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Abstract — Simulation tools are frequently used for 
performance evaluations of mobile ad-hoc networks. Currently 
the tools poorly support urban scenarios, since they do not take a 
spatial environment into account. In this paper, we describe a 
platform for the modeling of city scenarios. We extend ns-2 with 
corresponding mobility and wireless transmission models. By 
using its emulation facility, we integrate unmodified applications 
and real implementations of network protocols. We demonstrate 
the usefulness of the platform for performance evaluations by 
modeling a mobile application in a simulated environment of 
Stuttgart downtown. We show that it helps identifying 
application problems before deployment. 
 

Index Terms — Communication systems, mobile 
communication, modeling, simulation 

I. INTRODUCTION 
Mobile ad-hoc networks (MANETs) are formed by wireless 

peers without relying on a fixed infrastructure. The devices 
communicate directly with each other while they are in 
transmission range. A typical communication technology in 
MANETs is IEEE 802.11 [28]. 

Many usage scenarios have been proposed for MANETs in 
city areas, e.g., Usenet-on-the-Fly [2], CarTALK 2000 [6], 
and Ad- Hoc City [18]. Network simulation tools [4], [12], 
[23] are frequently used for performance analysis. They have 
three common shortages. 

First, they typically offer only simple user mobility models. 
For example, the widely used random waypoint mobility 
model [5] simulates the straight movement between randomly 
chosen points of the area. The model does not consider spatial 
constraints of the area like roads. It also neglects user travel 
decisions and realistic movement dynamics. 

Secondly, the tools rely on rather simple wireless 
transmission models. Such models (e.g., Friis free space 
model [8] or the two-ray ground model [11]) assume an 
obstacle-free area and a line-of-sight between all 
communicating partners. As a consequence, the 
communication range is modeled by a circle around a mobile 
device. It is assumed that other devices residing within this 
circle receive the transmitted frames without errors. 
Communication with the devices beyond the circle is not 
possible. This model poorly reflects radio wave propagation in 
typical outdoor environments such as cities, in which 

buildings significantly affect the communication between 
mobile devices. The usage of more realistic radio propagation 
models changes simulation results considerably [24]. 

Thirdly, the network simulation tools use own (simplified) 
implementations of the network protocol stack. They differ 
from modules of real operating systems. Simulators do not 
execute real applications either. The applications need to be 
reprogrammed in order to fit a simulator’s API. As we show 
in this paper, this hides many factors that influence the 
performance of applications in realistic situations. 

In this paper, we extend ns-2 [4] for the modeling of city 
scenarios. We choose ns-2, since it is a major if not the most 
frequently used MANET simulator in our community. We 
integrate more realistic mobility and wireless transmission 
models. They consider a road network and radio propagation 
obstacles taken from a digital map of the area. We also use a 
fine-grained model of transmission errors, which is based on 
measurements of an IEEE 802.11 card manufacturer [17]. Ns-
2 also provides an emulation facility for injecting traffic from 
real networks. We use it for integrating unmodified mobile 
applications and real implementations of network protocols 
running in separate virtual machines. We demonstrate the 
usefulness of the platform for performance evaluations by 
modeling a MANET application in a simulated environment 
of Stuttgart downtown. We show that it helps identifying 
application problems before deployment. Our implementations 
are publicly available*. 

The remainder of this paper is structured as follows. In 
Section II, we briefly describe our approach to model user 
mobility in city areas. Section III describes a more realistic 
wireless transmission model. Section IV demonstrates the 
integration of real applications and protocols into ns-2. In 
Section V, we describe a MANET application, which we use 
for our evaluations. Section VI describes our simulation 
scenario. We analyze simulation results in Section VII. 
Section VIII gives an overview of related work. Finally, 
Section IX concludes the paper. 

II. MODELING USER MOBILITY 
Our approach to model mobility of users in city areas 

(Figure 1) is described in [25]. It reflects the following key 
 

* http://www.ipvs.uni-stuttgart.de?id=illya.stepanov&lang=en 



factors that impact user movements: 
- City environment with points of interest and 

movement constraints (spatial model) 
- User travel decisions (user trip model) 
- User movement dynamics (movement dynamics 

model) 

 
The spatial model contains elements of a city environment. 

Some of them, such as streets and roads, constrain movements 
of users. Another group consists of the so-called “points of 
interest” (e.g., supermarkets or museums) that serve as 
destination points of movement. For each element, its 
properties (e.g., shop opening time, road speed limitation) and 
geometry are stored. The latter is used for constructing a street 
network graph. The spatial model can be initialized from 
digital maps in various formats, e.g., GDF [9] or GML [10]. 

Obviously, people do not move completely random in the 
target area. According to the activity-based travel demand 
approach [21], people move to perform an action in certain 
places, for example, shopping in particular shops or visiting 
predefined sights. A sequence of such actions (trip sequence) 
describes user movements in the area. The user trip model 
contains all the trip sequences that users perform during the 
simulation. It also performs movement path selection, e.g., 
using approaches from discrete choice theory [3]. 

In addition, mobile clients exhibit different movement 
dynamics. For example, pedestrians tend to move at lower 
speeds with frequent interruptions, while vehicles move at 
higher speeds and influence dynamics of neighboring 
vehicles. The movement dynamics model uses approaches 
from transport planning, physics, and vehicular dynamics 
[13], [27] to obtain user position changes along his/her 
movement paths. The position changes constitute a mobility 
trace, which is used as an input for MANET simulation tools, 
such as ns-2. 

III. MODELING WIRELESS TRANSMISSION 
The modeling of wireless transmission in MANETs 

includes the following steps: determination of signal receive 
power, computation of noise and interference, and packet 

reception [26]. 
Each time a mobile node transmits a frame, a simulator uses 

a radio propagation model to compute the signal receive 
power for every potential receiver. The result depends on 
attenuation that the signal experiences during propagation, 
e.g., due to environment. The noise and interference is the 
sum of powers of other signals and the receiver thermal noise. 
The signal to interference and noise ratio (SNIR) is the ratio 
of the signal receive power computed to the noise and 
interference. It has a correlation with bit-error rate of the 
received frame. The latter is used together with the frame 
length to estimate a probability of successful frame reception. 

To model radio propagation in city areas, we rely on 
“intelligent ray tracing” model [29]. It considers a geographic 
map of the simulation area. In order to accelerate the 
performance of ray tracing, the model preprocesses the digital 
map and computes visibility relations between walls. Thereby 
it is about 1000 times faster than the classical ray tracing 
approach. The accuracy of the model is proven by 
measurements in European cities. For Stuttgart downtown, the 
mean error is 0.3 dB and the standard deviation is 5.8 dB [15]. 

The full details of integrating the model into ns-2 are given 
in [24]. We use a commercial implementation of the 
intelligent ray tracing model (WinPROP by AWE 
Communications [1]). For any given sender position (and 
other constant parameters like sender height, transmission 
power, wavelength etc.), WinPROP computes a map of 
receive power values for a grid, representing possible 
positions of a receiver. In our simulations, we use a 5 m × 5 m 
grid, which is the smallest grid size we could handle (smaller 
grid sizes would require much longer computation time and 
more disk space). We performed a separate investigation to 
assure that the chosen grid size has minor impact on 
simulation results. 

For optimal performance, we precalculated the receive 
power values for each possible sender-receiver pair and stored 
them in a database. Each time ns-2 needs a receive power 
value, our radio propagation module reads the appropriate 
value from the dataset. To reduce the data access overhead, 
our module uses a caching strategy. As a result, the overall ns-
2 simulation time with our module is comparable to the 
simulation time with a simpler model, such as two-ray ground. 

Ns-2 decides on successful packet reception by only 
checking if a frame’s receive power is above or below the 
receive threshold of the network equipment. In order to 
perform more realistic simulations, we also use a fine-grained 
model of wireless transmission errors. 

The model is based on measurements of a card 
manufacturer [17]. They correlate frame’s bit-error rate with 
the signal-to-noise ratio and the modulation scheme at the 
given transmission speed. We use the implementation from 
[30]. It models errors upon transmissions of control and data 
frames. The implementation determines target bit-error rate 
from a table using the transmission speed and the computed 
signal-to-noise ratio as indexes. 
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Figure 1: Design of the mobility model 



IV. INTEGRATING REAL MOBILE APPLICATIONS 
Next, we integrate MANET applications into ns-2 (Figure 

2). The simulator has an emulation facility (nse) allowing real 
network traffic to pass through it. We start mobile applications 
on separate computers corresponding to individual network 
users. In order to simulate more users than the number of 
physical hosts that we have, we use User-mode Linux (UML) 
[7] virtual machines. They run as user processes on top of 
operating system of physical hosts. A virtual machine appears 
as a single computer with own network interface for an 
application being executed inside of it. 

 
Layer 3 traffic of virtual machines is injected into ns-2. On 

physical hosts, the traffic is received by switching daemons, 
which is a standard way of providing the UML hosts with an 
access to outer network. We modify switching daemons to 
tunnel the traffic to “network” and “tap” objects of ns-2. The 
“tap” objects inject the traffic into simulated mobile devices. 
Ns-2 models the physical layer and the data link layer of 
Wireless LAN, as well as the mobility of network users. The 
packets received by the simulated devices are tunneled to the 
corresponding virtual hosts in a similar fashion. 

This described approach to traffic capturing allows the 
integration of unmodified MANET applications and real 
protocol implementations into ns-2. In future, it should be 
possible to replace UML with emulators of mobile devices 
(e.g., mobile phones, PDAs) to support other mobile 
platforms. 

Virtual hosts and ns-2 perform in real time. We are 
confident that running several virtual hosts on one physical 
host and the centralized emulation of ns-2 do have impact on 
obtained simulation results. To assure that we stay below 
system load limit, we monitor packet drops at the ends of 
tunnel and CPU load of physical hosts. To improve the 
accuracy of ns-2 real-time scheduler, we use the extensions 
from [20]. They also provide those “network” and “tap” 
objects that serve as a basis for our implementation. 

V. SAMPLE MANET APPLICATION: USENET-ON-THE-FLY 
We use the described platform for simulating MANET 

applications in city scenarios. Here we describe relevant 
aspects of Usenet-on-the-Fly [2], which we use in this paper. 

Usenet-on-the-Fly is an implementation of the well-known 

Usenet system for ad-hoc networks [16]. The corresponding 
client application (Figure 3) is implemented in Java. Hence, it 
runs on various hardware platforms, in particular, on PDAs. 
The graphical user interface (GUI) allows 
subscribing/unsubscribing to newsgroups (channels) and 
posting (publishing) of new messages. If a user posts a 
message to a specific channel, all subscribed users will receive 
it. Each message is distinguished by a unique ID. 

 
We assume that mobile users carry PDAs. The devices are 

equipped with an IEEE 802.11 Wireless LAN card. Every 
device is identified with a unique IP address. Unlike in wired 
networks, MANET devices must cope with limited 
connectivity and frequent topology changes. Hence, the 
messages are disseminated through diffusion. This involves 
periodical exchange between the devices that are in 
transmission range. 

 
Figure 3: Usenet-on-the-Fly screenshot Figure 2: Integrating real mobile applications into ns-2 

The application is multithreaded. Besides the GUI thread, 
the application uses 3 additional threads: “broadcast sender”, 
“broadcast receiver”, and “SOAP engine”. 

The “broadcast sender” periodically broadcasts the device’s 
IP address. The mobile devices that are in transmission range 
receive the packet. Thereby the devices learn about other 
devices in their proximity. It is important to note that 
broadcast transmissions are unacknowledged as of the IEEE 
802.11 standard. Hence, in the case of collisions there are no 
retransmissions performed. 

The “broadcast receiver” receives the broadcasted IP 
addresses from neighbors. Upon receiving an address, the 
thread algorithm issues a Simple Object Access Protocol 
(SOAP) call “Get All Message IDs” addressed to the 
neighbor. The call returns the IDs of all the messages that are 
stored at the neighbor. Then they are compared with the 
receiver’s own messages. If the neighbor has any new 
messages, the “broadcast receiver” issues a SOAP call “Get 
Message Bodies”. The IDs of the required messages are 
passed as parameters. The received messages are added to the 
local database. In the current implementation, the database 
stores all the messages. The GUI performs the necessary 
filtering to display only the messages from the subscribed 
channels. 



The “SOAP engine” thread processes sequentially incoming 
SOAP requests, such as “Get All Message IDs” and “Get 
Message Bodies”. 

The application has the following parameters: 
- BroadcastInterval: time interval between two successive 

broadcasts of a device’s IP address, 
- ServerSocketTimeout: TCP timeout that the SOAP engine 

waits for a client to establish a connection, 
- ClientSocketTimeout: TCP timeout that the SOAP engine 

waits for a request to be fully received, 
- SOAPTimeout: TCP timeout that the “broadcast receiver” 

waits for a response to be received. This includes the time 
for connection establishment, message delays for 
transmitting request and response, and message processing 
on the remote side. 

VI. SIMULATION SCENARIO 
We simulate Usenet-on-the-Fly in Stuttgart downtown. We 

use a digital map 1.5 km × 1.5 km (Figure 4). 

 
In the simulated snapshot of city life, pedestrians move 

between different “points of interest”, like shops, restaurants, 
or museums. Since we currently do not have access to real 
human behavior data, we randomly generate user trips 
between these locations. The movement paths are obtained 
from the linked topological graph of the area using the 
Dijkstra shortest-path algorithm (we assume the users move 
along the shortest path to the destination). Upon arriving to a 
“point of interest”, the user stays there for duration between 
10 and 15 minutes. Then the movement to the next trip point 
is initiated. The movement speeds are between 0.56 and 
1.74 m/s [14]. They follow Gaussian distribution with mean 
1.34 m/s and standard deviation 0.26 m/s [27]. The chosen 
speeds are kept constant during the movement between two 
points. 

The simulated users carry mobile devices running Linux 
(the same operating system is started on our virtual hosts). The 
devices are equipped with wireless LAN cards. We use the 

parameters of Compaq© iPAQ 3660 PocketPCs and 
ORiNOCO© 802.11b WLAN cards in our simulations (Table 
1). Since ns-2 does not support automatic switching between 
transmission speeds, we use the fixed speed of 1 Mbps. 

The simulated message postings resemble 2-hour traffic 
from a real newsgroup (free-time activities). It consists of 18 
postings. We assume that all the users are subscribed to this 
channel (newsgroup). The total simulation time is set to 
8100 s, so the messages posted at the end have a chance to get 
spread in the network. 

We create 5 virtual hosts on each physical host. The 
number was chosen in accordance with the number of mobile 
users and the number of physical hosts available. In spite of 5 
parallel running virtual machines, CPU load of virtual hosts 
was low (nearly 0%), since the Usenet-on-the-Fly application 
performs little computational activity. 

In simulations with more than 100 users, we noticed 
significant packet drops at the simulation front-end running 
ns-2. This makes communication between mobile hosts 
impossible even if they are in transmission range. The reasons 
for this are: 1) high network traffic load from virtual hosts, 
and 2) absence of flow control, since we used UDP for the 
tunnel between the switching daemons and ns-2. We will 
improve it in the future. Currently we support up to 100 of 
mobile users. 

 
Figure 4: Map of the simulation area 

 
Table 1: Simulation parameters 
Simulation time 8100 s 
Number of mobile users 30, 50, 75, and 100 
iPAQ battery capacity 3.7 V * 1350 mAh 
Transmission power 15 dBm 
Radio frequency 2.442 GHz 
Transmission speed 1 Mbps 
WLAN power consumption idle mode: 0.045 W 

receive mode: 0.925 W 
transmit mode: 1.425 W 

Broadcast interval 1, 2, 5, 10, and 20 minutes 
Server socket timeout 10 s 
Client socket timeout 20 s 
SOAP timeout 30 s 

 

VII. SIMULATION RESULTS 
In our simulations, we are mostly interested in analyzing 

message spreading with time. We define the spreading as a 
ratio of mobile users who received the posting. Figure 5 and 
Figure 6 present the results for different numbers of network 
users and broadcast intervals. The charts present the average 
for 18 postings. 

The curves differ from common considerations, e.g., [2], 
which imply that a message spreads faster between more 
network users. Our results show the opposite. Moreover, the 
fact that a message spreads faster with less broadcasts seems 
to be irrational. 



 

 
Precise investigation of application logs pointed out the 

problem. The operating system buffers the received 
broadcasts. The “broadcast receiver” processes them one after 
another. The “SOAP Timeout” parameter controls how long 
the thread waits for a SOAP response (performing necessary 
retransmissions, since SOAP relies on TCP). The default 
value is 30 seconds. However, according to Figure 7, in more 
than 60% of cases two users spend less than 30 s in each 
other’s transmission range. Consequently, if a SOAP request 
fails (e.g., because of mobility), the likelihood is high that the 
next broadcast read from the socket is from the user, who 
already left the transmission range. The chains of failed 
requests add significant delays to the message exchange. This 
problem occurs more often as the number of broadcasts 
increases, e.g., more users or a shorter broadcast interval. 
Such an effect of “SOAP timeout” could not be determined in 

[2], since the application was reimplemented for a simulation 
environment. The reimplented version neither used a real 
SOAP library nor considered socket timeouts. 

 
Instead of simply adjusting the timeout value, we solve the 

problem in a different way. We modify the “broadcast 
receiver”, so it does not issue SOAP calls any more. It 
processes the received broadcasts immediately and stacks the 
extracted addresses (“last in, first out” paradigm). An extra 
thread called “synchronization scheduler” processes the 
stacked items and issues SOAP calls. Hence, the more 
recently received broadcasts are processed before others. It 
also performs item aging, so the addresses received more than 
“SOAP timeout” seconds ago are removed without 
processing. This reduces the lock probability. The modified 
implementation performs as expected (Figure 8-Figure 11). 
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Figure 7: Cumulative distribution function of contact time 
between 100 mobile users 
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for different broadcast intervals 
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Figure 8: Message spreading ratio between 100 mobile users 
for different broadcast intervals. Modified application 



Figure 8 shows the message spreading time for different 
broadcast intervals. Clearly, more frequent broadcasts lead to 
faster neighbor discovery, and hence, to faster message 
exchange. 

Obviously, the configured broadcast interval impacts device 
energy consumption (Figure 9). We used ns-2 to estimate the 
energy spent for communication (without consideration of 
other energy-consuming components, such as CPU, display, 
etc.). The results are presented both in Joules and in percent of 
the capacity of an iPAQ battery. 

 

 
The most essential conclusion from the results is that a 

message reaches 90% of users even with 20 min broadcast 
interval. However, an interval of 1 min requires more than 6% 
of device energy spent only on communication in 2 hours, 

while 20 min interval requires about 2.5%. Clearly, the 
interval duration must be configured taking the desired 
message spreading delay and energy consumption into 
account. 

The message spreading time is variable in scenarios with 
different numbers of mobile users (Figure 10). As the number 
of users increases from 30 to 75, we get faster message 
spreading, as expected. Increasing the number of users further 
leads to a slower spreading. According to application logs, the 
number of failed SOAP requests grows due to collisions in a 
denser network. This also makes a device spend more energy 
on retransmissions (Figure 11). Energy consumption for a device
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Figure 9: Average energy consumption for a mobile device. 
Modified application, 100 mobile users, different broadcast 
intervals 
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VIII. RELATED WORK 
To the best of our knowledge, we are the first to simulate a 

real MANET application with such a detailed platform in a 
city scenario. Most of MANET evaluations use either 
synthetic traffic such as constant-bit rate, or reimplement 
applications for a specific simulation environment. As we 
showed in this paper, this may hide some implementation-
specific aspects of an application. 

As for mobility modeling, most of MANET papers use the 
random waypoint mobility model described in [5]. The model 
neglects user trip sequences and movement area constraints. 
Hence, it is unrealistic for city scenarios. The MANET 
simulation tools [4], [12], [23] commonly use this model 
primarily due to its simplicity. In [18], the authors simulate 
mobility according to real-world traces. However, they use a 
simple radio propagation model, which assumes an obstacle-
free area and a free line-of-sight between all communicating 
partners. 

Detailed statistics in [19] about publications at premium 
conferences in the field proves that the papers with such 
simple radio propagation models outnumber others 
significantly. These models poorly reflect radio wave 



propagation in a typical outdoor environment, such as city, in 
which buildings significantly affect the communication 
between mobile devices. The mentioned MANET simulation 
tools offer only the simple models. It is has been shown that 
the usage of more realistic radio propagation models changes 
simulation results considerably [24]. 

Also transmission errors are reflected seldom in MANET 
simulations. Like this paper, [22] and [30] rely on 
measurements from [17]. However, they still use the simple 
propagation models, which poorly reflect city scenarios. 

As for live network traffic capturing, the ns-2 offers only 
passive capturing using the Berkeley Packet Filter. The 
implementation from [20] supports traffic capturing and 
injection to and from UML virtual machines. However, all the 
processes must run on the local host. The code also requires 
root privileges. Our approach support traffic capturing from 
UML machines running on remote hosts. Since we use only 
UNIX domain sockets for communication with virtual hosts, 
our code does not require super-user privileges. 

IX. CONCLUSION 
In this paper, we extended ns-2 for the modeling of 

MANET applications in city scenarios. We applied more 
realistic mobility and wireless transmission models. They 
consider movement area constraints and communication 
obstacles, which are taken from a digital map. We also 
integrated real MANET applications and implementations of 
network protocols. 

We used the described platform for evaluating the 
performance of a real application (Usenet-on-the-Fly) in 
Stuttgart downtown. We prepared the corresponding 
simulation scenario. We showed that the described platform 
helps identifying application problems before deployment. For 
example, we noticed the negative effect of message buffering 
upon device discovery and improved the implementation. The 
presented simulation results give an impression of the 
performance of the application and energy consumption. 
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