
FlexCup: A Flexible and Efficient Code Update

Mechanism for Sensor Networks

Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder,
Olga Saukh, and Kurt Rothermel

IPVS, Universität Stuttgart
Universitätsstr. 38

D-70569 Stuttgart, Germany
{marron, gauger, lachenmann, minder, saukh,

rothermel}@informatik.uni-stuttgart.de

Abstract. The ability to update the program code installed on wire-
less sensor nodes plays an import role in the highly dynamic environ-
ments sensor networks are often deployed in. Such code update mecha-
nisms should support flexible reconfiguration and adaptation of the sen-
sor nodes but should also operate in an energy and time efficient manner.
In this paper, we present FlexCup, a flexible code update mechanism that
minimizes the energy consumed on each sensor node for the installation
of arbitrary code changes. We describe two different versions of FlexCup
and show, using a precise hardware emulator, that our mechanism is
able to perform updates up to 8 times faster than related code update
algorithms found in the literature, while consuming only an eighth of the
energy.

1 Introduction

The continuous miniaturization process of computing devices combined with the
proliferation of sensor technology has led to an increase in the number and the va-
riety of devices that are able to sense their environment, gather and process data
and communicate their results either to a base station or to other neighboring
devices. Such wireless sensor networks are usually characterized by the limited
resources available at each individual device, and the fact that each sensor node
cooperates with its peers in a distributed fashion to accomplish a common task.

The ability to update the program code installed on wireless sensor nodes is
an important feature in such systems, necessary not only for correcting errors
but also for being able to adapt the running software to changed environmen-
tal conditions or modified application requirements. In particular, we expect a
growing demand for adaptive system software support in sensor networks due to
the increasing complexity of applications and the inherent dynamics of typical
sensor network environments.

Current system software implementations do not provide the flexibility need-
ed to dynamically adapt the software running on sensor nodes. This motivates



the work of the TinyCubus project in our research group [1], which aims at de-
veloping a generic and reconfigurable system software for sensor networks based
on TinyOS. Two important building blocks of TinyCubus are support for struc-
tured cross-layer optimizations provided by the Tiny Cross-Layer Framework

and adaptation capabilities for system and application components provided by
the Tiny Data Management Framework.

In this paper, we present FlexCup (“FLEXible Code UPdates”), a code up-
date mechanism that enables on the fly reinstallation of software components
in TinyOS-based sensor nodes in an efficient way. FlexCup has been developed
as part of TinyCubus to provide code update capabilities for the adaptation of
components in the Tiny Data Management Framework, but it can also be used
independently as a general code update mechanism for sensor networks.

A code update mechanism for sensor networks needs to take into account that
sensor networks usually consist of small devices with extreme resource limita-
tions. The optimization of resource usage and energy considerations are therefore
crucial challenges that needed to be addressed in the development of FlexCup.

The mode of operation of FlexCup is divided in two phases: the code gen-
eration phase, where relevant information is generated at compile time; and the
linking phase, where the modified components are combined with other compo-
nents at runtime.

The remainder of this paper is structured as follows. Section 2 starts by
giving information about existing approaches and their shortcomings. Section
3 deals with the details of our code update approach and its compile time and
runtime algorithms. Section 4 gives experimental results on the complexity and
efficiency of FlexCup by comparing it to other approaches. Finally, section 5
concludes this paper and gives some insight regarding future work.

2 Related Work

TinyOS [2] is probably the most widely-used operating system for sensor networks
and is the target system for FlexCup. It has been ported to several hardware
platforms including the MICA2 motes from Crossbow Technologies. Thanks to
the wiring and event abstractions available in nesC, the component-based pro-
gramming abstraction for TinyOS [3], this operating system is well suited for the
requirements of sensor network applications. However, TinyOS does not allow
components to be replaced at runtime. Instead, the entire program image con-
taining both system and application components has to be exchanged if any one
of the components needs to be replaced.

Another operating system developed for sensor networks and other resource
constrained devices is Contiki [4]. In contrast to TinyOS, Contiki does provide
support for dynamic loading of applications and system services as a core func-
tionality of the system. However, this flexibility requires additional levels of in-
direction for calls to these dynamic services which adds some runtime overhead.

Maté [5] executes application code using a virtual machine. Since the actual
application is only stored in RAM, this system can easily deal with code updates,



but the overhead of running a virtual machine on each sensor node is consid-
erable. The advantage of virtual machine approaches is that the size of their
bytecode can be smaller than native code, which reduces the energy consumed
for code transfers. However, for long-running applications the energy overhead
generated by code interpreted at runtime outweighs this advantage [5].

There are several middleware solutions for sensor networks that provide some
functionality related to our work. For example, Impala [6] adds abstractions
that allow for dynamic updates of modules and adaptation. Modules which are
already linked and which are reused in a new software version do not have to
be re-linked. However, both the update and the adaption mechanism have not
been implemented in the actual system yet. MiLAN [7] monitors the network
situation and manages the quality needs of applications by adapting its behavior
and optimizing the network topology. While MiLAN is in that way able to change
its operation at runtime, it does not include support for dynamic code updates.

Several approaches try to efficiently disseminate code updates in a sensor
network using multi-hop communication [8, 1, 5, 9, 6]. However, the efficient dis-
tribution of code is an issue orthogonal to our approach, which aims at reducing
the size of such updates and adding the flexibility needed for adaptation. With
little effort, FlexCup can be combined with any of these approaches.

Many current algorithms dealing with code updates always transmit the com-
plete code image (including the system software), which usually amounts to
several kilobytes of data. One example of this approach is Deluge [8]. Deluge is
included in recent TinyOS releases and provides functionality to disseminate code
updates in multi-hop networks while keeping the number of network packets low.

A more advanced approach found in the literature to reduce the number
of packets to be transmitted for each code update is to compare the new code
with the previously installed software version and transmit only the differences.
Reijers and Langendoen [10] use a diff-like approach to compute a diff script
that transforms the installed code image into a new one. Likewise, the incre-
mental network programming protocol presented by Jeong and Culler [11] uses
the Rsync algorithm [12] to find variable-sized blocks that exist in both code im-
ages and then only transmits the differences. However, both of these approaches
just compare the code image using very limited knowledge about the application
structure, if at all.

Koshy and Pandey [13] describe a scheme that uses incremental linking (on a
PC) to reduce the number of changes in the code and transmit the code update
with a diff-like algorithm. They leave most parts of the previous program image
unchanged and modify only those functions that actually change. In order to
avoid address shifts when the size of a function changes they add empty space
behind each function. However, this approach does not provide the flexibility
offered by FlexCup since the linking process is still performed at the base sta-
tion. Koshy and Pandey even argue that linking on the sensor nodes – the very
approach of FlexCup presented in this paper – cannot be done in practice due
to high costs for transmission and storage of object files.



Most approaches assume that code updates will be distributed to all nodes
in the network. However, the complexity of applications and the need for recon-
figuration indicate that it might be desirable to install the required components
only on those nodes that need it and maybe store other components in a free
part of flash memory for later adaptation, since flash memory is typically less
limited than program memory. Therefore, our solution uses knowledge about
the application structure by grouping the components forming the application
and the operating system. It offers more flexibility than just replacing arbitrary
pieces of code because it makes it possible to dynamically change the current
set of installed components through adaptation. That way, the sensor nodes can
store several instances of a component at a time even though they only need one
of them to fulfill their current task. When the task changes or other factors make
it necessary, the node can easily replace the currently used component with a
more efficient one.

3 FlexCup

FlexCup implements an efficient code update algorithm that allows exchanging
only the components of a program that have actually changed. This helps saving
deployment time as well as energy on the sensor nodes.

To perform its tasks, FlexCup needs to be involved in the process of compiling
the components on the base station, and installing the code update on the sensor
nodes: During the code generation process, FlexCup generates meta-data that
describes the compiled components. FlexCup then uses this meta-data during a
code update to place the new component inside the running application, relink
function calls to the appropriate locations and perform address binding of data
objects, as we will see in the next sections.

Using this method, FlexCup is able to reconfigure, exchange or reinstall parts
of an application running on sensor nodes without having to retransmit the whole
program image. Furthermore, since there is no real distinction between system
and application components in current sensor network devices, FlexCup can
be used for updating parts of TinyOS or TinyCubus just as it can be used for
exchanging application components.

We have implemented and tested FlexCup using the MICA2 sensor platform
available from Crossbow Technologies. Although developed as part of TinyCu-

bus, the implementation of FlexCup is independent of any operating system or
system software. This has two advantages: First, since FlexCup is written in
ANSI C and does not have dependencies to specific system libraries, it can be
easily ported to other frameworks. Second, FlexCup only runs during the process
of installing code updates and does not impose further restrictions on the RAM
available for application components.

3.1 Component and Meta-Data Generation

Component Generation TinyOS applications developed using the nesC pro-
gramming language consist of a set of system and application components that



are “wired” to generate a running program. The nesC compiler produces a single
C file combining the source code of all these components, thereby generating a
tightly interwoven application. This approach has the advantage that the com-
piler can perform optimizations like function inlining on the entire program.
However, there is no simple way of replacing only a part of the compiled pro-
gram like exchanging a component or a function inside a component.

This potential limitation is to some extent addressed by a new concept in-
troduced in a recently released version of the nesC compiler (nesC 1.2). The
new concept allows compiling a set of nesC components into a separate object
file, a so called binary component. Such binary components can be wired like
traditional nesC components and are then combined by the linker to create the
complete application code. However, this linking is still done on the base station
prior to the deployment in the sensor network.

FlexCup uses the concept of binary components and extends it by performing
the linking process on the sensor node itself.

The use of binary components still allows the compiler to perform code opti-
mizations inside of the individual binary components. Global optimizations are
no longer possible. However, if the application developer segments the applica-
tion based on the semantic relation of the components, we expect an application
using binary components to perform similarly to a globally optimized version.

Our experience with FlexCup indicates that a reasonable segmentation of
an application into binary components can be easily identified by examining the
semantics of the components and their use in the system. We used several heuris-
tics including the degree of interaction with other components and the expected
likelihood of components being exchanged together. Typical examples of com-
ponents combined into individual binary components are the ones implementing
radio communication, the sensor access and the application components.

The segmentation of components into binary components is a design decision
to be made by the system and application developers. In the long run, we ex-
pect most system components of TinyOS to be available segmented into binary
components, so that the application developer will only have to consider his own
components implementing application-specific functionality.

Meta-Data Generation FlexCup requires meta-data to be able to integrate
new components into the existing program code on a sensor node. On the sensor
nodes, this meta-data is stored in external flash memory and consists of the fol-
lowing three parts: generic program information, a program-wide symbol table,
and a relocation table for each binary component in the program. The generic
program information lists the number and relative offsets of all binary compo-
nents, as well as the addresses of the symbol and relocation tables. The symbol
table contains information about the global data and function symbols used in
all components, sorted by their identifiers in ascending order. The relocation
tables list the references from inside the component code to data or function
symbols specified in the symbol table. Fig. 1 shows a pictorial representation of



a sample program consisting of three binary components and its representation
in the external flash memory after being loaded onto a sensor node.

Program meta-data

Program code

Program information

Symbol table

Relocation table B

Component Code A

Component Code B

Component Code C

Relocation table A

Relocation table C

0x0000

0x0108

0x0318

0x0420

0x0630

0x0738

0x08A0

0x21B0

00A2   013E
00B0   00FA
00B6   03A0

00A2   09A4   10B2   1500   18AA
00B6   12AA

00A2

00A2
00A2

00B6

00A2

Fig. 1. Sample code and meta-data

As can be seen in Fig. 1, FlexCup stores a copy of the program code in the
external flash right after the meta-data. This copy is used for constructing the
new program code during a code update. Our implementation leaves free spaces
(hatched blocks in Fig. 1) between the symbol table, each relocation table and
the program code to allow for size changes of this data without having to pay
the penalty of moving large pieces of data or even the whole program code.

Optimizations The transmission and storage of the meta-data required for the
dynamic linking of the components incurs an overhead on the sensor nodes. We
have implemented several optimizations to minimize these effects: First, symbols
in the symbol and relocation tables are identified by a two-byte id instead of a
human-readable string. Second, we compress the size of the relocation tables by
combining entries with the same id. For example, if there are several relocation
entries referencing the same symbol, all entries are grouped together so that the
identifier is needed only once. These simple optimizations incur savings in space
of over 40% with respect to our original implementation.

3.2 Runtime Linking

Fig. 2 outlines the sequence of operations performed by FlexCup on a sensor node
during the update of a binary component. The operation of the algorithm can



be split up into five steps: (1) Storage of code and meta-data; (2) symbol table
merge; (3) relocation table replacement; (4) reference patching; (5) installation
and reboot.

External Flash

Program Memory

0000 0000 0000 0000

Program

Meta-data
and code
comp. B’

Free

1

3

2

4

5FA1 0104 0A64 32F8

Free

Program

Boot loader

RAM
Sym. table diffs.

Free

5FA1

0104

5

Code component A

Code component B

Code component C

Radio

Fig. 2. Runtime linking process

(1) Storage of Code and Meta-Data The first step in the runtime linking
process involves receiving the update data, including code and the meta-data
of the component, and storing it into flash memory. The external flash memory
of the MICA2 sensor nodes has a capacity of 512 kBytes and is normally used
to store sensor readings and measurement results. For the purposes of FlexCup,
flash memory is used as an external memory component where code updates and
program meta-data can be stored for processing.

Even though accesses to the flash memory are very costly, using the flash
memory for storing the received data is necessary for two reasons: First, the
size of a code image is usually much larger than the 4 kBytes of RAM available
on the nodes, so that the code image cannot be prepared completely in RAM.
Second, the program code can only be written to program memory from a special
bootloader section and writes are only possible on a page by page basis, so that
the code image must be prepared externally before writing it to program memory.
However, the degree of use of the external flash memory directly influences the
amount of energy consumed by the algorithm.

Regarding the actual transmission of the modified binary component and
meta-data, FlexCup allows two different modes of operation. The first one, called
FlexCup Basic, transfers the whole binary component and its meta-data with-
out considering the data already stored on the sensor node. This algorithm can be
inefficient, especially if the binary component is relatively large and the number



of changes is small. For this reason, FlexCup also supports a diff-based approach,
called FlexCup Diff, that only transfers the incremental changes between the
new binary component and the one already stored on the sensor node. FlexCup
Diff can operate more efficiently than pure diff-based solutions as the processed
binary code does not yet contain references to specific addresses in memory (only
default values). For this reason, address shifts, which are one of the main reasons
for change entries in pure diff-based approaches, do not increase the size of the
data transmitted. However, just like in all diff-based approaches, the base station
needs to have knowledge about the exact configuration of the sensor nodes in
order to be able to prepare the diff script.

(2) Symbol Table Merge The second step of the linking process involves
combining the existing program symbol table with the newly received symbol
data. Since both tables are sorted by symbol id in ascending order, an algorithm
similar to merge sort is used to create the new symbol table.

Merging is performed with the help of 3 kBytes of temporary buffer in RAM
used by FlexCup to store all changed symbol information. This buffer space is
guaranteed to be available since FlexCup does not run in parallel to the applica-
tion1. The advantage of this buffering is that accessing RAM is much faster and
much more energy efficient than using the external flash for all operations. At
the end of this step, the new symbol table is written back to the external flash
at once.

A challenging task for FlexCup is the management of the application’s data
variables. Each component uses a set of variables, initializing some of them
with predefined values. FlexCup has to cope with possible size changes, changed
initialization data and the addition and the removal of such variables. It needs
to calculate an adequate layout for the storage of the variables in data memory
and needs to set the symbol addresses accordingly. FlexCup also has to prepare
the initial values that are then loaded during the startup of the system.

(3) Relocation Table Replacement This step deals with the replacement of
the relocation table. This task is much simpler than the previous step, because
each binary component contains an individual relocation table sent as part of
the component update. Correspondingly, this step only involves copying the
new relocation table to the appropriate location and, if necessary, shifting the
following tables backward by the right amount of bytes.

(4) Reference Patching The fourth step involves going through the entries
of the relocation tables of all components, and checking whether any of the
references needs to be updated. An update is required for all references coming
from the new component code and for all references to symbols that changed their
destination address during the update. If an update is required, FlexCup jumps

1 It is not possible to use all 4 kBytes of RAM for the symbol table because FlexCup

itself needs 724 bytes of RAM for its operation.



to the address specified in the relocation table and writes the new destination
address value. This procedure strongly benefits from the fact that the change
set of entries in the symbol table is already buffered in RAM and does not need
to be searched for again in flash memory. At the end of the reference patching
step, all references of the components point to the right location in program or
data memory and the code image is ready to be copied to program memory.

(5) Installation and Reboot The last step takes care of copying the pro-
gram code from external flash to program memory and reboots the sensor node
afterwards. This is done using a custom bootloader installed in the bootloader
section of the processor’s program memory.

One important reason for rebooting the sensor nodes are potential layout
changes of the application. Without a reboot, pointer variables might point to
locations in memory that are no longer valid. If the sensor network applica-
tion needs to preserve state despite a reboot, it is necessary to use an external
mechanism that saves the application state to non-volatile memory.

4 Experimental Evaluation

To evaluate the performance of FlexCup in terms of time and energy consumed
for the update of sensor network applications, we compare FlexCup Basic and
FlexCup Diff with two related approaches found in the literature: Deluge [8]
and a diff-based update mechanism (from now on “MOAP-Diff”) available as
part of the MOAP project [9, 14]. Deluge transmits the whole program image as
a monolithic block of code, whereas MOAP-Diff implements a modified version
of Reijers and Langendoen’s original diff algorithm.

4.1 Experimental Setup

For the performance measurements detailed below, we have used a modified ver-
sion of the MICA2 emulator atemu [15] which we calibrated using measurements
on real sensor hardware. The modified version of the emulator includes an imple-
mentation of the external flash memory component found on the MICA2 sensor
nodes and allows precise measurements of the energy consumption and the time
needed to run the algorithms under test. The experimental results have been
obtained by calculating the average results over 20 runs.

Selected Applications For our performance comparisons we have selected
three typical applications that can be downloaded from the TinyOS CVS repos-
itory:2 OscilloscopeRF, Surge and AcousticLocalization. OscilloscopeRF
is a simple application that periodically reads a sensor value and transmits it
via radio to a base station located within transmission range. Surge is similar

2 http://cvs.sourceforge.net/viewcvs.py/tinyos/



to OscilloscopeRF, but includes a multi-hop routing protocol that dynami-
cally builds a routing tree along which sensor readings are forwarded to the
base station. Finally, AcousticLocalization is able to determine the distance
of neighboring sensor nodes by taking advantage of the difference in speed of
radio waves and sound. Table 1 gives details about the complexity of the three
applications showing the respective code size, the number of nesC components
and the number of binary components.

Table 1. Complexity of sample applications

Size Number of nesC Number of binary
Applications (bytes) components components

OscilloscopeRF 11784 39 6

Surge 17096 53 10

AcousticLocalization 24272 69 15

Code Modifications Using the described applications as test cases for the
code update algorithms, we examine three different classes of changes to the
code, ranging from small updates or bug fixes through internal updates affecting
only a single binary component to external changes that imply the modification
and update of several binary components at the same time.

Table 2. Changes performed on the applications

Application Class Code Update

OscilloscopeRF small global constant

OscilloscopeRF small additional call

OscilloscopeRF small sensor reading

Surge internal function exchange

Surge internal wiring configuration

AcousticLocalization external component exchange

Table 2 gives an overview of the changes we have performed for the experi-
ments below, as well as the class they belong to. The three modifications to the
OscilloscopeRF application are relatively simple. They involve changes to the
port data is sent to (global constant), the addition of a call to an initialization
function (additional call), and a modification of the value returned by the sensor
(sensor reading).

The two internal modifications to Surge involve, in the first case, the re-
placement of the shortest-path-first routing algorithm with MintRoute, another
routing algorithm providing the same interface that considers the quality of links
for route selection. The second change involves the removal of the LED interface



used for visual feedback which causes changes to the wiring configuration of the
application. Finally, our last and only external modification changes the routing
algorithm in the AcousticLocalization application to disallow the forwarding
of messages – changing the modified nodes to behave as leaf nodes.

4.2 Size of Components and Meta-Data

The first characteristic that distinguishes one code update algorithm from an-
other is the amount of code and meta-data involved in the process of a code
update installation. We consider two different metrics: (1) the size of the code
update algorithm itself, and (2) the amount of data transmitted over radio for
each update. For the evaluation of the second metric, we assume that both the
original application and the code update algorithm have already been installed in
program memory. Therefore, the sensor node is able to receive the code update
and, depending on the algorithm, process the code image (Deluge), interpret
the diff script (MOAP-Diff), or perform the linking process (FlexCup Basic and
FlexCup Diff).

Table 3. Average size of code update algorithms

Program Code Size (bytes)
MOAP-

Application Deluge Diff FlexCup

OscilloscopeRF 10868 16742 26715

Surge 11326 17213 27466

AcousticLocalization 10650 16728 26692

Table 4. Size of components and meta-data (in bytes)

Transmitted Data Size Flash Memory Data Size

MOAP- FlexCup Basic FlexCup Diff MOAP- FlexCup

Code Update Deluge Diff Meta Code Total Meta Code Total Deluge Diff Basic Diff

global const. 23142 11 799 1198 1997 530 15 545 23142 28538 37337 35885

additional call 23142 1230 801 1202 2003 760 5 765 23142 28542 37343 36105

sensor reading 23142 2835 537 886 1423 523 114 637 23142 28608 36743 35977

function exch. 28652 7684 1056 3258 4314 1110 1587 2697 28652 33440 43561 41944

wiring config. 28652 375 1355 2142 3497 1290 8 1298 28652 34272 42744 40545

comp. exch. 34162 7802 2565 4773 7338 2611 532 3143 34162 40156 58014 53736

Table 3 shows the average size of the three code update algorithms we
evaluate in this paper as they are installed in program memory. MOAP-Diff

is about 55% larger than Deluge, and FlexCup is in turn about 60% larger than
MOAP-Diff. For all three algorithms, the exact sizes differ between applications
because they have to be compiled together with the application code. The re-
sulting size differences are due to differences in the set of system components



already included by the applications and to different optimizations performed
by the nesC compiler. In the case of FlexCup, however, there is a fixed part of
16212 bytes that is compiled and executed independently of the application and
is, therefore, not subject to these effects. As program memory size does not seem
to be a limiting factor for most current sensor network applications, we do not
expect these differences in code size to inhibit the use of FlexCup.

Apart from the size of the code update algorithms and the one-time penalty
that sensor nodes have to pay for their installation, a more relevant metric is
the amount of data to be transmitted when an application is modified. The
left-hand side of Table 4 shows the number of bytes transmitted by Deluge,
MOAP-Diff, FlexCup Basic and FlexCup Diff for performing the six code up-
dates introduced in the previous section. For example, for the modification of
the OscilloscopeRF application so that it returns a different sensor reading
(third code update in Table 4), Deluge has to transmit 23142 bytes, whereas
MOAP-Diff only requires transmitting 2835 bytes. As detailed in section 3, both
FlexCup Basic and FlexCup Diff need to transmit meta-data, i.e., the symbol
and relocation tables, as well as the code of the component that changes. In
total, FlexCup Basic transmits 1423 bytes and FlexCup Diff only 637 bytes.
This implies more than 90% savings in the number of packets comparing FlexCup

Basic to Deluge and more than 75% if we compare FlexCup Diff to MOAP-Diff.

Only in cases where the actual change is very small, like for the change of
a global constant in OscilloscopeRF or the update of the wiring configuration
in Surge, does MOAP-Diff perform much better than any other algorithm under
test. For FlexCup Diff, much of the overhead comes from the transmission of
the new meta-data information. Looking at the pure code size, FlexCup Diff

would easily outperform MOAP-Diff in most cases. In general, FlexCup Basic

only requires between 6% and 21% of the number of transmissions of Deluge.
FlexCup Diff saves more than 75% in the best case compared to MOAP-Diff

and requires less transmission volume than MOAP-Diff in four out of six cases.

However, there is another relevant factor. The right part of Table 4 shows the
size of the information that needs to be stored in flash memory for performing
a given update. In the case of Deluge, this is just the data received over the
radio link, but for MOAP-Diff and FlexCup this also includes the code of already
installed components and meta-data. For that reason, Deluge is in all cases
more efficient than the three other approaches in terms of space complexity.
This might be an important factor in scenarios where the application stores large
amounts of data locally on the sensor nodes before uploading it to a base station.
Although the size of the flash memory on the MICA2 nodes amounts to 512
kBytes and should be sufficient for most applications, long-running applications
might still benefit from the extra space. In general, MOAP-Diff requires between
16 and 25% more space than Deluge. FlexCup Diff needs about 50% more
space and the space requirements of FlexCup Basic are 50 to 70% higher than
the requirements of Deluge depending on the specific code update. Most of the
overhead of the last two approaches comes from the storage of the symbol and
relocation tables.



4.3 Efficiency of the Code Update Algorithms

Let us now look at the performance characteristics of the four code update
algorithms. For the purpose of the experiments below, we measure the efficiency
of the algorithms based on two metrics: execution time and energy consumption.

In general, it is clear that both metrics are not independent from each other
and that a longer execution time usually also implies a higher energy consump-
tion. However, the diverse energy characteristics of the hardware components,
especially the external flash memory and the radio interface, indicate that consid-
ering the execution time alone is not sufficient for determining which algorithm
is more energy-efficient.

In the experiments, we consider execution time and energy consumption
throughout the three phases “Transmission”, “Processing” and “Installation”.
To guarantee a fair comparison between the algorithms, we assume perfect con-
ditions during the transmission phase, ignoring possible collisions, errors and
the specific protocol overhead. To simplify the evaluation, we also assume that
each node receives the code update data exactly once and then forwards it to its
neighbor nodes.

Execution Time Fig. 3 shows the duration of the three phases of the four code
update mechanisms for all six code updates. As one can see, the time required
for installation is dominated by the transmission time in the case of Deluge and
by the processing time for MOAP-Diff, whereas in the case of FlexCup Basic

and FlexCup Diff, transmission and processing times are of similar magnitude.

 0

 10

 20

 30

 40

 50

 60

 70

 80

FDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDD
AcousticLocalization

Component exchange
Surge

Wiring configuration
Surge

Function exchange
OscilloscopeRF
Sensor reading

OscilloscopeRF
Additional call

OscilloscopeRF
Global constant

E
xe

cu
tio

n 
tim

e 
in

 s

Deluge

MOAP-Diff

FlexCup
Basic

FlexCup
Diff

Installation
Processing

Transmission

Fig. 3. Execution times of the code updates

FlexCup Basic and FlexCup Diff are about 4 times faster than MOAP-Diff

and have on average almost 8 times better execution times than those of Deluge.
FlexCup Diff is marginally faster than FlexCup Basic by saving a significant
part of the transmission time while requiring some additional time for processing
the diff script.



In general, MOAP-Diff is faster than Deluge, although large parts of its sav-
ings in transmission time are spent for processing the diff script in the processing
phase. An extreme example can be seen in the ‘function exchange’ case of the
Surge application, where the difference in execution time between MOAP-Diff

and Deluge amounts to only 0.55 seconds. FlexCup Diff is actually slower than
FlexCup Basic in this example with the processing effort outweighing the trans-
mission savings.

Energy Consumption Fig. 4 shows the amount of energy in millijoules con-
sumed by the four code update mechanisms during the three phases of the code
updates. The measurements confirm the good performance of FlexCup compared
to the other approaches, showing that in the best case FlexCup consumes only
an eighth of the energy of Deluge and MOAP-Diff. On the other hand, the re-
sults cannot confirm the relatively good performance of MOAP-Diff compared
to Deluge observed for the execution times of the code updates. Energy-wise,
MOAP-Diff performs worse than Deluge in three out of the six cases. This is
mainly due to the relatively inefficient implementation of MOAP-Diff which uses
a lot of access operations to the external flash memory. These access operations
are very energy expensive on the MICA2 hardware.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

FDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDDFDFBMDD
AcousticLocalization

Component exchange
Surge

Wiring configuration
Surge

Function exchange
OscilloscopeRF
Sensor reading

OscilloscopeRF
Additional call

OscilloscopeRF
Global constant

E
ne

rg
y 

co
ns

um
pt

io
n 

in
 m

J Deluge

MOAP-Diff

FlexCup
Basic

FlexCup
Diff

Installation
Processing

Transmission

Fig. 4. Energy consumption of the code updates

The expensive implementation of MOAP-Diff also explains the inferior per-
formance of FlexCup Diff, which uses the MOAP-Diff algorithm for extracting
its component data. It remains to be investigated whether a more efficient imple-
mentation of the diff approach is able to retain more of the advantage achieved
during the transmission phase and to improve on the results of FlexCup Basic.

Nevertheless, our experiments show that FlexCup Basic and FlexCup Diff,
although similar in energy consumption and execution time, use the sensor node
hardware in different ways. In general, FlexCup Basic transmits more data than
FlexCup Diff, but the latter has extra overhead regarding the decoding of the
binary component to be installed in program memory. Thus, depending on the



physical characteristics of the external flash memory and radio components, it
might be preferable to use FlexCup Basic instead of FlexCup Diff, or vice
versa.

An additional lesson that can be learned from the results in Fig. 3 and 4 is
that counting the number of bytes a code update algorithm needs to transmit
does not necessarily give information about the time and energy efficiency of the
algorithms. All relevant factors, including processing and flash memory access
costs, need to be part of the evaluation.

4.4 Advantages and Limitations of FlexCup

FlexCup exhibits several advantages compared to other code update mecha-
nisms. First of all, it allows for greater flexibility in the exchange of application
and system software components at runtime, thereby offering functionality re-
quired by adaptive system software like TinyCubus. Second, FlexCup is able to
reduce the number of bytes transferred to each sensor node and to minimize the
amount of energy needed for the processing of code updates, which immediately
translates into a better overall energy consumption.

One limitation of FlexCup is its use of external flash memory for the storage
of meta-data and the use of program memory for the storage of the FlexCup

program code. Both are only possible if there is enough free space available after
fulfilling the requirements of the application. Like other code update mecha-
nisms, FlexCup also has to deal with the access characteristics of the platform’s
flash memory. Especially the problem of wear levelling in flash memory remains
to be addressed.

5 Conclusions and Future Work

In this paper we have presented FlexCup a flexible code update mechanism for
sensor networks that offers the functionality and performance required by adap-
tive system software. We have evaluated FlexCup by analyzing several realistic
code updates with the help of emulation tools calibrated on real sensor nodes.
Compared to related approaches, FlexCup was able to perform the same updates
up to 8 times faster while consuming only an eighth of the energy.

We have also shown that the overall code image size of TinyCubus and
FlexCup, as needed for the reconfiguration functionality required by more com-
plex sensor network applications, is comparable to other approaches such as
Deluge and Reijers’ and Langendoen’s diff-based algorithm, although FlexCup

is able to provide more flexibility and adaptation capabilities.
Regarding future work, we would like to explore more complex algorithms for

the management of flash memory and reserved RAM space to further reduce the
time and energy consumption for linking in FlexCup. We are also considering
the use of more efficient diff algorithms that would contribute to reducing the
amount of energy needed for the execution of the diff scripts in FlexCup Diff.
Finally, it would also be interesting to evaluate the influence of different hardware



properties on our implementation by porting FlexCup to other platforms such
as the EYES sensor nodes.

References

1. Marrón, P.J., Lachenmann, A., Minder, D., Hähner, J., Sauter, R., Rothermel, K.:
TinyCubus: A flexible and adaptive framework for sensor networks. In: Proc. of
the 2nd European Workshop on Wireless Sensor Networks. (2005) 278–289

2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for networked sensors. In: Proc. of the 9th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems. (2000)
93–104

3. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. of the
ACM SIGPLAN 2003 Conf. on Programming Language Design and Implementa-
tion. (2003) 1–11

4. Dunkels, A., Grönvall, B., Voigt, T.: Contiki – a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop
on Embedded Networked Sensors 2004 (IEEE EmNetS-I). (2004)

5. Levis, P., Culler, D.: Maté: A tiny virtual machine for sensor networks. In: Proc.
of the 10th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems. (2002) 85–95

6. Liu, T., Martonosi, M.: Impala: A middleware system for managing autonomic,
parallel sensor systems. In: Proc. of the 9th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming. (2003) 107–118

7. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
support sensor network applications. IEEE Network 18 (2004) 6–14

8. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol
for network programming at scale. In: Proc. of the 2nd Intl. Conf. on Embedded
Networked Sensor Systems. (2004) 81–94

9. Stathopoulos, T., Heidemann, J., Estrin, D.: A remote code update mechanism for
wireless sensor networks. Technical Report CENS-TR-30, University of California,
L.A. (2003)

10. Reijers, N., Langendoen, K.: Efficient code distribution in wireless sensor networks.
In: Proc. of the 2nd ACM Intl. Conf. on Wireless Sensor Networks and Appl. (2003)
60–67

11. Jeong, J., Culler, D.: Incremental network programming for wireless sensors. In:
First IEEE Comm. Soc. Conf. on Sensor and Ad Hoc Communications and Net-
works. (2004)

12. Tridgell, A.: Efficient Algorithms for Sorting and Synchronization. PhD thesis,
The Australian National University (1999)

13. Koshy, J., Pandey, R.: Remote incremental linking for energy-efficient reprogram-
ming of sensor networks. In: Proc. of the 2nd European Workshop on Wireless
Sensor Networks. (2005) 354–365

14. Yeh, T., Yamamoto, H., Stathopolous, T.: Over-the-air reprogramming of wireless
sensor nodes. UCLA EE202A Project Report (2003) http://lecs.cs.ucla.edu/
∼thanos/EE202a final writeup.pdf.

15. Polley, J., Blazakis, D., McGee, J., Rusk, D., Baras, J.S.: ATEMU: a fine-grained
sensor network simulator. In: Proc. of the First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks. (2004)


