ::]

§ A1 | Byl g Bp [operating System/Hardware
@ S1 S2 Ss3

2

8

n

Topology Manager

TinyOS
Hardware Abstraction Layer

Sl

Fig. 1. Architectural components in TinyCubus

Figure 2 illustrates the architecture of a cooperating objects model using Ti-
nyCubus. The left part shows a network of cooperating objects whereas the right
part of the figure illustrates the operation of TinyCubus on one example node.
The individual parts shown in the right part are explained in the description of
the architecture in the following paragraphs.

N TinyCubus
R TV VA A
Soym/m8 0
. eta
. Data
o As B g [} Data Dependencies
3}
14 B
%' A2 E‘ IEE E‘ B
N Code
< np|® - Bependenci
Al .. E‘ B . ependencies
S1 S2 Ss
Sys. Param.
Name |Type |Publishers|Subscribers Data
roles | loes (system) |req:C3 ni={r1}
comp | leom (system) |(system) n1={C1,C2,C7}
pol (™ (system) |(system) n1=(S1,(10,27,35);
temp |float [C1,C5 req:C4,C5 n3=24.01
bwidth |int c2 req:C5,0pt:C3 (n1,n3)=42

Fig. 2. Architecture of the Cooperating Objects Model

3.1 Tiny Data Management Framework

The Tiny Data Management Framework provides a set of data management and
system components, selected on the basis of the typically data-driven nature of
sensor network applications. For each type of standard data management com-
ponent such as replication/caching, prefetching/hoarding, aggregation, as well
as each type of system component, such as time synchronization and broadcast
strategies, it is expected that several implementations of each component type
exist. The Tiny Data Management Framework is then responsible for the selec-
tion of the appropriate implementation based on the information obtained from
the system.

The cube shown in figures 1 and 2, called ’Cubus’, combines optimization
parameters, such as energy, communication latency, and bandwidth; application
requirements, such as reliability; and system parameters, such as mobility. For
each component type, algorithms are classified according to these three dimen-
sions. For example, a tree based routing algorithm is energy-efficient, but cannot
be used in highly mobile scenarios with high reliability requirements. The compo-
nent implementing the algorithm is tagged with the combination of parameters
and requirements for which the algorithm is most efficient. Eventually, for each
combination a component will be available for each type of data management
and system components.

The Tiny Data Management Framework selects the best suited set of com-
ponents based on current system parameters, application requirements, and op-
timization parameters. This adaptation has to be performed throughout the
lifetime of the system and is a crucial part of the optimization process.

3.2 Tiny Cross-Layer Framework

The Tiny Cross-Layer Framework provides a generic interface to support para-
meterization of components using cross-layer interactions. Strict layering (i.e.,

each layer only interacts with its immediately neighboring layers) is not practical
for wireless sensor networks [4] because it might not be possible to apply certain
desirable optimizations. For example, if some of the application components as
well as the link layer component need information about the network neighbor-
hood, this information can be gathered by one of the components in the system
and provided to all others.

If layers or components interact with each other, there is the danger of loos-
ing desirable architectural properties such as modularity. Therefore, in our ar-
chitecture the cross-layer framework acts as a mediator between components.
Cross-layer data is not directly accessed from other components but stored in
a state repository. The lower right part of figure 2 shows an example of such a
state repository with data identified by its name and stored together with its
type, a list of providers and a list of subscribers.

Other examples of cross-layer interactions are callbacks to higher-level func-
tions, such as the one provided by the application developer. TinyOS already
provides some support with its separation of interfaces from implementing com-
ponents. However, the TinyOS concept for callbacks is not sophisticated enough
for our purposes, since the wiring of components is static. With TinyCubus,
components are selected dynamically and can be exchanged at runtime. There-
fore, both the usage of a component and callbacks cannot be static; they have
to be directed to the new component if the data management framework se-
lects a different component or the configuration engine installs a replacement
for it. TinyCubus extends the functionality provided by TinyOS to allow for the
dereferencing and resolution of interfaces and components.

3.3 Tiny Configuration Engine

In some cases, parameterization, as provided by the Tiny Cross-Layer Frame-
work, is not enough. Installing new components, or swapping certain functions
is necessary, for example, when new functionality such as a new processing or
aggregation function for the sensed data is required by the application. The
Tiny Configuration Engine addresses this problem by distributing and installing
code in the network. Its goal is to support the configuration of both system and
application components with the assistance of the topology manager.

The topology manager is responsible for the self-configuration of the network
and the assignment of specific roles to each node. A role defines the function of a
node based on properties such as hardware capabilities, network neighborhood,
location etc. A generic specification language and a distributed and efficient role
assignment algorithm is used to assign roles to the nodes.

Since in most cases the network is heterogeneous, the assignment of roles to
nodes is extremely important: only those nodes that actually need a component
have to receive and install it. This information can be used by the configuration
engine, for example, to distribute code efficiently in the network.

4 Conclusion

Given the complexity and heterogeneity of cooperating object applications, let
them be just sensor network applications or more complex sensor-actor sys-
tems, there is a clear need for support by the underlying middleware or system
software. In this paper, we have argued that the ability to adapt to changing
environmental conditions, user preferences and network topologies should be an
integral part of such system software. Furthermore, we have described the Ti-
nyCubus framework, one possible architectural and algorithmic solution to the
requirements imposed by cooperating objects environments.

Regarding future work, there is a need to provide a clear classification of
cooperating object applications in general and sensor network applications in
particular that will allow us to better show the applicability of our model to
a wide variety of application domains. In addition, the use of actuators will
eventually need the modeling of real-time applications and control-loops that fall
a little short on our current view of component dependencies and are, therefore,
hard to model using the described architecture.

References

1. Embedded WiSeNts: Embedded WiSeNts - Project FP6-004400 (http://www.
embedded-wisents.org/)

2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture
directions for networked sensors. In: Proc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems. (2000) 93-104

3. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. of the
ACM SIGPLAN 2003 Conf. on Programming Language Design and Implementation.
(2003) 1-11

4. Goldsmith, A.J., Wicker, S.B.: Design challenges for energy-constrained ad hoc
wireless networks. IEEE Wireless Communications 9 (2002) 8-27

