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ABSTRACT
Wireless sensor networks based on highly resource-constrained de-
vices require symmetric cryptography in order to make them se-
cure. Integral to this is the exchange of unique symmetric keys
between two devices. In this paper, we propose a novel decentral-
ized key exchange protocol that guarantees the confidentiality of
a key exchange even if an attacker has compromised some of the
devices in the network. A central objective of the protocol design
was to minimize resource consumption on the individual devices.
We evaluate the resource requirements of our protocol in terms of
memory requirements, CPU usage and network traffic both through
theoretical analysis and through simulations.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection,
Cryptographic controls

General Terms
Algorithms, Security

Keywords
Wireless Sensor Network Security, Key Establishment

1. INTRODUCTION
With the ongoing miniaturization of sensors and actuators daily

life devices already have computational power and wireless com-
munication capabilities. One scenario for such wireless sensor or
actuator networks is home automation. Here a private home is
equipped with a multitude of sensors and actuators to enhance the
lifestyle of individuals. For instance, the heating is turned on au-
tomatically when the owner of the house comes home, the light is
switched on in rooms where motion is detected, etc. Security is a
crucial factor for such systems as they introduce many new ways
to invade an individual’s personal life. For example, a thief could
gather information about when somebody is at home before break-
ing into the house.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’05, November 2–4, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-054-X/05/0011 ...$5.00.

Encryption is an elementary technique for securing communica-
tions. Encryption schemes, however, require keys to be exchanged
before secret communications can take place. In this paper, we
provide a secure key exchange scheme especially geared towards
resource-constrained environments.

Our approach is suitable for resource-constrained devices like
sensors. Devices can exchange keys without referring to a central
authority, thus avoiding a single point of trust. Unique keys are
exchanged between device-pairs providing authenticity. Even if a
device is subverted by an attacker, the key exchange for the remain-
der of the network remains functional.

In [1], we presented a key distribution scheme that guarantees the
secrecy of a key exchange as long as there are less than s subverted
devices, where s can be chosen according to the actual security re-
quirements. Our solution is based on using s node disjoint paths in
an s-connected graph to distribute key shares. The nodes then use
these to generate the session key. As we show below, finding node
disjoint paths with only limited resources on each device is a non-
trivial task. Thus we present here a new approach for establishing
keys without having to explicitly find these paths.

The remainder of this paper is organized as follows: We start
out in Sec. 2 giving our system model and requirements. In Sec. 3
we introduce the basic principle of decentralized key establishment
on very resource-constrained devices. In Sec. 4, our approach is
discussed in detail. We evaluate our key establishment protocol in
Sec. 5. We conclude this paper with a discussion of related work
(Sec. 6) and a summary with ideas for future work (Sec. 7).

2. SYSTEM MODEL & REQUIREMENTS
For the purpose of this paper we assume that a network consists

of a set of independent devices, each with its own processor and
memory, that communicate over a wireless channel. The channel
itself is insecure, i.e. anyone can listen and send to the channel.
We assume a non-partitioned network so that communication be-
tween any two devices is always possible (direct or indirect via ad-
hoc routing), and a transport layer mechanism that recovers from
packet losses. The number of devices is not predetermined or con-
strained in any way, and may change due to the introduction of new
devices to the network or device deactivation. The devices of such
a network have to be inexpensive, and therefore they will only have
limited resources.

For the purposes of this work, we assume only eavesdropping
adversaries. An adversary may eavesdrop on the communication
channel or have control of a subset of the devices in the network
and learn any data that is transmitted through them. For the sake
of simplicity we do not consider device failures or devices that ex-
hibit byzantine behavior. However, a device may use a deactivation
protocol to leave the network in a controlled fashion. Possible ex-



tensions to cope with other types of attackers and device failures
are mentioned in Sec. 7.

Consideration of these properties leads to the following require-
ments:

• The key distribution scheme must be decentralized – it must
remain functional even if some devices are subverted.

• Symmetric cryptography is used in order to deal with re-
source limited devices which do not have the computational
power to perform asymmetric cryptographic algorithms [2].

3. MULTIPATH KEY ESTABLISHMENT
In the following discussion, we use the notion of a key graph: A

key graph is an undirected graph G = (V, E), where V is the set
of devices in the network, and E represents the set of shared keys
between devices where (v1, v2) ∈ E if and only if the nodes v1

and v2 share a symmetric key. We use the term device to indicate
the physical device and the term node to indicate the representation
of that device in the key graph.

The fundamental approach for establishing a shared key between
two devices in a decentralized way works as follows [3, 4, 5, 1]:
If the key graph contains s node-disjoint paths between the corre-
sponding source and target device (initiator and recipient of the ex-
change), the source device randomly generates s key shares k1 . . . ks

of identical length and sends them over the s device-disjoint paths
to the target device (Fig. 3). On each link of a path, the key share
is encrypted and integrity-protected with the existing shared key
for this link. The newly exchanged key k is calculated as k =
k1 ⊕ k2 ⊕ . . . ⊕ ks, where ⊕ is the bitwise XOR operation. We
assume that once the key between a pair of devices is established,
it cannot be compromised without subverting one of the devices.

A B

C D

E

1AEk

2AEk

2AEk

2AEk

1AEk

Figure 1: Key establishment (s = 2)

It is obvious that once the source or target device is subverted a
secure key establishment cannot be guaranteed any more, since all
newly established keys will be known to the attacker as well. This
is a general fact and not limited to our key establishment protocol.
Thus for the purpose of this paper we do not consider compromised
source or target devices.

Without access to all key shares, an attacker cannot recover the
correct key. Consequently, if it can be assured that the key shares
are communicated over s node-disjoint paths of the key graph, the
attacker will need to subvert at least s nodes (one on each path) to
compromise the newly established key.

A problem shared by the above approaches is that actually find-
ing node-disjoint paths is not trivial, especially on memory con-
strained devices: An adaptation of basic algorithms [6] would re-
quire each node to have complete knowledge of the key graph. The
alternative is a reactive protocol, i. e. to run a path discovery pro-
tocol every time a key exchange takes place, e. g. by adapting the
approaches of [7] and [8], which use distance vector routing algo-
rithms to collect path information as needed. In this protocol, the

source device floods the network with ROUTE REQUEST packets
and receives multiple ROUTE REPLY packets indicating all avail-
able paths (source routing). Large networks will lead to long paths
between nodes and require larger packet sizes to store the path.

The overall memory needed by all of the above algorithms ex-
ceeds Ω(n). For resource-limited devices, efficient distributed al-
gorithms are necessary. In that area, Srinivas et al. [9] proposed
an algorithm (based on fundamental work by [10]) that has a time
complexity of O(kn2). However, this algorithm benefits from the
Wireless Multicast Advantage, which is not applicable in our sce-
nario since we need hop-by-hop encryption to guarantee security.

Fortunately, a closer look reveals that finding s node-disjoint
paths in a graph is not actually necessary; it suffices to make each
step of the key establishment protocol resilient to the compromise
of s − 1 nodes. Based on this observation, we modify the funda-
mental approach by developing it into a reactive algorithm that es-
tablishes additional edges in the key graph with the intent of short-
ening the s node-disjoint paths to a length of 2. Our algorithm has
advantageous properties in terms of memory usage and network
message size. It has a time complexity of O(kn) and can be para-
meterized to use only constant memory on each device.

4. RKEP: THE RECURSIVE KEY
ESTABLISHMENT PROTOCOL

In this section, we present a novel approach for establishing pair-
wise shared keys, that does not require a node to discover s node-
disjoint paths to the target node. This approach is based on two
observations: Firstly, in our application scenario, the key graph can
be modified by temporarily introducing new key edges to it. Sec-
ondly, if two nodes in the key graph share s common neighbors,
discovering the s node-disjoint paths is trivial, because the source
node (i. e. the node initiating the key establishment) only needs to
ask its direct neighbors.

The Recursive Key Establishment Protocol, RKEP, consists of
two components: The graph construction algorithm and the key
establishment protocol. The graph construction algorithm is re-
sponsible for building the initial key graph and for establishing an
initial set of key edges whenever a new node is added to the graph.
The key establishment protocol works on graphs built using this al-
gorithm and establishes a key edge between any pair of nodes on
demand.

We start out by giving an overview of the key establishment pro-
tocol in the next subsection. After that, data structures and proto-
cols are discussed in detail in Sections 4.2 and 4.3. We analyze the
key establishment protocol with regard to its requirements on the
key graph in Sec. 4.4. Based on that analysis, the graph construc-
tion algorithm is then derived in Sec. 4.5. In Sec. 4.6 we provide
the proof that our presented solution always guarantees a successful
key establishment and in Sec. 4.7 we show how this new structure
of the network can be achieved in practice. Finally, we present
some thoughts about an extended attacker model in Sec. 4.8.

4.1 Overview
The fundamental concept behind RKEP is to augment the key

graph by temporarily inserting additional key edges. More pre-
cisely, our goal is to add edges such that there are s paths between
source and target node that have exactly one intermediary node, i.
e. there exist s 2-hop paths between source and target. After that,
the key establishment is straightforward.

The s 2-hop paths are established by forwarding the key estab-
lishment query recursively through the network, as follows: The
source device sends a Key-Establishment-Query to all neighboring



devices. The devices receiving this query now check if they have a
shared key with the target device. If this is the case, the device will
respond with an Established-message which is sent to the querying
device. If the device does not have a shared key with the target
device, it will recursively forward the query to its neighbors. After
receiving at least s Established-messages, a device can establish a
new key to the target device using the devices which sent the Es-
tablished-message as the intermediary devices.

Whenever a new key is established by this method, the device
that established the new key (possibly as a recursive query) sends
an Established-message to all devices it has outstanding Key-Estab-
lishment-Query-messages from. This way, requesting devices are
notified of the new key and the Established-messages propagate
back to the source.

In addition to the Established-message, the device that estab-
lished the key sends a Cancel-message to all neighbor devices from
which it got an Established-message. This Cancel-message in-
forms the nodes that they can remove the established key with the
target device, since it was used to establish a new key and is not
needed anymore. This ”clean-up” is important, since otherwise all
nodes of the network would almost simultaneously establish keys
to the target device – which is not in line with the highly constrained
memory on the devices.

The query is finished when the source gets at least s Established-
messages (and thus can establish a key to the target). Like all other
requesting devices, the source device then sends the corresponding
Cancel-messages.

The Cancel-messages ensure that all temporary keys are removed
right after they have been used and the data structures correspond-
ing to this query are removed from the devices.

Fig. 2 shows an example for the key establishment algorithm
for s = 2: Device E (the source device) needs to establish a key
to device A (target). E sends an Key-Establishment-Query to its
neighbors B and D (Fig. 2(a)). Device B has a key to the target
device A, and responds with an Established-message. D, however,
does not have a key to A yet, and forwards the query to B and C
(Fig. 2(b)). Both, B and C have a key to the target device A, and
will respond with an Established-message sent to D (Fig. 2(c)).

D has now received s = 2 Established-messages and can itself
establish a new key to device A by using B and C as the s distinct
intermediary devices.

After establishing this new key, device D sends an Established-
message to E and a Cancel-message to B and C. B and C will
ignore this message since they did not actually establish a new key
to the target (Fig. 2(d)).

When E receives the Established-message from D, it has also
received s = 2 Established-messages and establishes a new key
to device A with D and B as intermediary devices. After source
device E established a key to the target device A, it sends Cancel-
messages to B and D. As before, B will ignore this message.
D, however, now removes the key to A since it was needed only
temporarily in order to help device E establish a new key.

4.2 Data Structures
In the desctiption of the protocol and its associated procedures,

the following data structures are used:

this: The device ID of the device running the procedure.

MyDeviceList: List of all devices this device shares a key with.

QueryID: The triple {SourceID, TargetID, Counter}. Counter is
used for unique identification of the current query and set by
the source.

QuerySet: A set containing all queries which the device has seen
so far and which are still active. All queries stored in Query-
Set can be referenced through their QueryID. For each query
the following information is stored:

Key: The QueryID of this query.

EstablishedSet: The set of devices which answered that they
share a key with the target (TargetID).

RequestingSet: The set of all devices from which the query
with QueryID was received. An Established-message
modifies this set: When an Established-message is re-
ceived from a device which is part of the RequestingSet,
it is removed from the RequestingSet and added to the
EstablishedSet.

4.3 Procedures
RKEP comprises of three procedures: The called procedure when

a new Key-Establishment-Query is received (onKeyEstablishment-
Query), the called procedure when an Established-message is re-
ceived in response to such a message (onEstablishment) and the
called procedure when a Cancel-message is received (onCancel-
Query). The following sections describe these procedures in detail.

4.3.1 Receiving a Key-Establishment-Query-message
The procedure onKeyEstablishmentQuery is called whenever a

device receives a Key-Establishment-Query-message from a neigh-
boring device. Note that a neighboring device is a device with
which this device shares a key (there is an edge in the graph be-
tween the corresponding nodes).

The pseudocode for this procedure is shown in Proc. 1. When
the procedure is called it first checks if it already shares a key with
the target device by looking it up in MyDeviceList (line 2). If a
key is found and this query was not initiated locally (line 3), an
Established-message is sent back to the requesting device (line 7).

If no key is found, the device checks if it encountered this query
before (line 10). If this is the case, Sender is added to the Request-
ingSet for this specific QueryID. This makes it possible to notify all
requesting neighbors if and when a key from this node to the target
was established successfully.

If the device has not encountered this query yet, it adds a new
entry to the local query database (QuerySet). When adding the
new query, the corresponding EstablishedSet is initialized with the
empty set and the RequestingSet with the Sender from which this
query was just received. Since this device does not share a key to
the target yet, it forwards this query to all of its neighbors (lines
16-18).

When a device needs to establish a new key to another device, it
initiates a new query by calling the procedure onKeyEstablishment-
Query on locally giving its own ID as the Sender.

4.3.2 Receiving an Established-message
A device that shares a key with the target device of a query re-

sponds to a Key-Establishment-Query with an Established-message.
A device that receives such a message can therefore deduce that its
Sender shares a key with the target of that query.

The pseudocode for the corresponding procedure onEstablish-
ment is shown in Proc. 2. The device first checks if the Estab-
lished-message it received belongs to an active query (line 2) – if
not, the message is ignored.

The sender of the message is added to the EstablishedSet for this
query and removed from the RequestingSet if necessary (lines 3-4).

Since the EstablishedSet holds all device IDs which share a key
with the target, when there are at least s entries in it, a device can
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Figure 2: Simple RKEP Example: Device E needs to establish new key to device A. Bold lines are newly established keys.

establish a new shared key with the target, using the devices in
the EstablishedSet as intermediary devices (line 5). However, es-
tablishing a new key to the target device is only necessary if the
RequestingSet is non-empty or the device is the source device of
the query (line 6).

If the new key establishment is successful, the device has to an-
nounce this to all devices who requested the key establishment,
namely the devices stored in the RequestingSet.

Finally, a Cancel message is sent to any device in the Estab-
lishedSet. This is needed for the ”clean-up” described in the next
subsection.

4.3.3 Receiving a Cancel-message
The Cancel-message is used to remove all temporary keys and

local data for a certain query throughout the network. Receiving a
Cancel-message for a query from a certain device implies that this
device has no longer an interest in the establishment of a key to the
target of this query.

The pseudocode for the corresponding procedure is given in Proc.
3: When receiving a Cancel message, the Sender of the message
is removed from the RequestingSet (line 5). In case the Request-
ingSet has become empty through this action, all data about the
corresponding query is removed from the local database (line 8).
Additionally, a key which has been established in the context of
this query is removed (line 7).

4.4 RKEP Deadlock
The algorithm presented in the last subsection works on many

s-connected graphs, but not all. However, we have devised a con-
struction algorithm for key graphs that can guarantee successful
key establishment using RKEP.

To see the situation that might occur, consider the following case
(Fig. 3), which results in a deadlock when running RKEP: Device
A needs to establish a new key to device J . It therefore sends a
Key-Establishment-Query to E, C and B (Fig. 3(a)). None of the
devices so far have a key with the target J , so they all forward the
Key-Establishment-Query to their respective neighbors (Fig. 3(b)).

The first device which has a key with the target device and is
reached by the query is I . I will respond to E with an Established-
message. In accordance with Proc. 2, E adds I to its EstablishedSet
(Fig. 3(c)). Analogously, device F adds H to the EstablishedSet.
The EstablishedSets of device E and F now contain exactly one
element, and both devices wait for more Established-messages.

Device G gets two Established-messages (from I and H), and
can therefore establish a new key to J (Fig. 3(d)). G now sends
two key shares via I and H to J , thus establishing a new key with
J (Fig. 3(e)).

G announces the newly established key by sending an Estab-
lished-message to C and D (Fig. 3(f)), which will add G to their
EstablishedSet. At this point, the algorithm has reached a dead-
lock: Devices E, C, D and F have exactly one entry in their Es-
tablishedSets, and are waiting for additional Established-messages.
However, no device can establish a new key to the target and no fur-
ther Established-messages will be sent.

A deadlock occurs in the following situation: There is no device
in the graph that does not share a key with the target device and
that has at least s neighbors that already share a key with the target
device. In other words, RKEP will never deadlock if the following
statement is true for the key graph: If the algorithm has not yet
terminated, there is always a set of s devices that share a key with
the target device and for this set, a device exists that shares a key
with all devices in the set, but not the target device. If this property
can be assured for any pair of source and destination device, RKEP
will always be able to establish a shared key between them.

In the next section, we describe a graph construction algorithm
that ensures the above property. Furthermore, we prove in Sec. 4.6
that the adapted graph structure guarantees successful key estab-
lishment using RKEP.

4.5 Key Graph Construction Algorithm
In this section, we provide an algorithm to construct RKEP-

compatible key graphs. The algorithm consists of two methods,
one for adding a new node to a (possibly empty) key graph (Sec.



1: onKeyEstablishmentQuery(Sender, QueryID)
2: if QueryID.TargetID ∈ MyDeviceList then
3: if Sender == this then
4: key already established (no need to engage the protocol);
5: exit;
6: else
7: sendto(Sender, Established(this, QueryID));
8: end if
9: else

10: if QueryID ∈ QuerySet then
11: // we encountered this search already, so we just remember who asked
12: QuerySet[QueryID].RequestingSet := QuerySet[QueryID].RequestingSet ∪ {Sender};
13: else
14: // this is a new search, we have to store it in our database: (Key, RequestingSet, EstablishedSet)
15: QuerySet := QuerySet ∪ {(QueryID, {Sender}, ∅)};
16: for all Device ∈ MyDeviceList do
17: sendto(Device, KeyEstablishmentQuery(this, QueryID));
18: end for
19: end if
20: end if

Procedure 1: onKeyEstablishmentQuery: Reaction on receiving a KeyEstablishmentQuery-message

1: onEstablishment(Sender, QueryID)
2: if QueryID ∈ QuerySet then
3: QuerySet[QueryID].EstablishedSet := QuerySet[QueryID].EstablishedSet ∪ {Sender};
4: QuerySet[QueryID].RequestingSet := QuerySet[QueryID].RequestingSet − {Sender};
5: if |QuerySet[QueryID].EstablishedSet| ≥ s then
6: if (|QuerySet[QueryID].RequestingSet| > 0) or (QueryID.SourceID = this) then
7: doKeyExchange(QueryID.TargetID); // using the nodes from QuerySet[QueryID].EstablishedSet
8: end if
9: if key establishment successful then

10: for all Device ∈ (QuerySet[QueryID].RequestingSet - {this}) do
11: sendto(Device,Established(this, QueryID))
12: end for
13: for all Device ∈ (QuerySet[QueryID].EstablishedSet - {this}) do
14: sendto(Device,CancelQuery(this, QueryID))
15: end for
16: end if
17: end if
18: end if

Procedure 2: onEstablishment: Reaction on receiving a Establishment-message

4.5.1) and one for removing a node from a key graph while pre-
serving the necessary properties of the graph (Sec. 4.5.2).

4.5.1 Adding a Device to the Network
In [1], we showed how to obtain a s-connected graph by con-

struction: Beginning with a fully connected graph for the first s
nodes, each further node is connected to s randomly selected nodes
of the existing graph. Due to [11], this method always yields graphs
in which there always exist s node disjoint paths between any pair
of nodes.

This graph construction method needs to be modified for RKEP,
as follows: Again beginning with a fully connected graph for the
first s nodes, each further node is connected to a clique of s nodes1.
Connecting the new node with all s nodes of a clique results in a
(s+1)-clique. Thus, a graph with n nodes is assembled of (n− s)
cliques each of (s + 1) nodes.

We will denote such an s-clique as s-connector reflecting the fact
that a new node can connect to this set of nodes. When introducing

1A k-clique is a subgraph of k nodes which are fully connected

a new node to a graph with n > s an s-clique, i.e. an s-connector
can always be found for the following reasons:

• The first s nodes will be fully connected, thus forming a
clique – the first s-connector.

• By having an edge to every node of an s-connector, each
newly introduced node itself introduces s new s-connectors.

Fig 4 shows the resulting graph structures for s = 2, s = 3 and
an abstracted view for an arbitrary s.

As can be seen in Fig. 4(a), for s = 2 the resulting graph is a
planar graph composed only of triangles. The triangles are (s+1)-
cliques, while each side of any triangle represents an 2-connector
(a 2-clique). For s = 3, it is easiest to imagine a three-dimensional
structure (Fig. 4(b)). The (s + 1)-cliques, i.e. the 4-cliques can
be represented by tetrahedrons in 3D, while the 3-connectors are
the 4 triangles of each tetrahedron. Generalizing this concept to an
arbitrary s, we always get a graph composed of (s+1)-cliques, and
each of these cliques has s s-connectors (s-cliques) (Fig. 4(c)). If



1: onCancelQuery(Sender, QueryID)
2: if QueryID ∈ QuerySet then
3: if Sender ∈ QuerySet[QueryID].RequestingSet then
4: // we got an cancel message from a device who asked us to establish, thus, this device does not need the query anymore
5: QuerySet[QueryID].RequestingSet := QuerySet[QueryID].RequestingSet - {Sender};
6: if QuerySet[QueryID].RequestingSet == ∅ then
7: removeKey(QueryID.TargetID); // agree with target device to remove this key
8: QuerySet := QuerySet − {QueryID};
9: end if

10: end if
11: end if

Procedure 3: onCancelQuery: Reaction on receiving a CancelQuery-message
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Figure 3: RKEP Deadlock: In (f), E, C, D and F each know of one node that shares a key with the target device J .

the network is correctly generated, any s-connector is unique since
they consist of different nodes.

In Sec. 4.6, we show that RKEP can always establish a shared
key for a key graph constructed in this fashion. What remains to
be discussed, is how can such a graph structure be retained when
removing a node from the graph. The next subsection discusses
this issue.

4.5.2 Removing a Device from the Network
Removing a device from the network can destroy the s-connected

property of the corresponding key graph. A protocol that removes
a device in a controlled disconnection procedure, i. e. one in which
a device that disconnects from the key graph makes all necessary
arrangements before leaving, works as follows: Observe that for
RKEP, both the s-connected property of the key graph and the re-
sulting structure of (s + 1)-cliques has to be preserved. Therefore,
we divide the removal procedure in two steps: Preserving the s-
connected property and preserving the (s + 1)-cliques.

Preserving an s-connected key graph. (This part of the
removal procedure is also used in our previous work [1].) The so-
lution for this half of the problem is based on pretending that the
device that is to be removed had never been there in the first place

and replacing existing shared keys accordingly. If the device is still
present when the removal procedure is performed, keys can be re-
placed automatically, using the procedure described in Sec. 3, thus
re-establishing the s-connected property of the underlying graph.

....

....
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Figure 5: Re-establishing links

To see why this works, let the graph under consideration be G =
(V, E) with V = {v1, v2, . . . vn} where a node vi was the i-th
node added to the graph according to our construction. Let the
node that is to be removed from the graph be vj . Then we can
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define two sets, A and B (see Fig. 5). The set A contains all s
nodes to which vj had its first s edges during the construction, i.e.
the devices, vj established the first s keys. The set B contains all
nodes which established an edge to vj during their insertion into
the graph, i.e. the devices being inserted after vj . When vj leaves
the network, all nodes in set B need to establish a new edge to
some node in set A which did not exist before. Doing this will
result in the same situation as if the nodes in set B were introduced
into the graph when node vj was not a node of the graph. Thus,
the s-connected property of the graph is again guaranteed by the
construction algorithm.

Preserving the (s + 1)-cliques of the key graph. When-
ever a device leaves the network, s s-connectors are going to be
destroyed in the key graph. Each device which used such an s-
connector needs to re-establish keys in order to connect again to a
correct s-connector.

Consider the example in Fig. 6. Device D needs to leave the
network and sends a Leaving-message to all devices from its B-set
(Fig. 6(a)). The Leaving-message includes the devices of the s-
connector which D used to enter the network. The devices receiv-
ing this message compare the received s-connector to their own2.

Those devices which find an (s − 1)-match between their own
s-connector and the received s-connector can easily identify the de-
vice to which they have to establish a new key: It is the only device
which is contained in the received s-connector but not in their own.
Note that due to the construction algorithm, the s-connectors either
match in (s − 1) devices or not at all. In Fig. 6(b) devices E and
F are in that situation. Comparing the s-connectors, E finds that
it needs to establish a new key to B, and F finds that it needs to
establish a key with C.

Meanwhile device G has no match at all when comparing the
s-connectors. In such a case the node (G) needs to ask a device
of its own s-connector for that device’s own s-connector – this is
the same procedure as when a new device is introduced. In the
example, there is only node E to ask, which responds with the list
(B, C) (after E is done with re-establishing keys itself). From this
list, G can choose a partner randomly (in the example, C).

After establishing new keys, all affected nodes send a Ready-
message to D (Fig. 6(c)). When D has received a Ready-message
from all devices in its B-set, it can safely leave the network – all
properties have been restored (Fig. 6(d)).

4.6 Proof
In this section we prove by induction over n (total number of

devices) that in a network constructed with the above given rules
RKEP can always establish a new key between any pair of devices.

2Those s devices a device used to enter the network

Induction Statement. In a graph constructed with the RKEP
rules, every node can construct a new edge to any other node using
RKEP.

Induction Start, n = s + 2. We start with n = s + 2 since
s + 1 nodes are always fully connected, and therefore no new edge
is needed. Moreover, when introducing a new node to a graph con-
sisting of (s + 1) nodes, it does not matter which s nodes are used,
since every set of s nodes is fully connected and therefore forms a
correct s-connector (see also Fig. 7).

In a graph with n = s + 2 nodes there are only two nodes which
do not share an edge. These two nodes share s common neighbors.
Hence, when the corresponding device needs to establish a new key,
it sends an Key-Establishment-Query according to Proc. 1. Since all
s neighbors have a key to the target device, all devices will respond
with an Established-message, thus enabling the device to establish
a new key.

s-connector

s+1 nodes

Figure 7: Induction Start: n = s + 2

Induction Step. Suppose the induction statement is proved for
all graphs constructed using 4.7 with at most n nodes. Consider an
arbitrary graph of n nodes in which the induction statement is true.
We now introduce a new node Y by connecting it to an s-connector
(Fig. 8).

Observe that since queries are forwarded to each neighbor, even
for the same source-destination pair, queries forwarded from dif-
ferent nodes do not influence each other. Hence, the sequence in
which queries are forwarded and answered is not relevant to the
protocol. This also means that there only needs to be one success-
ful sequence of key establishment queries for a successful key es-
tablishment using RKEP. Especially, for any key graph G, if RKEP
can establish a key between two nodes in a subgraph H ⊆ G, then
RKEP can also establish a key between these nodes in G.

Suppose that for the new graph, an arbitrary node A attempts to
establish a key to any node B using RKEP. Three cases have to be
examined:
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Figure 6: Removing a device from the network (s = 2)
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Figure 8: Induction Step: Adding one node

Case 1: (A �= Y ) ∧ (B �= Y ). In this case, by the induction
statement, the subgraph without Y is sufficient to establish a key
between A and B.

Case 2: A = Y . Using RKEP, all nodes in the s-clique that Y
is connected to receive a Key-Establishment-Query from Y . Since
the query is forwarded recursively, by the induction statement, all
these s nodes will establish a key to B, allowing Y to establish a
key with B via these nodes.

Case 3: B = Y . Recall from Sec. 4.5.1 that the key graph
consists of (s + 1) cliques connected by s-cliques. Without loss of
generality, consider the subgraph obtained by only examining the
shortest sequence of (s + 1)-cliques from the one containing A to
the one containing Y : By construction, the s nodes to which Y did
initially connect are part of an (s + 1)-connector. Thus, there is a
node X that is part of this (s + 1)-connector, but does not share a
key with Y (Fig. 8). X will eventually receive a Key-Establishment-
Query, and establish a key with Y via the s other nodes. By doing
so, an (s + 2)-connector is formed.

Now, remove a node from this (s + 2)-connector that is neither
X nor Y nor part of the s-connector joining X’s s-connector to
neighboring node Z’s s-connector (Fig. 9). Note that the graph ob-
tained in this fashion is still a graph that could have been generated
by 4.7. However, this graph only has m ≤ n nodes, and all nodes
have received and forwarded a Key-Establishment-Query for nodes
A and Y . Hence, by the induction statement, a key between A and
Y can be established.

4.7 Practical Considerations
In the last sections, we discussed a method to obtain an RKEP-

compatible key graph. What remains to be discussed is how this
structure can be generated in a practical setting, i.e. when introduc-
ing new devices to the network. There are at least three possibilities
to achieve this:
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Figure 9: Induction Step, case 3: Merging cliques

User-driven Introduction. Whenever a device gets introduced
in the network, the user randomly chooses a device already in the
network and establishes a new key in an out-of-band secure way
(e.g. via a secure physical connection). Any device is part of an
(s + 1) connector from the time of its introduction to the network.
Therefore, it can send the IDs of s devices that are part of an s-
connector to the new device (in fact, there are s such s-connectors).
The device now displays them to the user, e.g. on a small display,
who can now choose s−1 more devices and finish the introduction
process in the same way as for the first device. Having established
a new key to the other devices, the new device is fully introduced
in the network and can use RKEP to establish any further keys. It
is up to the user to balance the amount of keys stored on the nodes
to prevent memory overflow.

Master Programming Device. The usage of a master device
is another possibility to introduce new devices to a network. In this
case, the master device is used only to introduce devices, and is
not needed later on for the correct function of the network. Such a
master device would share a unique master key with each device in
the network (set by the manufacturer or by the user before using it
for the first time).

The master device is implicitly trusted and can be authenticated
to each device through the master key. For introducing a new de-
vice to the network, the master device chooses s devices from the
network that form an s-connector) and generate a unique key be-
tween them and the new device. Towards that end, the master de-
vice stores a global view of the entire network.

After the master device has established s new keys between the
new device and an s-connector of the network, it can be taken of-
fline. The use of master device is on the one hand less cumbersome
for the user, since he only has to introduce the new device to the
master device. On the other hand, a centralized component – al-
though usually offline – was introduced, which could become the
primary target of an attack.



Automatic Key Establishment. As a third alternative, RKEP
itself can be used in order to set up the correct keys. The user es-
tablishes new keys with s randomly chosen devices of the network.
Even if this results in the new device not being connected to an
correct s-connector, the new device can request the first s devices
of one of the devices to which it already has a key. After obtaining
this information, it can – just like in the manual case – establish new
keys to this s connector using RKEP. Having established new keys
with a correct s-connector, the initial keys exchanged by the user
can be removed. The difference to the manual case is that the user
only needs to exchange s keys when introducing the new device
and the device itself will establish keys to a correct s-connector.

The automatic approach is sound for the following reason: The
initial devices are already part of the network and can therefore es-
tablish a key with any other device of the network. When these
devices have all established a key to the same device, the new de-
vice can do so as well, since it now has s intermediary nodes to the
device. Thus a device, even if not yet fully introduced, can estab-
lish new keys to devices in the existing network – thus establishing
keys to an correct s-connector.

4.8 Extended Attacker Model
As stated in Sec. 2 for the purpose of this work we assumed only

eavesdropping (passive) attackers. However, to achieve a more re-
alistic attacker model the analysis of the following (active) attacker
classes is also needed:

fail-stop attacker: This attacker silently halts all functions of a
device. This class includes device failures (e.g. due to low
power).

byzantine attacker: This attacker may act arbitrary in order to pre-
vent the correct execution of the key-distribution protocols.
This class of attacker subsumes the fail-stop attacker class.

Note that we do not consider denial-of-service on the physical layer
(e.g. jamming the frequency) since this is always possible and can
only be counteracted by measures on the physical layer (e. g. fre-
quency hopping)

A complete and thorough analysis of the extended attacker model
is beyond the scope of this paper and still work in progress. How-
ever, as we showed in [12], the basic approach for coping with the
fail-stop attacker is the introduction of redundancy. This means that
we build our initial key graph with a connectivity level of z > s,
while the algorithm needs only s node-disjoint paths to establish
a new key. Thus even if there are f device failures (fail-stop at-
tackers) with f < z − s, there are still at least s cooperating de-
vices left. Coping with byzantine attackers is more complicated and
can be achieved through the introduction of replication and voting
mechanisms.

5. PROPERTIES AND EVALUATION
In this section, we analyze of the properties of our approach with

respect to memory usage and network traffic. This is followed
by simulation results contrasting the performance characteristics
of our protocol with those achieved using a key exchange protocol
using the max-flow algorithm for discovery of node-disjoint paths.

5.1 Analysis
As shown in Sec. 4.6, RKEP together with the key graph con-

struction rules guarantees that key establishment is possible for any
two devices in the network. To analyze our key establishment pro-
tocol we now discuss the theoretical worst cases with respect to
memory usage, network traffic.

5.1.1 Memory Requirements

Network Setup. Each device needs s shared keys to connect to
the initial key graph. Since each key is stored on two devices, we
have an average of 2s keys per device. Thus, the initial key graph
requires on average O(1) memory space on each device.

Key Establishment. Each entry in the QuerySet of a device
(one per query) consists of the RequestingSet and EstablishedSet,
which, taken together, contain at most the direct neighbors of this
device, i.e. on average 2s. Moreover, for each query, at most one
temporary key will be established between a device and the target
device. Thus, a query requires O(1) temporary space on each in-
termediate device and at most O(n) on the target device.

The memory requirement on the target device depends on the key
graph structure: Every device that receives an RKEP query tries to
establish a new key to the target device. When it has done so, it
sends a Cancel-message notifying other devices that their tempo-
rary keys are no longer needed. Thus, at least s temporary keys
need to be held on the target device in order to establish a new one,
i.e. in total s + 1.

However, there is not only one device trying to establish a new
key to the target, the amount of temporary keys on the target device
depends on how many devices do simultaneously establish a key
to the target device. The number of such devices is influenced by
the key graph structure. Fig. 10(a) shows a graph structure which
we call a ”chain”. In this graph, the number of temporarily needed
keys on the target device is exactly (s+1). In contrast, in the graph
structure given in Fig. 10(b), 4(s + 1) temporary keys are needed.

In order to keep the memory requirements on the target device
constant, we have developed an additional algorithm which influ-
ences the key graph structure when introducing a new device. The
algorithm is based on limiting the memory for the initial key graph
with an parameter. When enforcing this parameter, the key graph
grows in a controlled fashion and the ”chain” structure can be en-
forced. Discussing that algorithm in detail is beyond the scope of
this paper – however, we note that the memory requirement on the
target device can be tuned to k(s + 1), a constant value.

(a) ”Chain” (b) Random

Figure 10: Graph Structures (s = 2)

5.1.2 Network Traffic

Network Setup. When introducing a new device to the network,
the amount of exchanged packets depends on which method for
introducing a device is used. When using the user-driven or the
master-device approach (Sec. 4.5.1), only neighbor lists are sent
over the wireless channel. Since the size of the neighbor lists is con-
stant, a constant number of messages is transmitted for each new
device. Thus, for the setup of the whole network we need O(n)
packets. In contrast, when using automatic key establishment, we



need at most (s − 1) new key establishments, where key estab-
lishment is in O(n) (see next paragraph for explanation). Thus, the
number of messages needed for the network setup is n(s−1)O(n),
i.e. O(n2).

Key Establishment. The total amount of messages for one query
is linear in n, i.e. O(n): Each Key-Establishment-Query is sent at
most twice on each key edge, each Established-message is sent at
most once per key edge and each Cancel-message is also sent at
most once per key edge. Thus, we get at most 4|E| messages with
|E| = (n − s)s + s(s−1)

2
, which is linear in n.

Message Loss. A transport layer mechanism that recovers from
message loss can be achieved with at most linear overhead: Let X
be the number of messages sent in the ideal case. In order to recover
from message loss, a stop-and-wait protocol can be used, where
each protocol message is acknowledged and re-sent when the ac-
knowledgement fails to arrive. In case a protocol message is lost,
one retransmission is needed, whereas in case an acknowledgement
is lost, both the original protocol message and the acknowledge-
ment need to be retransmitted. For a uniformly distributed message
loss probability p, the number of messages actually sent can be ap-
proximated as X(p) = 2X + pX + 2pX = (2 + 3p)X.

5.1.3 Summary
We summarize our theoretical analysis of RKEP in Tab. 1:

Memory Traffic
Network Setup O(1) O(n)

Key Establishment O(1) O(n)

Table 1: RKEP Performance

5.2 Simulation Results
To evaluate our approach, we have built a simulator which is

able to use different strategies for key establishment or network
setup. In the simulation, nodes are always in transmission range
of each other and transmitted packets are never lost. That way, the
measurements are not polluted with effects not directly related to
the key establishment protocols.

We simulated RKEP, as well as our original approach. In the
simulation, the path discovery algorithm for the original approach
is based on a global view of the network on each device: Each
device that is added to the network transmits a link-state packet
containing all its neighbors. This packet is flooded through the net-
work using the encrypted links. With a global view of the network,
each device can locally search for the node-disjoint paths in the key
graph using the Max-Flow (MF) algorithm [13].

We used scenarios of 25 to 250 devices in increments of 25. We
also varied the security level s to show how this influences the mea-
sured values. We measured the number of packets and the amount
of memory used on a device. The memory measurements are based
on the assumption of 128-bit symmetric keys and 16-bit device IDs.

5.2.1 Memory Requirements

Network Setup. Fig. 11 shows the maximum memory use for
a single device while the network grows. The diagram also shows
two graph structures for RKEP: one for a enforced chain-structure
of the graph and one for a random structure. In the RKEP-chain
case, the memory requirement remains constant – the algorithm
enforces exactly that. Without enforcing any graph structure, the

memory requirement grows about linearly with the number of de-
vices. For storing a graph in the Max-Flow-case, we need at least
linear memory. With 2 bytes per device ID, the minimum amount
needed for storing the whole graph would be 2ns bytes. For com-
parison, these amounts are also shown in the diagram as grey lines.
The worst-case memory needed to store keys for all devices in the
network is also shown as a grey line (fully connected graph).
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Figure 11: Maximum memory usage on a device

Key Establishment. Fig. 12 shows the maximum increase in
memory use of all devices during key establishment. As can be
seen, memory usage is constant for the RKEP-chain case and linear
for the RKEP-random case. Note that the linear growth is mostly
due to the memory requirements on the target node. An interesting
effect with RKEP is that for higher values of s, the number of tem-
porary keys that needs to be established actually goes down. This is
a result of the s-connectors growing larger. The memory consump-
tion of the Max-Flow-based approach is very high for the source
node (which has to compute the node-disjoint paths). For this node,
memory consumption grows very fast and in a non-linear way. This
is due to the fact that Max-Flow algorithms work on directed graphs
and find edge-disjoint paths: In order to be used for our purposes,
a graph transformation is needed that generates a graph of a size
proportional to the square of the original graph size.
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Figure 12: Memory usage on a device during key establishment

5.2.2 Network Traffic
The next two diagrams show our simulation results with regard

to the number of packets sent over the network. Note that the graph
structure does not affect the network traffic caused by RKEP: For



network setup, only a constant number of packets is needed to ex-
change the initial keys and for key exchange, RKEP messages will
be sent over all edges, regardless of the structure of the graph.

Network Setup. Fig. 13 shows the number of packets needed to
set up the network for user-driven RKEP and Max-Flow. The dia-
gram shows the number of packets needed for incrementally build-
ing the graph by adding nodes one to n. With s packets per per
node, traffic grows linearly for RKEP, while establishing the global
view requires linear effort per node and results in quadratic growth
for the Max-Flow-based approach.
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Figure 13: Network traffic during network setup

Key Establishment. Finally, Fig. 14 shows the amount of net-
work traffic needed per key establishment. Here, the proactive
Max-Flow approach can trade off memory for network traffic: The
only packets needed are those that transport the actual key shares.
The solid black line shows the worst-case effort needed to do this.
RKEP does not fare as well, but still manages a linear growth rate
with respect to the number of devices.
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Figure 14: Network traffic during key establishment

Message Loss. To recover from message loss we added a simple
stop-and-wait protocol. We measured the amount of network traffic
for 10% and 20% message loss probability – usual loss rates for
wireless networks. We also performed measurements for a 0% loss
rate to show the overhead of the stop-and-wait protocol (see Fig.
15). The continuous line corresponds to ”RKEP (s = 2)” from Fig.
14. The introduced overhead is in line with the analytical results.

5.3 Summary
As our theoretical analysis and also the simulation showed, the

memory requirements of our algorithm are constant in the case of

Figure 15: Network traffic during key establishment including
message loss for RKEP (s = 2)

a ”chain” structure and sublinear otherwise. Thus from the point
of memory footprint our algorithm scales almost infinitely. In con-
trast, the network traffic during key establishment grows linearly
and therefore limits the scalability. However, this is a general prob-
lem of a reactive algorithm that does not use any knowledge about
the network: The only way to ”find” another device is to query all
other devices, i. e. communicate with (n − 1) devices. Thus, for
a reactive algorithm with no additional information linear growth
is also the lower bound. Our algorithm represents a good trade-
off between memory requirements and network traffic. We achieve
constant memory requirements while causing linear growth in net-
work traffic, which is the lower bound for reactive algorithms.

6. RELATED WORK
Several solutions for securing wireless sensor or ad-hoc networks

have been proposed in the literature. A number of them employ
asymmetric cryptography to reach their goal [14, 4]. Using asym-
metric cryptography on highly resource constrained devices is often
not feasible due to delay, energy and memory constraints [15, 2].
Even though very recent publications show that it is possible to use
asymmetric cryptography on such constrained devices, these im-
plementations still use considerably more valuable resources. For
comparison, an implementation of symmetric cryptography on a
8-bit microcontroller uses 7150 bytes of program memory [16].
In contrast, the smallest available implementation of asymmetric
cryptography using elliptic curve cryptography uses about 30 kB of
program memory [17]. As a consequence, for the common config-
uration in which an asymmetric algorithm is used for key exchange
and a symmetric one for communication, the memory footprint in-
creases by a factor of more than five. Miniaturization and eco-
nomical considerations are also a major factor for sensor networks,
counteracting the increase of resources achieved by technological
progress: There is an interesting observation by Karlof and Wag-
ner that sensor network devices will more likely ride Moore’s law
downward [18]. They make the point that instead of doubling com-
putational power every 18 months it may be more likely that the
devices become even smaller and cheaper solutions are sought.

Several approaches using symmetric cryptography make use of
a central base station [19]. However, the availability of a central
authority (base station) in an ad-hoc network cannot always be as-
sumed. Moreover, such a central authority clearly is the first target
for any attacker and thus becomes a single-point-of-failure.

To overcome the drawbacks of a central authority, recent work
uses symmetric cryptography in a purely decentralized fashion, i.e.
without the need for any central authority. However, these ap-
proaches usually assume that such networks can be pre-configured



and that it is a priori known how big the network is, or how big it
might get. These approaches do also not address the issue of easy
addition or removal of devices. The following approaches have
been published:

A simple approach was shown by Basagni et al. in [20]. How-
ever, their approach assumes tamper-resistant devices, a notion that
we consider problematic in the present context.

Eschenauer and Gligor [21] proposed a solution using random
key predistribution. Before deployment, every device is supplied
with a random set of keys from a key pool. After deployment, the
devices try to establish connections by finding a commonly shared
key or by creating a new key through a secure path including other
devices. Since their approach is probabilistic, no clear assumptions
about key graph connectivity can be made afterwards, thus no guar-
antee that two arbitrary device can communicate securely.

Extensions have been introduced by Chan et al. [3]. They present
three different approaches: In the approach most directly related
to ours, a set of secure and authenticated links can be established
after deployment of the sensors. Again, due to the still-random
predistribution, two arbitrary devices might not be able to establish
a secure link without relying on other devices. For this reason,
secure communication between arbitrary devices may not always
be possible.

The approach by Zhu et al. [22] also uses an initially distrib-
uted set of random keys. In addition to [3], Zhu et al. propose a
pairwise key establishment protocol using multiple paths. In this
way, by splitting of a pairwise key over multiple untrusted paths
(as initially proposed in [5]) resistance against attackers can be im-
proved. However, due to the random key predistribution, the actual
existence of different paths in the network is not assured in any
way. It follows that in contrast to the approach presented here, no
presumption about the real number of the device-disjoint paths is
possible.

A very recent approach by Chan et al. [23] proposes a determin-
istic scheme for key predistribution which guarantees for any two
nodes from the network that there always exists one intermediary
node (i.e. a node that shares a key with both of them). This inter-
mediary node is then used to establish a new key. However, in their
approach, the secret is not split up, making the intermediary node
an implicitly trusted device. Thus, the secrecy of a new key cannot
be guaranteed after a single node has been compromised. In con-
trast our approach guarantees the secrecy of any new key for up to
s compromised nodes.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel, memory-efficient ap-

proach for guaranteed key establishment in wireless networks. By
adjusting the value of s, our approach can be parameterized accord-
ing to the security needs of the network.

As stated in Sec. 4.8 the presented approach does not yet con-
sider devices that fail or exhibit malicious behavior, i. e. the ex-
tended attacker model. The thorough analysis of the extended at-
tacker model is topic of future work.

We are in the process of integrating our protocols into TinySec
[16] on the Berkeley Mica2 Motes [24]. For the future, this pro-
vides us with the tools to report on practical experience with our
approach in a realistic environment. Furthermore, we are going
to conduct further performance studies on a emulated network in-
frastructure, as described, for example, in [25].
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