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Abstract— With the proliferation of wireless communication
and sensor technology, the importance of location-based appli-
cations has tremendously increased. In order to support these
applications, services that implement algorithms for the efficient
processing of spatial queries, such as range and k-nearest
neighbor queries, are definitely beneficial. In this paper, we
propose definitions of probabilistic range and k-nearest neighbor
query semantics that take into account the inaccurate position
information acquired from positioning systems. We introduce
efficient algorithms for distributed storage of the dynamic infor-
mation captured by positioning sensors on mobile network nodes,
and for processing the aforementioned queries in mobile ad hoc
networks. We show by evaluation that the studied algorithms
incur small communication costs, and that the query algorithms
return accurate results in a timely manner.

I. INTRODUCTION

The design and implementation of applications for mobile
ad hoc networks (MANETs) creates new challenges for com-
puter scientists and developers since they need to provide
efficient algorithms for data processing even in the presence
of mobility [11], [17], [29]. In this setting there are a variety
of application scenarios such as search-and-rescue operations,
autonomous building surveillance, inter-vehicle networking or
urban community networks (see also [21]) that motivate the
need for novel approaches. In such scenarios, location-based
applications and services that explicitly take into account the
position of mobile users play a crucial role. In addition, the
proliferation of sensors integrated on mobile devices allows
to capture objects in the vicinity of mobile nodes, which
tremendously increases the amount of dynamic data that must
be handled in the mobile ad hoc network.

More specifically, spatial queries such as range and k-
nearest neighbor queries, are frequently used in location-based
applications to retrieve objects inside of a geometric region, or
objects that are closest to a given position. The combination
of mobility and the need for efficient algorithms for the
evaluation of spatial queries and the underlying data storage
give rise to two fundamental challenges, both of which are
addressed in this paper.

First, since every sensor measurement is subject to inaccu-
racy, values that represent the position of objects in mobile
environments are also inaccurate. Therefore, it is necessary
to reconsider the semantics of position information (usually
point coordinates in the literature) and to redefine them in
order to take into account the degree of accuracy provided
by physical sensors. For example, GPS [9] and WLAN-

based systems like [28] typically allow us to determine the
position of a mobile object only within a few meters which,
depending on the scenario, unless explicitly handled could lead
to erroneous results and limitations in the interpretation of
query results. For example, consider a worker in a factory
scenario using range queries to determine which robots are
located within a restricted area. If the application uses point
coordinates and does not take into account the confidence of
each position reading, the user is unable to estimate the level
of confidence of the answer and, in the end, she might not
be able to know for sure which robots are located in the
area. In this case, it seems clear that point coordinates do not
provide enough information and that extensions towards more
expressive location semantics, such as probabilistic spatial
query semantics, are needed.

The second challenge deals with the design and implementa-
tion of spatial query algorithms that leverage the information
contained in these new semantics, while at the same time,
providing scalability and efficiency even in the presence of
mobility. Since MANETs are expected to be composed of
large numbers of mobile devices that cover a service area, it is
essential to design algorithms that scale with both, the number
of devices and the size of the service area. Two issues are
relevant in this context. First, data is generally only relevant
within a certain scope (locality of information) which, in some
cases, might be defined by the user. Secondly, spatial queries
operate on the accounts of position information. Therefore,
algorithms for the evaluation of spatial queries need to take
the geometry of the service area into account. Under these
circumstances, localized data storage and query processing can
be then used to provide the necessary scalability. Additionally,
in order to account for node mobility it is possible to design
efficient handoff algorithms that ”keep the data in place”.

In this paper, we provide new definitions for probabilistic
spatial query semantics and present novel algorithms for
the evaluation of probabilistic range and k-nearest neighbor
queries in mobile ad hoc network. We further present algo-
rithms that efficiently store data gathered by mobile nodes on
dedicated data servers that tightly integrate with the proposed
query algorithms to achieve overall efficient operation. As
shown in the experimental evaluation section, our algorithms
scale to large networks and handle node mobility in an efficient
way.

The rest of our paper is structured as follows. Sec. II
discusses related work in the fields of spatial queries. In



Sec. III and IV, we define the semantics of range and k-nearest
neighbor queries based on inaccurate position information and
present our system model. Sec. V describes our algorithms
for data storage and the processing of range and k-nearest
neighbor queries in MANETs. We analyze the performance of
our update and k-nearest neighbor query algorithm in Sec. VI.
Sec. VII concludes this paper and states implications for future
work.

II. RELATED WORK

To the best of our knowledge, no previous work exists that
integrates algorithms for data storage with suitable algorithms
for processing probabilistic spatial queries in MANETs.

Related Work Network Model Query Type Object
Locations

RLS [2] MANET,
GLS [15] mobile WSN position queries N/A
HLS [14]
GHT [20] stationary WSN ID-based queries
RR [24] MANET, ID-based queries

mobile WSN N/A
GCLP [26] MANET ID-based queries
DIFS [12] 1D range queries
DIM [16] multi-dimensional point

range queries coordinates
Peer-Tree [7] stationary WSN k-NNQ; reverse,

constrained NNQ
STQP Frame- historical range
work [6] queries
KPT [27] k-NNQ
NNQ [22] k-NNQ
k-NNMP [25] centralized systems k-NNQ point
CNN [10] constrained NNQ coordinates
RNN [1] reverse, k-NNQ
GNN [18] group NNQ
FNNQ [23] federated databases k-NNQ accurate

coordinates
Our Work mobile WSN, range, k-NN location

MANET queries areas and
pdfs

TABLE I

RELATED WORK IN THE FIELD OF SPATIAL QUERIES.

Query algorithms can be divided into several groups ac-
cording to Table I. The first group (Randomized Location
Service (RLS) [2], Geographic Location Service (GLS) [15],
and Hierarchical Location Service (HLS) [14]), contains rep-
resentative work on location services suitable for mobile ad
hoc networks (MANETs) and also WSNs. For the purpose
of location management and communication based on node
addresses, only position queries are supported. For the same
reason, only network nodes may be target objects, which
simplifies the management of position information signifi-
cantly. We additionally support the observation of objects in
the physical world by sensors integrated into the network
nodes and contribute suitable algorithms for the storage of
data gathered by network nodes and for processing range and
k-nearest neighbor queries based on that data.

In the second group, we have included algorithms for ID-
based queries. Geographic Hash Tables (GHT) [20], Ren-
dezvous Regions (RR) [24], and the Geographic Content Loca-
tion Protocol (GCLP) [26] are designed for ID-based queries.
RR are a generalization of the GHT for mobile networks using

regions instead of points for rendezvous between data updates
and queries. GCLP allows to locate content in a MANET based
on intersections between update and query message paths.
As in the case of location management, ID-based queries
require an index that builds on the ID domain, as opposed
to spatial queries. In both of the previously mentioned groups,
location semantics are not relevant to query processing and
thus omitted. In our work, we define query semantics that build
on more complex location semantics since they are essential
during the processing of spatial queries.

The third group contains work on spatial queries in wireless
sensor networks where sensor nodes are considered station-
ary. Whereas the Distributed Index for Features in Sensor
Networks (DIFS) [12] and the Distributed Index for Multi-
Dimensional Range Queries (DIM) [16] support only range
queries in one or more dimensions, the Peer-Tree approach [7]
is suitable for spatial queries in general. The authors of [6] and
[27] propose algorithms for processing historical range and k-
nearest neighbor queries, respectively. Their approaches use
simple data collection strategies that may potentially lead to
very inefficient processing of the query itself. Common to all
approaches is that they were designed for stationary networks.
On the other hand, we concentrate on MANETs, which
requires explicit handling of mobility so that the integrity of
the data store is retained.

Exemplary work on nearest neighbor queries for centralized
systems is summarized in the fourth group. Variants include
the classic k-NNQ found in [1], [22], [25], constrained NNQ
[10], reverse NNQ [1], and group NNQ [18]. The Peer-Tree
algorithm [7] is a direct translation of these centralized P2P
indexes to wireless sensor networks and therefore, does not
address node mobility. Obviously, these approaches build on
a centralized system, which is fundamentally different from
the dynamic distributed network model we consider in our
work.

Finally, the authors of [23] present distributed algorithms for
processing federated k-nearest neighbor queries (FNNQ) over
loosely coupled data sources connected through the internet,
hence, they do not consider mobile nodes that play the role
of data servers. The data model used only includes accurate
locations of stationary two-dimensional objects and does not
consider inaccurate positions of mobile objects.

The discussed approaches have in common that locations,
either in one or two dimensions, are given in terms of accurate
coordinates. In contrast, we will define probabilistic range and
k-nearest neighbor queries in the next section that are fully
implemented in our algorithms presented in Sec. V.

III. CONCEPTS

Let us now formalize the notion of position in the presence
of sensor measurements that lead to inaccurate position infor-
mation and then define our semantics for probabilistic range
and k-nearest neighbor queries.

The general notion of value uncertainties is well established
in the literature and in the field of probabilistic queries used
in [3], [4] and [5]. We apply these concepts to the case of



two dimensions in Cartesian space and provide Definitions 3.1
to 3.3 as the basis for our query semantics. We define the
location of an object as the combination of a location area
and a location probability density function (pdf) for an object
oj , as illustrated in Fig. 1.a.

Definition 3.1: The location area Lj of an object oj is the
smallest subset Lj ⊆ R

2 inside of which object oj is located
with probability 1.

Definition 3.2: The location pdf �j(X) of an object oj with
X = (x, y) ∈ Lj is any two-dimensional pdf over Lj that
satisfies the condition

∫
Lj

�j(X)dLj = 1.
Note that the equality holds because of our assumption that

object oj is always located inside of Lj . The location pdf
can be used to compute the probability Pj that an object oj is
located inside a subset of its location area L′

j ⊆ Lj , or written
formally, Pj =

∫
L′

j
�j(X ′)dL′

j .1

Definition 3.3: The location of an object o j is defined as
the pair composed of location area Lj and location pdf �j of
oj ,

locj := (Lj , �j)

Example 3.1 (location): A concrete example of a loca-
tion is the use of circular-shaped location areas and two-
dimensional uniform location pdfs. Then, the location of an
object may be specified as loc = (L, �) := ((X − M)2 ≤
r2, 1/πr2) where X is any position inside of L, and M and
r denote the center and radius of L, respectively.

A. Probabilistic Range Query

Using the notion of location, we now define semantics
for probabilistic range queries. Previous work [3]–[5] has
not considered the fact that the position of some objects
may be too imprecise to be able to return an appropriate
answer. We make the extension of Equation (1) in [8] to
two dimensions in Cartesian space. We further introduce an
additional query parameter that allows us to omit data objects
from query processing if the degree of inaccuracy in the
position information of these objects is too large. Our query
semantics consists of two parts: the inclusion condition and
the inaccuracy threshold. We have illustrated these concepts
in Fig. 1.b. By R we denote the range query region.

Definition 3.4: The inclusion condition for an object oj

with positions X ∈ Lj is satisfied iff the probability that oj

is located inside of a geometric region R is greater than or
equal to the inclusion threshold 0 < PPRQ ≤ 1, and is given
by:

P (X ∈ R) =
∫

R

�j(X)dR ≥ PPRQ

Example 3.2 (inclusion condition): Assume the inclusion
threshold PPRQ = 0.5. In Fig. 1.b, the inclusion condition is
never satisfied for L1 because L1∩R is empty. It is always true

1Without loss of generality, we make the assumption of independent
probabilities in the remainder of this paper, which does not impact the
formulation of our concepts or the algorithms presented in Sec. V.

L2

R

L1

Location Area Lj

Location
pdf �j

oj

a. Location representation b. Probabilistic range query
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Fig. 1. Locations and range queries.

for L3 and L4 because their intersection with R is completely
contained in R. For L2, the inclusion condition is not satisfied
for PPRQ = 0.5.

Definition 3.5: The inaccuracy function Fα(locj) =
Fα(Lj , �j), whose argument is a location composed of a
location area and a location pdf according to 3.3, evaluates to a
single value αj ≥ 0 that describes the degree of inaccuracy of
object oj’s location. The value αj = 0 represents an accurate
location.

Example 3.3 (inaccuracy function): Let the location of an
object, defined as in Example 3.1, be loc = (L, �) with L :=
(X − M)2 ≤ r2 and � := 1/πr2. The degree of inaccuracy
is defined using the location area only, because the uniform
distribution does not give any additional information on the
degree of inaccuracy. Therefore, we may define the inaccuracy
function to be Fα(loc) = Fα(L, �) = Fα(L) =

√
L/π. That

is, we use the radius of the location area to quantify the degree
of inaccuracy of location loc. While Fα(L) = 0 represents a
point coordinate (with zero radius), any positive number may
be used to express potentially high degrees of inaccuracy.
The maximum degree of inaccuracy may be bound by the
maximum error of a particular localization technology.

Definition 3.6: The inaccuracy threshold α ≥ 0 defines
the maximum degree of inaccuracy allowed for an object to
take part in the evaluation of a spatial query.

The inaccuracy threshold is used to allow an application
to specify that only objects whose position is not beyond a
maximum degree of inaccuracy will be considered in a query.

Example 3.4 (inaccuracy threshold): In Example 3.1, we
may define the inaccuracy threshold for the given location
by a maximum tolerable radius of a given location area, for
example, α = 5.

Definition 3.7: Given the range query region R, the in-
clusion threshold PPRQ, the inaccuracy function Fα(locj)
according to Definition 3.5, and the inaccuracy threshold α,
the probabilistic range query result, denoted by RPRQ, is
defined as:

RPRQ = {oj | P (Xj ∈ R) ≤ PPRQ ∧ Fα(locj) ≤ α}

Intuitively, any object that is contained in R with the given
minimum probability PPRQ and whose degree of location
inaccuracy is smaller than or equal to the inaccuracy threshold
is included in the query result RPRQ.



B. Probabilistic k-Nearest Neighbor Query

In [3] the authors define a type of nearest neighbor query
such that the result set definitely contains the 1-nearest
neighbor, which might lead to an indefinite and potentially
large number of returned data objects. The proposed query
semantics do not cover the case where k > 1 and they do
not allow to specify a limit in the degree of inaccuracy that
is allowed for objects to take part in the query evaluation. In
the following, we propose semantics for k-nearest neighbor
queries that defines exactly k objects that are considered
nearest to a reference location given an inaccuracy function
and threshold.

For that purpose, we define the nearer relation for two
objects oj and ok based on Definitions 3.1 to 3.3. This relation
allows us to determine exactly k nearest objects relative to a
position pNN.

Let pNN = (xp, yp) be the reference coordinate from which
the k nearest objects are to be determined. To simplify our
notation, we introduce a polar coordinate system whose origin
is pNN. Fig. 2.a illustrates the location area Lj of an object in
a polar coordinate system. The location pdf is then rewritten
as �j(X ′), with X ′ = (r, ϕ), where r2 = (x−xp)2+(y−yp)2

and tan ϕ = (y − yp)/(x − xp).

�max

�min

rmin

rmax

r1
r2

pNN

Lj

Lk
X1

X2

Lj

( )r,�

y

p x yNN = ( , )p p

x

y'

x'
( , )x y0 0

a. Polar coordinate transformation. b. Nearer relation between objects.

oj

okoj

Fig. 2. Notion of nearer.

The definition of the nearer relation is illustrated in Fig. 2.b
for the location areas Lj, Lk of two objects oj , ok. Intuitively,
oj is closer to pNN than ok if oj is closer in ”most of the
cases”. In Fig. 2.b, oj is closer to pNN for all pairs of positions
X1 ∈ Lj , X2 ∈ Lk for which X1 is closer to pNN than X2.
By integrating over products �j · �k of the location pdfs of
oj , ok for all pairs of positions for which oj is nearer to pNN

than ok, we obtain the following definition:
Definition 3.8: The probability Pjk|pNN , by which an object

oj is nearer to position pNN than ok , is defined as:

Pjk|pNN =

r1=rmax
ϕ1=ϕmax∫∫
r1=rmin
ϕ1=ϕmin

�j(X1)

⎡
⎢⎢⎣

r2=rmax
ϕ2=ϕmax∫∫

r2=r1
ϕ2=ϕmin

�k(X2)dR2

⎤
⎥⎥⎦dR1,

where X1 = (r1, ϕ1) and X2 = (r2, ϕ2), as well as dR1 =
r1dr1dϕ1 and dR2 = r2dr2dϕ2.

Definition 3.9: For two objects oj , ok, object oj is nearer
to the coordinate pNN than ok if the following holds:

oj < ok|pNN ⇐⇒ Pjk > 0.5

In other words, oj is nearer to pNN than ok iff the probability
that oj is nearer than ok is greater than 0.5. It is also possible
that oj and ok have the same distance to pNN:

Definition 3.10: Two objects oj , ok, have the same distance
to pNN if the following holds:

oj = ok|pNN ⇐⇒ Pjk|pNN = Pkj |pNN = 0.5

The definition of the k-nearest neighbor query result RPNQ

is based on Definition 3.9 and 3.10. In addition, we use
the inaccuracy threshold of Definition 3.6 to only include
objects in the query processing whose location is not beyond
a particular inaccuracy threshold α.

Definition 3.11: The probabilistic k-nearest neighbor
query result, denoted by RPNQ, is defined as:

RPNQ = {o1, . . . , ok} :
∀or ∈ RPNQ : Fα(�j) ≤ α ∧
∀or ∈ RPNQ, os �∈ RPNQ :
αs ≤ α ⇒ or ≤ os |pNN

Note that if the property in Definition 3.10 holds for some
objects the query result may be non-unique.

IV. SYSTEM MODEL

Our system model considers two different types of entities:
perceivable objects and mobile nodes, both located inside of
a fixed geographic service area, which we denote by A. For
ease of discussion and without loss of generality, we assume
a fixed number of objects and nodes inside of A.

Perceivable objects, denoted by POj with 1 ≤ j ≤ m,
are an abstraction for any kind of entity whose state can
be perceived. They may correspond to physical objects and
people, or even to mobile nodes themselves whose state, in
particular, location, may be of interest. Every PO j has a
physical position qj(t) ∈ A expressed by means of Cartesian
coordinates. Due to mobility, positions are a function of
time. Mobile nodes MNi, with 1 ≤ i ≤ n, are located at
physical positions pi(t) ∈ A. Mobile nodes may assume any
of the following roles: observers, data servers, or query clients.
Observers are able to perceive objects POj in their vicinity
and create a corresponding data object oj that contains a
unique object identifier oj .id, the observed location oj .loc, and
the observation time oj .tobs; data servers, denoted by DSk are
able to store copies of data objects in a local database; query
clients are able to execute spatial queries. Multiple roles may
be assumed by mobile nodes at the same time.

V. ALGORITHMS

The goal of this section is to design an integrated set of
algorithms for the storage of imprecise position information
and the processing of probabilistic range and k-nearest neigh-
bor queries that fulfills the following properties:

• support for location semantics as defined in 3.3;



• algorithm scalability as the size of the service area and
the number of nodes increase;

• algorithm efficiency by localized data storage and query
evaluation;

• resilience of the distributed data store to node mobility.

Concerning the family of spatial queries, we can identify the
following additional important characteristics. On one hand,
the argument of a range query is a fixed geometric region,
which allows us to immediately determine the geometric
region in the network where objects may have been observed.
On the other hand, determining a fixed geometric range that
includes the k objects of a k-nearest neighbor query is not
possible, because it is unknown in advance how far these
objects are located from the query position. This important
difference is addressed by our data storage algorithm to
guarantee efficient processing of both types of queries.

In Sec. V-A we introduce a mapping as the basis for
our algorithms that defines which data objects are stored
on which data servers, and we introduce our data storage
algorithm. Sec. V-B describes our relocation strategy to tackle
the problem of data server mobility. In Sec. V-C and V-D, we
describe in detail our algorithms for processing probabilistic
range and k-nearest neighbor queries, respectively.

A. Data Storage

The data mapping approach used is based on a subdivision
of the service area A into data sectors Sr ⊆ A similar to
existing approaches (e.g. [15], [24]). The difference of our
approach is that we allow arbitrary geometric shapes of data
sectors so that adaptation to particular underlying topographies
or node distributions (e.g. in urban scenarios) is possible. We
assume that A is completely covered by the union of the data
sectors and that sectors do not overlap.

Data objects are mapped to data servers in two steps. First,
we define that each data sector Sr is associated with exactly
one data server DSk at any point in time. In general, the
association holds if Sr ∩ Li �= ∅, where Li is the location
area of DSk according to Def. 3.1, but it is possible that DSk

is temporarily located outside of its associated data sector.
Second, we define that each data object oj is associated with
data sector Sr if the location area Lj of oj overlaps with Sr,
that is, if Lj ∩ Sr �= ∅. Finally, we define that object oj will
be stored in the local database of data server DSk if both are
associated with the same data sector Sr.

Our data storage algorithm delivers data objects generated
from observations of perceivable objects to data servers ac-
cording to the defined data mapping. Let MN i be an observer
capturing the state of a perceivable object POj . An observa-
tion may occur in two situations: either MNi discovers POj

when they approach each other, or POj was not observed
for a fixed time interval while being within sensing range of
MNi. Upon observation, MNi creates oj from the perceived
state of POj . Then, MNi determines which data servers DSk

will store a copy of oj according to the data mapping. Fig. 3
shows the situation where Lj overlaps with two data sectors
Sr and Sr+1. It follows that two updates, each containing a

Sr Sr+1
MNi

DSk

DSk+1

update

update

POj

Lj

Fig. 3. Data storage algorithm.

copy of oj , are sent to DSk and DSk+1. For that purpose, we
implemented a suitable unicast protocol based on GPSR [13]
that sends an update in two steps. First, the update is sent
towards the data sector Sr associated with oj . This requires
only a geometric position of the target sector, from which we
assume that it is known to all nodes. Then, a suitable local
routing protocol, such as AODV [19], may be used to forward
the packet to DSk. Upon reception of the copy of oj at a data
server DSk, the object is inserted into the local database if the
observation time is more current than that of an existing copy
of oj , or if a copy does not exist.

B. Data Relocation

Relocating the contents of a server’s local database is es-
sential for keeping data ’in place’ while servers move between
data sectors. Due to the lack of space, we will describe only
briefly our relocation strategy. Based on a changeover condi-
tion a data server DSi decides to relocate its database contents
to another server DSj . To consider different scales of server
mobility, the predicate of the changeover condition combines
spatial and temporal aspects. For low-mobile servers, a timeout
limits the amount of time a server remains responsible for its
associated data sector. For the case of higher mobility, a spatial
condition triggers when the server reaches a critical distance
from its associated data sector. Electing a new data server DS j

is based on similar characteristics. Currently, DSi elects the
node closest to the center of the data sector with which it is
associated. DSi is able to determine this node solely based
on position information stored in its local database. Finally,
the database contents of DSi are transferred to the newly
elected server using a robust relocation protocol. Only those
objects will be relocated whose observation time is sufficiently
new. This lifetime strategy is suitable in our context, because
position data is usually highly dynamic. Data server DS j takes
over as soon as it will have fully built its local database from
DSi’s database contents.

C. Range Query Processing

Let R and α denote the query range and inaccuracy thresh-
old according to Definition 3.6.

The processing of a probabilistic range query (pRQ) on a
mobile node MNi starts by determining a list S that contains
identifiers of all data sectors that must be queried from a
globally known list Sglobal of sector identifiers. For that, an
overlap test is used to select all data sectors that may be



associated with data objects contained in R. Partial pRQs are
then sent to every data sector in S. In Fig. 4, MN i sends partial
pRQs to two data sectors, because R overlaps with both Sr

and Sr+1.

Sr Sr+1MNi

DSk

R

DSk+1

Lm Ll

Lj

Fig. 4. Range query algorithm.

It is suitable to select a proxy node that is located near
the query range to process the range query on behalf of the
query client. A simple yet effective method is to select the
mobile node nearest to the center of the query range. Using the
concept of a proxy node, the number of hops that are required
to send a partial query and, consequently, the required total
communication costs for a query, decreases significantly.

According to the two-step mapping described previously,
those data servers that are associated with a sector in S will
receive a partial pRQ. On reception, a data server uses a local
processing strategy for the partial query that returns objects in
R according to the particular location semantics used. If the
local strategy is correct, our data mapping scheme guarantees
that the processing of the overall query is also correct. The
result is then sent back to MNi. Partial query results Respart

received by MNi are aggregated into the final result.

D. Nearest Neighbor Query Processing

Processing probabilistic k-nearest neighbor queries (pNQs)
bears the difficulty that a bounding area that contains the k
nearest objects is unknown beforehand. However, our data
mapping approach allows for an efficient processing strategy
in this situation. For that, we use a two-phase approach.
During the heuristic phase, k objects oj are preselected to
determine the maximum range in which additional objects
must be considered to compute the final query result. The
selection strategy is realized by using partial pNQs executed
in a sequence that allows us to find k candidate objects quickly
and whose distance to the real k nearest neighbors is small.
This step is essential to minimize additional communication
costs required to complete the query. During the aggregation
phase, all data servers that may contain objects that are nearer
to pNN than any of the objects determined during the heuristic
phase are queried by means of a partial pNQ. The final result is
then aggregated by using the nearer relation in Definition 3.9
and 3.10. In the following, MNi is the proxy node processing
the query on behalf of the client and pNN denotes the query
reference location.

The processing of a pNQ begins in the PROCESS-PNQ
procedure. Argument k is the query parameter. To limit the
search range of a pNQ in case object density is low or for

large values of k, we use a maximum search radius, denoted
by r. It may be specified by the query client and upper bound
by the algorithm to avoid the dissemination of partial queries
across the whole network.

PROCESS-PNQ(k, pNN, α, r)
1 Res← ∅

2 S ← Sglobal.ORDER-BY-DISTANCE-TO(pNN)
3 SEND-PARTIAL-PNQ(k, pNN, α, S.REMOVE(0))
4 SET-HEURISTIC-TIMEOUT(theu)

After initializing the final result Res to the empty set, the
algorithm creates a copy of the global sector list that contains
all sectors ordered by their distance to pNN (line 2). The
heuristic phase starts by sending a partial pNQ to the first
sector in that list (line 3), which is the data server associated
with data sector Sr where pNN ∈ Sr. Note that this sector
must be queried in any case, because it may always contain
an object nearer to objects in any other data sector. Fig. 5
illustrates the sending of the partial query during the heuristic
phase.

Sr Sr+1

pNN

MNi

DSk C

heuristic
phase

aggregation
phase

DSk+1

Lm

Lj

Ll

Fig. 5. Nearest neighbor query algorithm.

Similar to the case of a range query, a partial pNQ is
processed locally at DSk, by considering only data objects
whose location area overlaps Sr. The implementation of the
local processing strategy again depends on the query semantics
used, making our algorithm independent of the semantics used.

Any partial result received by MNi is handled in the
RECEIVE-PARTIAL-PNQ-REPLY procedure:

RECEIVE-PARTIAL-PNQ-REPLY(Respart)
1 update final with partial query result
2 for i← 0 to Respart.SIZE()
3 do if not Res.CONTAINS(Respart[i].id)
4 then if Res.SIZE() < k
5 then Res.ADD(Respart.REMOVE(i))
6 else if ∃j : Respart[i].loc <
7 Res[j].loc | pNN ∧
8 ∀k : Res[k] ≤ Res[j] | pNN

9 then Res[j].REPLACE(
10 Respart.REMOVE(i))
11
12 if phase = heuristic
13 then if Res.SIZE = k
14 then AGGREGATE-PNQ(k, pNN, a, r)
15 else if DISTANCE(S[0], pNN) < r
16 then SEND-PARTIAL-PNQ(
17 k, pNN, a, S.REMOVE(0))
18 else FINISH-PNQ
19 else if phase = aggregation



20 then S.GET(Respart.s). status = received
21 terminate aggregation if known that
22 all partial queries returned
23 if ∀s ∈ S : s. status = received
24 then FINISH-PNQ

For both the heuristic and aggregation phase, the incoming
partial query result is merged into the final result (line 2-10).
For this, every object o′ in Respart is tested for containment
in Res (line 3). Only if a copy o does not already exist in Res
and Res contains less than k objects, o′ is inserted (line 5). If
Res already contains k objects, o′ replaces o in Res only if
o′ is nearer to pNN than o and if o is the object furthest away
from pNN from all other objects in Res (line 9-10).

The heuristic phase continues by testing if k objects were
found (line 13). If so, the aggregation phase begins (line 14),
otherwise, it is checked whether there exist more data sectors
that may contain data objects whose distance to pNN is less
than the maximum search radius r (line 15). If so, MN i queries
other sectors S ′

r with increasing distance to pNN (line 16-17),
otherwise, the query terminates and returns less than k objects
(line 18).

Based on the result Res generated in the heuristic phase,
node MNi determines those sectors that must additionally
be queried to complete the final result. For that, the smallest
circle C is constructed that contains the location areas of all
determined objects and whose center is pNN. This is shown
in the AGGREGATE-PNQ procedure (line 2-5). In Fig. 5 two
objects with location areas Lj , Lm were retrieved from DSk

in the heuristic phase for a 2-nearest neighbor query. In the
example, C contains another object’s location area L l that
was not found during the heuristic phase. All sectors that
were already queried in the heuristic phase are left out in the
aggregation phase (line 8-10). For each remaining sector, we
send partial pNQs (line 13-14). In Fig. 5, only Sector S r+1 is
queried in the aggregation phase to retrieve the object whose
location area is Ll.

AGGREGATE-PNQ()
1 compute circle C inside of which we must further look
2 C.ragg ← 0
3 for each o ∈ Res
4 do dmax ← MAXp∈o.loc(DISTANCE(p, pNN))
5 C.ragg ← MAX(C.ragg, DISTANCE(dmax, pNN))
6
7 prune list of sectors that still overlap with C
8 for each s ∈ S
9 do if not OVERLAPS(s, C)

10 then S.REMOVE(s)
11
12 send partial queries
13 for each s ∈ S
14 do SEND-PARTIAL-PNQ(k, pNN, a, s)
15
16 SET-AGGREGATION-TIMEOUT(tagg)

Each result returned during the aggregation phase is merged
at MNi into the final result Res and each sector queried during
the aggregation phase is annotated with the received state (line

20 in the RECEIVE-PARTIAL-PNQ-REPLY procedure). This
allows us to determine if all partial results were collected (line
23), and the aggregation phase may terminate before the ag-
gregation timeout occurs. Upon completion of the aggregation
phase, the query result is returned to the query client.

VI. EVALUATION

To validate the performance of our algorithms we have con-
ducted a set of experiments using the 802.11 implementation
of the network simulator ns-2. We simulate 80 nodes and
160 objects located within a service area of 400 × 400 m. Both
mobile nodes and perceivable objects move using the random
waypoint mobility model with a fixed speed of 1.5 m/s and a
pause time of 30 seconds. To analyze the impact of the data
mapping approach discussed in Sec. V-A, we assume that a
mobile node is able to determine the location of a perceivable
object with an accuracy of 10 m. Table II summarizes the
parameters that impact algorithm performance.

System Parameter Default Value
simulation time 360 s
medium bandwidth 11 Mbit/s
service area 400 m × 400 m
number of sectors 4 (100 m × 100 m)
number of nodes 80
node speed 1.5 m/s
transmission range 100 m
sensing range 25 m (≈ RFID)
position inaccuracy 10 m (≈ GPS)
number of objects 160
object speed 1.5 m/s
observation interval 3 s (+ discovery)
object lifetime 10 s (soft state)
query rate 1/30 n s−1

query parameter k 3

TABLE II

SYSTEM PARAMETERS

We focus on the analysis of the storage and k-nearest neigh-
bor query algorithm and concentrate on the impact of system
parameters on these algorithms. Note that the detailed analysis
of algorithm-specific properties, such as strategies of timeout
selection and partial query scheduling are optimizations of our
proposed algorithms and are not discussed in this paper. In the
following, we discuss measurement results with respect to the
performance metrics query accuracy and latency as well as
query and storage cost.

The query accuracy metric describes the quality of the
result returned by the k-nearest neighbor query. Because
comparison to related work is impractical, we have performed
comparative measurements with respect to the model-based
optimum result. That result reflects the situation where a query
is processed based on the most current data at query time
that was observed by mobile nodes, which corresponds to
the case of a single centralized storage. This is the optimum
case that can be achieved in the MANET at all. Let Rmod =
{o1, . . . , os} and R = {o1, . . . , ot} denote the model-based
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Fig. 6. Average query accuracy with respect to the model-based optimum
as a function of the number of perceivable objects.

optimum result and the result returned by our query algorithm,
respectively. The accuracy of a k-nearest neighbor query with
respect to the model-based optimum result, denoted by Amod,
is defined as Amod = |R ∩ Rmod| / |Rmod|.

Fig. 6 shows the results for the average query accuracy
with respect to the model-based optimum result. We observe
that the maximum achieved degree of accuracy is somewhat
above 92 %. The deviation from the optimum is due to the
soft state approach that we have chosen. For the selected
object lifetime value of 10 seconds stale copies of object
observations may exist on data servers in different sectors.
Therefore, partial queries may be evaluated on inconsistent
data. When the number of objects is beyond 250, we observe
a sharp drop-off. The reason lies in the fact that in the model-
based optimum, a single data server is assumed to receive
object updates with optimum (zero) latency, whereas in the
real system the propagation of each object update takes a
certain amount of time. In addition, when the number of
objects increases, the distance between them decreases and
more and more objects have a similar distance to the position
pNN. Information not up-to-date has a greater influence on
the ordering of objects. Together with the time-lag between
object updates in the model-based optimum result and the
simulated system, query accuracy inevitably decreases. These
effects may only be compensated if the observation interval
is increased. We observe that the dependence of the average
query accuracy from different values of k may be neglected.
Although we do not send redundant partial queries, the maxi-
mum accuracy is larger than 92%. This shows that our query
algorithm performs well under the given system constraints
and bears additional potential for optimizations. Fig. 7 shows
the average query accuracy when point coordinates are used
instead of inaccurate position information. The query accuracy
for about 80 perceivable objects is virtually the same as for the
respective results in Fig. 6. With increasing number of objects
though, accuracy is greater for point coordinates. The reason
is related to the fact that when location areas are used, the
mapping introduced in Sec. V-A leads to a greater number of
object copies stored at data servers in different data sectors
than in the case of point coordinates. This way, partial queries
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Fig. 7. Average query accuracy with respect to the model-based optimum
as a function of the number of perceivable objects for point coordinates.
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Fig. 8. Average query accuracy with respect to the model-based optimum
as a function of the number of data sectors.

evaluate on copies of data objects that are inconsistent to a
larger degree. We note that this fact can be addressed with an
additional lightweight synchronization protocol that removes
old copies updated by newer copies. We leave the details of
this optimization to future work.

Fig. 8 shows the average query accuracy as a function of
the number of data sectors. These results are significant as
they may be used to calibrate the deployed algorithms, that
is, to find the optimum sector granularity. We have displayed
3 sequences of values for the query parameter k = 1, 3, 10.
The optimum with respect to query accuracy seems to occur
for a single data sector. In that case, only a single data sector
is queried, and a partial k-nearest neighbor query is able to
provide the final query result already.

Fig. 9 shows that the mobility of nodes does not have a
significant impact on query accuracy in the range of typical
pedestrian’s speeds. However, the achieved accuracy strongly
depends on the particular routing protocols used. In our case,
we used a modified version of GPSR, and whose beaconing
interval was set to a suitable value to address the range
of speeds encountered for pedestrians. We have observed
virtually constant graphs for our other metrics as well in the
given range of speeds.

We next define query latency as the time between the
query was issued and the result was returned. Fig. 10 shows
the average query latency as a function of the number of
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Fig. 9. Average query accuracy with respect to the model-based optimum
as a function of the node speed.
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Fig. 10. Average query latency as a function of the number of data sectors.

data sectors. For small numbers of data sectors, the average
latency is low. The reason lies in our strategy to process a k-
nearest neighbor query. If only a small number of data sectors
exist, the heuristic phase completes well before the timeout.
With increasing number of sectors, the heuristic phase must
query more data sectors to find candidate objects, which also
increases with parameter k. Because we do not send redundant
partial queries, some may fail due to unsuccessful routing
attempts. The heuristic or aggregation phase cannot complete
prior to a timeout in more and more cases, leading to a greater
average query latency. The time needed for the aggregation
phase decreases, because the longer the heuristic phase takes,
the less sectors remain to be queried. Note that the aggregation
phase times out after 2 seconds in our implementation.

For a single k-nearest neighbor query, the query costs are
the sum of all packets sent to process the query. In Fig. 11,
we depict the results for query costs as a function of the
number of data sectors. We have split the columns so the
costs required for partial queries and reply packets during the
heuristic and aggregation phase can be separately observed.
Up to 25 sectors, query costs increase because more and more
partial queries are required to process a single query. If the
number of sectors is increased further, costs begin to decrease
again. This is related to the heuristic phase, which times out
more and more frequently, because it occurs more often that
at least one partial query fails. Our choice is to select small
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Fig. 11. Query costs as a function of the number of data sectors.
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Fig. 12. Storage cost as a function of the number of data sectors.

numbers of sectors for the deployed algorithms. Query costs
increase with larger values of k because more partial queries
are required as the circle C computed as described in Sec. V-D
increases and covers more data sectors.

We quantify storage cost by the average number of packets
sent per object update from observers to database nodes.
Fig. 12 shows both the plots for point coordinates and location
areas that are inaccurate to 10 m. In the case of location areas,
storage costs increase because a finer sector granularity leads
to more overlaps between a location area and data sectors,
which results in more updates sent to data servers. If point
coordinates are used, only a single overlap with a data sector
is possible, independent of the sector granularity. Thus, with a
growing number of data sectors, object updates require fewer
hops, which results in a decrease of the average number of
packets per update.

From the presented measurements we conclude that the
optimum number of data sectors for the given service area
(400 m × 400 m) is between one and four. If a larger service
area is considered, a subdivision with the same granularity
simply results in more data sectors. Because our storage and
query processing algorithms operate locally, their scalability
is guaranteed for arbitrary network sizes.

VII. CONCLUSION

In this paper, we have defined semantics for range and
k-nearest neighbor queries based on the inaccurate nature



of object positions. We have introduced efficient algorithms
for data storage and processing range and k-nearest neighbor
queries in mobile ad hoc networks that consider inaccurate
object positions. Our evaluation showed that the communi-
cation costs for object updates and partial queries are small
thanks to our strategy of mapping data objects to data servers.
Also, we showed that the algorithm for k-nearest neighbor
queries yields good results even if partial queries are not sent
redundantly. Future work includes the extension of the query
semantics to other types of spatial queries, such as group
nearest neighbor queries [18]. Concerning our algorithms, we
are working on replication mechanisms to increase availability
of data in sparse MANETs, both by replicating data associated
with one data sector on additional servers in the same sector
or on servers of different sectors. We are also investigating
in detail the redundant sending of partial queries to increase
accuracy and further minimize latency of k-nearest neighbor
queries by using different timeout strategies. Our goal is to
analyze the interaction between different algorithm parameters
and their impact on the performance metrics to provide optimal
storage and query performance.
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