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Abstract — Simulation tools are frequently used for
performance evaluations of mobile ad-hoc networks. Currently
the tools poorly support urban scenarios, since they do not take a
spatial environment into account. In this paper, we describe a
platform for the modeling of city scenarios. We extend ns-2 with
corresponding mobility and wireless transmission models. By
using its emulation facility, we integrate unmodified applications
and real implementations of network protocols. We demonstrate
the usefulness of the platform for performance evaluations by
modeling a mobile application in a simulated environment of

Stuttgart downtown. We show that it helps identifying
application problems before deployment.
Index Terms —  Communication systems, mobile

communication, modeling, simulation

I. INTRODUCTION

Mobile ad-hoc networks (MANETS) are formed by wireless
peers without relying on a fixed infrastructure. The devices
communicate directly with each other while they are in
transmission range. A typical communication technology in
MANETSs is IEEE 802.11 [28].

Many usage scenarios have been proposed for MANETS in
city areas, e.g., Usenet-on-the-Fly [2], CarTALK 2000 [6],
and Ad- Hoc City [18]. Network simulation tools [4], [12],
[23] are frequently used for performance analysis. They have
three common shortages.

First, they typically offer only simple user mobility models.
For example, the widely used random waypoint mobility
model [5] simulates the straight movement between randomly
chosen points of the area. The model does not consider spatial
constraints of the area like roads. It also neglects user travel
decisions and realistic movement dynamics.

Secondly, the tools rely on rather simple wireless
transmission models. Such models (e.g., Friis free space
model [8] or the two-ray ground model [11]) assume an
obstacle-free area and a line-of-sight between all
communicating  partners. As a consequence, the
communication range is modeled by a circle around a mobile
device. It is assumed that other devices residing within this
circle receive the transmitted frames without errors.
Communication with the devices beyond the circle is not
possible. This model poorly reflects radio wave propagation in
typical outdoor environments such as cities, in which

buildings significantly affect the communication between
mobile devices. The usage of more realistic radio propagation
models changes simulation results considerably [24].

Thirdly, the network simulation tools use own (simplified)
implementations of the network protocol stack. They differ
from modules of real operating systems. Simulators do not
execute real applications either. The applications need to be
reprogrammed in order to fit a simulator’s API. As we show
in this paper, this hides many factors that influence the
performance of applications in realistic situations.

In this paper, we extend ns-2 [4] for the modeling of city
scenarios. We choose ns-2, since it is a major if not the most
frequently used MANET simulator in our community. We
integrate more realistic mobility and wireless transmission
models. They consider a road network and radio propagation
obstacles taken from a digital map of the area. We also use a
fine-grained model of transmission errors, which is based on
measurements of an IEEE 802.11 card manufacturer [17]. Ns-
2 also provides an emulation facility for injecting traffic from
real networks. We use it for integrating unmodified mobile
applications and real implementations of network protocols
running in separate virtual machines. We demonstrate the
usefulness of the platform for performance evaluations by
modeling a MANET application in a simulated environment
of Stuttgart downtown. We show that it helps identifying
application problems before deployment. Our implementations
are publicly available”.

The remainder of this paper is structured as follows. In
Section Il, we briefly describe our approach to model user
mobility in city areas. Section Il describes a more realistic
wireless transmission model. Section IV demonstrates the
integration of real applications and protocols into ns-2. In
Section V, we describe a MANET application, which we use
for our evaluations. Section VI describes our simulation
scenario. We analyze simulation results in Section VII.
Section VIII gives an overview of related work. Finally,
Section IX concludes the paper.

Il. MODELING USER MOBILITY

Our approach to model mobility of users in city areas
(Figure 1) is described in [25]. It reflects the following key
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factors that impact user movements:
- City environment with points of
movement constraints (spatial model)
- User travel decisions (user trip model)
- User movement dynamics (movement dynamics
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Figure 1: Design of the mobility model

The spatial model contains elements of a city environment.
Some of them, such as streets and roads, constrain movements
of users. Another group consists of the so-called “points of
interest” (e.g., supermarkets or museums) that serve as
destination points of movement. For each element, its
properties (e.g., shop opening time, road speed limitation) and
geometry are stored. The latter is used for constructing a street
network graph. The spatial model can be initialized from
digital maps in various formats, e.g., GDF [9] or GML [10].

Obviously, people do not move completely random in the
target area. According to the activity-based travel demand
approach [21], people move to perform an action in certain
places, for example, shopping in particular shops or visiting
predefined sights. A sequence of such actions (trip sequence)
describes user movements in the area. The user trip model
contains all the trip sequences that users perform during the
simulation. It also performs movement path selection, e.g.,
using approaches from discrete choice theory [3].

In addition, mobile clients exhibit different movement
dynamics. For example, pedestrians tend to move at lower
speeds with frequent interruptions, while vehicles move at
higher speeds and influence dynamics of neighboring
vehicles. The movement dynamics model uses approaches
from transport planning, physics, and vehicular dynamics
[13], [27] to obtain user position changes along his/her
movement paths. The position changes constitute a mobility
trace, which is used as an input for MANET simulation tools,
such as ns-2.

I1l. MODELING WIRELESS TRANSMISSION

The modeling of wireless transmission in MANETs
includes the following steps: determination of signal receive
power, computation of noise and interference, and packet

reception [26].

Each time a mobile node transmits a frame, a simulator uses
a radio propagation model to compute the signal receive
power for every potential receiver. The result depends on
attenuation that the signal experiences during propagation,
e.g., due to environment. The noise and interference is the
sum of powers of other signals and the receiver thermal noise.
The signal to interference and noise ratio (SNIR) is the ratio
of the signal receive power computed to the noise and
interference. It has a correlation with bit-error rate of the
received frame. The latter is used together with the frame
length to estimate a probability of successful frame reception.

To model radio propagation in city areas, we rely on
“intelligent ray tracing” model [29]. It considers a geographic
map of the simulation area. In order to accelerate the
performance of ray tracing, the model preprocesses the digital
map and computes visibility relations between walls. Thereby
it is about 1000 times faster than the classical ray tracing
approach. The accuracy of the model is proven by
measurements in European cities. For Stuttgart downtown, the
mean error is 0.3 dB and the standard deviation is 5.8 dB [15].

The full details of integrating the model into ns-2 are given
in [24]. We use a commercial implementation of the
intelligent ray tracing model (WinPROP by AWE
Communications [1]). For any given sender position (and
other constant parameters like sender height, transmission
power, wavelength etc.), WIinPROP computes a map of
receive power values for a grid, representing possible
positions of a receiver. In our simulations, we usea5m x 5m
grid, which is the smallest grid size we could handle (smaller
grid sizes would require much longer computation time and
more disk space). We performed a separate investigation to
assure that the chosen grid size has minor impact on
simulation results.

For optimal performance, we precalculated the receive
power values for each possible sender-receiver pair and stored
them in a database. Each time ns-2 needs a receive power
value, our radio propagation module reads the appropriate
value from the dataset. To reduce the data access overhead,
our module uses a caching strategy. As a result, the overall ns-
2 simulation time with our module is comparable to the
simulation time with a simpler model, such as two-ray ground.

Ns-2 decides on successful packet reception by only
checking if a frame’s receive power is above or below the
receive threshold of the network equipment. In order to
perform more realistic simulations, we also use a fine-grained
model of wireless transmission errors.

The model is based on measurements of a card
manufacturer [17]. They correlate frame’s bit-error rate with
the signal-to-noise ratio and the modulation scheme at the
given transmission speed. We use the implementation from
[30]. It models errors upon transmissions of control and data
frames. The implementation determines target bit-error rate
from a table using the transmission speed and the computed
signal-to-noise ratio as indexes.



IV. INTEGRATING REAL MOBILE APPLICATIONS

Next, we integrate MANET applications into ns-2 (Figure
2). The simulator has an emulation facility (nse) allowing real
network traffic to pass through it. We start mobile applications
on separate computers corresponding to individual network
users. In order to simulate more users than the number of
physical hosts that we have, we use User-mode Linux (UML)
[7] virtual machines. They run as user processes on top of
operating system of physical hosts. A virtual machine appears
as a single computer with own network interface for an
application being executed inside of it.
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Usenet system for ad-hoc networks [16]. The corresponding
client application (Figure 3) is implemented in Java. Hence, it
runs on various hardware platforms, in particular, on PDAs.
The graphical user interface (GUI) allows

subscribing/unsubscribing to newsgroups (channels) and
posting (publishing) of new messages. If a user posts a
message to a specific channel, all subscribed users will receive
it. Each message is distinguished by a unique ID.
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Figure 2: Integrating real mobile applications into ns-2

Layer 3 traffic of virtual machines is injected into ns-2. On
physical hosts, the traffic is received by switching daemons,
which is a standard way of providing the UML hosts with an
access to outer network. We modify switching daemons to
tunnel the traffic to “network™ and “tap” objects of ns-2. The
“tap” objects inject the traffic into simulated mobile devices.
Ns-2 models the physical layer and the data link layer of
Wireless LAN, as well as the mobility of network users. The
packets received by the simulated devices are tunneled to the
corresponding virtual hosts in a similar fashion.

This described approach to traffic capturing allows the
integration of unmodified MANET applications and real
protocol implementations into ns-2. In future, it should be
possible to replace UML with emulators of mobile devices
(e.g., mobile phones, PDAs) to support other mobile
platforms.

Virtual hosts and ns-2 perform in real time. We are
confident that running several virtual hosts on one physical
host and the centralized emulation of ns-2 do have impact on
obtained simulation results. To assure that we stay below
system load limit, we monitor packet drops at the ends of
tunnel and CPU load of physical hosts. To improve the
accuracy of ns-2 real-time scheduler, we use the extensions
from [20]. They also provide those “network” and “tap”
objects that serve as a basis for our implementation.

V. SAMPLE MANET APPLICATION: USENET-ON-THE-FLY

We use the described platform for simulating MANET
applications in city scenarios. Here we describe relevant
aspects of Usenet-on-the-Fly [2], which we use in this paper.

Usenet-on-the-Fly is an implementation of the well-known

Figure 3: Usenet-on-the-Fly screenshot

We assume that mobile users carry PDAs. The devices are
equipped with an IEEE 802.11 Wireless LAN card. Every
device is identified with a unique IP address. Unlike in wired
networks, MANET devices must cope with limited
connectivity and frequent topology changes. Hence, the
messages are disseminated through diffusion. This involves
periodical exchange between the devices that are in
transmission range.

The application is multithreaded. Besides the GUI thread,
the application uses 3 additional threads: “broadcast sender”,
“broadcast receiver”, and “SOAP engine”.

The “broadcast sender” periodically broadcasts the device’s
IP address. The mobile devices that are in transmission range
receive the packet. Thereby the devices learn about other
devices in their proximity. It is important to note that
broadcast transmissions are unacknowledged as of the IEEE
802.11 standard. Hence, in the case of collisions there are no
retransmissions performed.

The *“broadcast receiver” receives the broadcasted IP
addresses from neighbors. Upon receiving an address, the
thread algorithm issues a Simple Object Access Protocol
(SOAP) call “Get All Message IDs” addressed to the
neighbor. The call returns the IDs of all the messages that are
stored at the neighbor. Then they are compared with the
receiver’s own messages. If the neighbor has any new
messages, the “broadcast receiver” issues a SOAP call “Get
Message Bodies”. The IDs of the required messages are
passed as parameters. The received messages are added to the
local database. In the current implementation, the database
stores all the messages. The GUI performs the necessary
filtering to display only the messages from the subscribed
channels.



The “SOAP engine” thread processes sequentially incoming
SOAP requests, such as “Get All Message IDs” and “Get
Message Bodies”.

The application has the following parameters:

- Broadcastinterval: time interval between two successive
broadcasts of a device’s IP address,

- ServerSocketTimeout: TCP timeout that the SOAP engine
waits for a client to establish a connection,

- ClientSocketTimeout: TCP timeout that the SOAP engine
waits for a request to be fully received,

- SOAPTimeout: TCP timeout that the “broadcast receiver”
waits for a response to be received. This includes the time
for connection establishment, message delays for
transmitting request and response, and message processing
on the remote side.

VI. SIMULATION SCENARIO
We simulate Usenet-on-the-Fly in Stuttgart downtown. We
use a digital map 1.5 km x 1.5 km (Figure 4).
=1
i

s

Figure 4: Map of the simulation area

In the simulated snapshot of city life, pedestrians move
between different “points of interest”, like shops, restaurants,
or museums. Since we currently do not have access to real
human behavior data, we randomly generate user trips
between these locations. The movement paths are obtained
from the linked topological graph of the area using the
Dijkstra shortest-path algorithm (we assume the users move
along the shortest path to the destination). Upon arriving to a
“point of interest”, the user stays there for duration between
10 and 15 minutes. Then the movement to the next trip point
is initiated. The movement speeds are between 0.56 and
1.74 m/s [14]. They follow Gaussian distribution with mean
1.34 m/s and standard deviation 0.26 m/s [27]. The chosen
speeds are kept constant during the movement between two
points.

The simulated users carry mobile devices running Linux
(the same operating system is started on our virtual hosts). The
devices are equipped with wireless LAN cards. We use the

parameters of Compaq© iPAQ 3660 PocketPCs and
ORINOCO® 802.11b WLAN cards in our simulations (Table
1). Since ns-2 does not support automatic switching between
transmission speeds, we use the fixed speed of 1 Mbps.

The simulated message postings resemble 2-hour traffic
from a real newsgroup (free-time activities). It consists of 18
postings. We assume that all the users are subscribed to this
channel (newsgroup). The total simulation time is set to
8100 s, so the messages posted at the end have a chance to get
spread in the network.

We create 5 virtual hosts on each physical host. The
number was chosen in accordance with the number of mobile
users and the number of physical hosts available. In spite of 5
parallel running virtual machines, CPU load of virtual hosts
was low (nearly 0%), since the Usenet-on-the-Fly application
performs little computational activity.

In simulations with more than 100 users, we noticed
significant packet drops at the simulation front-end running
ns-2. This makes communication between mobile hosts
impossible even if they are in transmission range. The reasons
for this are: 1) high network traffic load from virtual hosts,
and 2) absence of flow control, since we used UDP for the
tunnel between the switching daemons and ns-2. We will
improve it in the future. Currently we support up to 100 of
mobile users.

Table 1: Simulation parameters

Simulation time 8100 s

Number of mobile users 30, 50, 75, and 100

iPAQ battery capacity 3.7V * 1350 mAh

Transmission power 15 dBm
Radio frequency 2.442 GHz
Transmission speed 1 Mbps

idle mode: 0.045 W
receive mode: 0.925 W
transmit mode: 1.425 W

WLAN power consumption

Broadcast interval 1, 2,5, 10, and 20 minutes

Server socket timeout 10s
Client socket timeout 20s
SOAP timeout 30s

VIl. SIMULATION RESULTS

In our simulations, we are mostly interested in analyzing
message spreading with time. We define the spreading as a
ratio of mobile users who received the posting. Figure 5 and
Figure 6 present the results for different numbers of network
users and broadcast intervals. The charts present the average
for 18 postings.

The curves differ from common considerations, e.g., [2],
which imply that a message spreads faster between more
network users. Our results show the opposite. Moreover, the
fact that a message spreads faster with less broadcasts seems
to be irrational.
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Figure 5: Message spreading ratio between 100 mobile users
for different broadcast intervals
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Figure 6: Message spreading ratio for different numbers of
mobile users. Broadcast interval is 5 minutes

Precise investigation of application logs pointed out the
problem. The operating system buffers the received
broadcasts. The “broadcast receiver” processes them one after
another. The “SOAP Timeout” parameter controls how long
the thread waits for a SOAP response (performing necessary
retransmissions, since SOAP relies on TCP). The default
value is 30 seconds. However, according to Figure 7, in more
than 60% of cases two users spend less than 30 s in each
other’s transmission range. Consequently, if a SOAP request
fails (e.g., because of mobility), the likelihood is high that the
next broadcast read from the socket is from the user, who
already left the transmission range. The chains of failed
requests add significant delays to the message exchange. This
problem occurs more often as the number of broadcasts
increases, e.g., more users or a shorter broadcast interval.
Such an effect of “SOAP timeout” could not be determined in

[2], since the application was reimplemented for a simulation
environment. The reimplented version neither used a real
SOAP library nor considered socket timeouts.
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Figure 7: Cumulative distribution function of contact time
between 100 mobile users

Instead of simply adjusting the timeout value, we solve the
problem in a different way. We modify the “broadcast
receiver”, so it does not issue SOAP calls any more. It
processes the received broadcasts immediately and stacks the
extracted addresses (“last in, first out” paradigm). An extra
thread called “synchronization scheduler” processes the
stacked items and issues SOAP calls. Hence, the more
recently received broadcasts are processed before others. It
also performs item aging, so the addresses received more than
“SOAP timeout” seconds ago are removed without
processing. This reduces the lock probability. The modified
implementation performs as expected (Figure 8-Figure 11).

Message spreading ratio
1 ey
09 ﬁf —
' ( A -
0,8 - {/ L /
07 -
g’ 06 1 /// /
8 05 /‘ , y
et ;o
2 04+ /// IJ/
03 -
02 // /
o1 f
0 T
0 600 1200 1800 2400 3000 3600
time, s
——1min ----2min ------- 5min 10 min 20 min

Figure 8: Message spreading ratio between 100 mobile users
for different broadcast intervals. Modified application



Figure 8 shows the message spreading time for different
broadcast intervals. Clearly, more frequent broadcasts lead to
faster neighbor discovery, and hence, to faster message
exchange.

Obviously, the configured broadcast interval impacts device
energy consumption (Figure 9). We used ns-2 to estimate the
energy spent for communication (without consideration of
other energy-consuming components, such as CPU, display,
etc.). The results are presented both in Joules and in percent of
the capacity of an iPAQ battery.
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The most essential conclusion from the results is that a
message reaches 90% of users even with 20 min broadcast
interval. However, an interval of 1 min requires more than 6%
of device energy spent only on communication in 2 hours,

while 20 min interval requires about 2.5%. Clearly, the
interval duration must be configured taking the desired
message spreading delay and energy consumption into
account.

The message spreading time is variable in scenarios with
different numbers of mobile users (Figure 10). As the number
of users increases from 30 to 75, we get faster message
spreading, as expected. Increasing the number of users further
leads to a slower spreading. According to application logs, the
number of failed SOAP requests grows due to collisions in a
denser network. This also makes a device spend more energy
on retransmissions (Figure 11).
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Figure 11: Average energy consumption for a mobile device.
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VIIL.

To the best of our knowledge, we are the first to simulate a
real MANET application with such a detailed platform in a
city scenario. Most of MANET evaluations use either
synthetic traffic such as constant-bit rate, or reimplement
applications for a specific simulation environment. As we
showed in this paper, this may hide some implementation-
specific aspects of an application.

As for mobility modeling, most of MANET papers use the
random waypoint mobility model described in [5]. The model
neglects user trip sequences and movement area constraints.
Hence, it is unrealistic for city scenarios. The MANET
simulation tools [4], [12], [23] commonly use this model
primarily due to its simplicity. In [18], the authors simulate
mobility according to real-world traces. However, they use a
simple radio propagation model, which assumes an obstacle-
free area and a free line-of-sight between all communicating
partners.

Detailed statistics in [19] about publications at premium
conferences in the field proves that the papers with such
simple radio propagation models outnumber others
significantly. These models poorly reflect radio wave
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propagation in a typical outdoor environment, such as city, in
which buildings significantly affect the communication
between mobile devices. The mentioned MANET simulation
tools offer only the simple models. It is has been shown that
the usage of more realistic radio propagation models changes
simulation results considerably [24].

Also transmission errors are reflected seldom in MANET
simulations. Like this paper, [22] and [30] rely on
measurements from [17]. However, they still use the simple
propagation models, which poorly reflect city scenarios.

As for live network traffic capturing, the ns-2 offers only
passive capturing using the Berkeley Packet Filter. The
implementation from [20] supports traffic capturing and
injection to and from UML virtual machines. However, all the
processes must run on the local host. The code also requires
root privileges. Our approach support traffic capturing from
UML machines running on remote hosts. Since we use only
UNIX domain sockets for communication with virtual hosts,
our code does not require super-user privileges.

IX. CONCLUSION

In this paper, we extended ns-2 for the modeling of
MANET applications in city scenarios. We applied more
realistic mobility and wireless transmission models. They
consider movement area constraints and communication
obstacles, which are taken from a digital map. We also
integrated real MANET applications and implementations of
network protocols.

We used the described platform for evaluating the
performance of a real application (Usenet-on-the-Fly) in
Stuttgart downtown. We prepared the corresponding
simulation scenario. We showed that the described platform
helps identifying application problems before deployment. For
example, we noticed the negative effect of message buffering
upon device discovery and improved the implementation. The
presented simulation results give an impression of the
performance of the application and energy consumption.
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