
Laws for Rewriting Queries Containing Division Operators

Ralf Rantzau
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120, USA
rrantzau@acm.org

Christoph Mangold
Universität Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
mangold@informatik.uni-stuttgart.de

Abstract

Relational division, also known assmall divide, is a
derived operator of the relational algebra that realizes a
many-to-one set containment test, where a set is repre-
sented as a group of tuples: Small divide discovers which
sets in a dividend relation contain all elements of the set
stored in a divisor relation. The great divide operator ex-
tends small divide by realizing many-to-many set contain-
ment tests. It is also similar to the set containment join
operator for schemas that are not in first normal form.

Neither small nor great divide has been implemented in
commercial relational database systems although the op-
erators solve important problems and many efficient algo-
rithms for them exist. We present algebraic laws that al-
low rewriting expressions containing small or great divide,
illustrate their importance for query optimization, and dis-
cuss the use of great divide for frequent itemset discovery,
an important data mining primitive.

A recent theoretic result shows that small dividemustbe
implemented by special purpose algorithms and not be sim-
ulated by pure relational algebra expressions to achieve ef-
ficiency. Consequently, an efficient implementation requires
that the optimizer treats small divide as a first-class opera-
tor and possesses powerful algebraic laws for query rewrit-
ing.

1 Introduction

In this section, we motivate our work, give an intuition of
the small and great divide operators, and outline the paper.

1.1 Problem Statement and Main Results

The division operator can be used to answer queries
involving universal quantification like “Find the suppliers
that supplyall blue parts.” Division is a derived operator
like join, that is, it can be expressed by the basic algebra
operators projection, selection, Cartesian product (some-
times called cross-product), union, and difference. How-
ever, several algorithms exist that realize its behavior more
efficiently than an execution plan based on the basic op-
erators [14]. More importantly, recent theoretic work has
demonstrated that division must be implemented as a stand-
alone operator to achieve efficiency [24].

The small divide operator has two input relations, the
dividend and the divisor. The dividend is composed of zero
or more groups of tuples and each group is matched against
all tuples of the divisor relation. The great divide is a natu-
ral extension of small divide, where the divisor can be com-
posed of zero or more groups of tuples like the dividend. It
tests each divisor group against each dividend group.

What is the role of algebraic laws for query optimiza-
tion? Before a query is executed by the query execu-
tion engine of a relational database management system
(RDBMS), the query optimizer rewrites the algebraic rep-
resentation of the query according to transformation rules.
Typically, one type of transformation rules is based on alge-
braic laws and the other maps logical operators to a physical
operators. For instance, the logical operator join is mapped
to the physical operator hash-join.

An algebraic law is a logical equivalence between two
different representations of an algebraic expression. Both
representations describe the same set of tuples for every
possible database content. Together with heuristics and/or
cost estimations, the optimizer applies transformation rules
to subexpressions of the query such that the entire query
can be evaluated with the minimal resource consumption
or the shortest response time. Algebraic laws for the basic
operators of the relational algebra are discussed, for exam-
ple, in [13, 23]. The implementation of transformation rules
(rewrite rules) in a commercial RDBMS are described, for
example, in [25, 30]. Frameworks for building query opti-
mizers, like Cascades [15] and XXL [3], allow to study the
code that is required to realize transformation rules in an
RDBMS.

To the best of our knowledge, no commercial RDBMS
has an implementation of relational division. One reason is
that there is no keyword in the SQL standard that would
allow to express universal quantification (that is, the all-
quantifier) intuitively. Another reason is that set contain-
ment tests are not considered as important as the existential
element test that is realized by the join operator. However,
special applications like frequent itemset discovery could
be processed efficiently and formulated more intuitively if
division would be a first-class operator. Suppose that an
RDBMS offers one or more efficient implementations of di-
vision, that is, physical division operators like hash-division
or merge-sort division [16, 35]. Since division is a derived
operator, an optimizer could replace the division operatorby
an expression that simulates the operator and apply transfor-
mation rules on the basic operators in the expression. In ad-
dition, it should also be able to apply rewrite rules to the di-
vision operator directly since efficient implementations are

1

a b

1 1

1 4

2 1

2 2

2 3

2 4

3 1

3 3

3 4

(a) r1 (dividend)

b

1

3

(b) r2 (divisor)

a

2

3

(c) r3 (quotient)

Figure 1. Division: r1 ÷ r2 = r3

available in the query execution engine.
The algebraic laws presented in this paper either preserve

the division operator (it occurs in the both expression of the
equivalence) or produce some non-trivial rewrite result that
may improve efficiency of the computation in an RDBMS.
Note that there are an infinite number of equivalent expres-
sions for any given algebraic expression. We have tried to
distill effective and interesting laws for rule based optimiz-
ers.

No previous work has covered the rewriting of queries
involving division or generalized division although data-
intensive applications like frequent itemset discovery would
benefit from a division syntax in SQL and an efficient im-
plementation of the operator in a query execution engine.

1.2 Outline

The remainder of this paper is organized as follows. In
the following section, we discuss several definitions for the
small and great divide, which are used in the proofs of the
laws. In Section3, we motivate the potential of the great
divide for an important data mining primitive. In Section4,
we suggest a hypothetical SQL syntax extension for the op-
erators before we present the algebraic laws in Section5.
Section6 discusses related work. We conclude the paper
in Section7. Due to lack of space, the proofs of theorems
and algebraic laws are given in the appendix of technical
report [34], where they are presented in sufficient detail to
make them easy to comprehend.

2 The Division Operator

We will discuss the original division operator as well as a
generalization of it, which was given three different names
in previous work. After this section, we will refer to the two
operators as small divide and great divide for the rest of this
paper.

2.1 The Small Divide

Let R1(A ∪ B) andR2(B) be relation schemas, where
A = {a1, . . . , am} andB = {b1, . . . , bn} are nonempty
disjoint sets of attributes. Letr1(R1) and r2(R2) be re-
lations on these schemas. We callr1 the dividend, r2
the divisor, andr3 the quotientof the division operation
r1 ÷ r2 = r3. The schema ofr3 is R3(A). Figure1 il-
lustrates example input and output relations of the division
operator.

The original definition of the division operator was given
by Codd [10], formulated as a query in tuple relational cal-
culus:

DEFINITION 1 (CODD’ S DIVISION): r1 ÷ r2 =
{t | t = t1.A ∧ t1 ∈ r1 ∧ r2 ⊆ ir1

(t)}, where ir1
(x) is

called the image set ofx under r1 and is defined by
ir1

(x) = {y | (x, y) ∈ r1}

In this calculus expression, the termt = t1.A means that a
tuple in the result (quotient) consists of the attribute values
for A of the dividend tuplet1.

In the following, we give two further equivalent defini-
tions of division, provided by Healy and Maier in [26] using
relational algebra.1 We use Codd’s, Healy’s, and Maier’s
definitions for the proofs of our algebraic laws.

DEFINITION 2 (HEALY ’ S DIVISION): r1÷r2 = πA (r1)−
πA ((πA (r1) × r2) − r1)

DEFINITION 3 (MAIER’ S DIVISION): r1 ÷ r2 =
⋂

t∈r2
πA (σB=t (r1))

In [11], the basic division operator was calledsmall di-
videto distinguish it from a generalization of it, called great
divide, to be discussed next.

2.2 The Great Divide

Before we discuss three equivalent definitions of an ex-
tended division operator, we briefly consider another op-
erator related to them: the set containment join. Let
R1(A ∪ B1), R2(B2 ∪ C), andR3(A ∪ B1 ∪ B2 ∪ C)
be relation schemas, whereA = {a1, . . . , am}, B1 = {b1},
B2 = {b2}, andC = {c1, . . . , cp} are attribute sets,A and
C are disjoint and may be empty,B1 andB2 are disjoint
and nonempty,A andB1 are disjoint, andB2 andC are
disjoint. Note that the setsB1 andB2 consist of a single
set-valuedattribute, respectively. Letr1(R1), r2(R2), and
r3(R3) be relations on these schemas. Theset containment
join r1 ⋊⋉b1⊇b2 r2 = r3 is a join between the set-valued
attributesb1 andb2, where we ask for the combinations of
tuplest1 ∈ r1 andt2 ∈ r2 such that sett1.b1 contains all el-
ements of sett2.b2. Several efficient algorithms and strate-
gies for realizing this operator in an RDBMS have been pro-
posed [18, 28, 29, 31, 32].

We have recently suggested a generalization of division
that we calledset containment division, denoted by÷∗

1,
because of its similarity to the set containment join [35].
Let R1(A ∪ B), R2(B ∪ C), andR3(A ∪ C) be relation
schemas, whereA = {a1, . . . , am}, B = {b1, . . . , bn}, and
C = {c1, . . . , cp} are nonempty sets of attributes,A andB
are disjoint, andB andC are disjoint. Letr1(R1), r2(R2),

1Another algebraic definition given in the literature is
r1 ÷ r2 = ((r1 ⋉ r2) ⊐⋊⋉ r2)⋉r2 [9], where semi-join (⋉),
anti-semi-join (⋉), and left outer join (⊐⋊⋉) are used. An indirect
approach based on counting was discussed in [16], where GγF (r1)
is the grouping operator [13], G is a list of r1’s attributes and
F is a list of aggregation functions applied to an attribute ofr1:
r1 ÷ r2 = πA

`

Aγcount(B)→c (r1 ⋉ r2) ⋊⋉ γcount(B)→c (r2)
´

.
A definition in tuple relational calculus isr1 ÷ r2 =
{t | ∀t2 ∈ r2∃t1 ∈ r1 : t = t1.A ∧ t1.B = t2.B} [11]. A def-
inition mixing tuple relational calculus with relational algebra is
r1 ÷ r2 = {t ∈ πA(r1) | (t) ⋊⋉ r2 ⊆ r1} [1].

2

a b

1 1

1 4

2 1

2 2

2 3

2 4

3 1

3 3

3 4

(a) r1 (dividend)

b c

1 1

2 1

4 1

1 2

3 2

(b) r2 (divisor)

a c

2 1

2 2

3 2

(c) r3 (quotient)

Figure 2. Generalized division: r1 ÷∗ r2 = r3

a b1

1 {1, 4}

2 {1, 2, 3, 4}

3 {1, 3, 4}

(a) r1

b2 c

{1, 2, 4} 1

{1, 3} 2

(b) r2

a b1 b2 c

2 {1, 2, 3, 4} {1, 2, 4} 1

2 {1, 2, 3, 4} {1, 3} 2

3 {1, 3, 4} {1, 3} 2

(c) r3

Figure 3. Set containment join: r1 ⋊⋉b1⊇b2 r2 =
r3

andr3(R3) be relations on these schemas. Although we de-
fine a new operator, we continue to use the terms dividend,
divisor, and quotient for the relationsr1, r2, andr3, respec-
tively. The dividend relationr1 has the same schema as for
the small divide. However, the divisor relationr2 has addi-
tional attributesC. The set containment division operator is
defined as follows:

DEFINITION 4 (SET CONTAINMENT DIVISION):
r1 ÷∗

1 r2 =
⋃

t∈πC(r2) (r1 ÷ πB (σC=t (r2))) × (t)

The idea is to iterate over the groups defined by the at-
tributesr2.C. Each group is a separate divisor for a divi-
sion with dividendr1. We “attach” the divisor group value
to the resulting quotient tuples by a Cartesian product be-
tween each quotient group and a one-tuple relation(t).

The similarity between set containment division and set
containment join can be seen by comparing Figures2 and3.
Despite the similarity of the output, the operators have some
subtle differences:

1. The input relations of set containment join are not in
first normal form due to the set-valued attributes.

2. Set containment division does not preserve the “join”
attributes inB.

3. Set containment join allows empty sets as join attribute
values whereas set containment division does not have
the notion of an empty set.

4. The attribute setsA andC of the set containment join
may be empty.

Despite these differences, the operators both solve the same
problem—to find those pairs of sets(s1, s2) from two col-
lections of sets wheres1 ⊇ s2.

In 1982, Robert Demolombe suggested ageneralized di-
visionoperator, denoted by÷∗

2, that is equivalent (see The-
orem 1 below) to set containment division [12]. Besides
a definition of the operator in tuple relational calculus and
predicate calculus, he gives an algebraic definition:

DEFINITION 5 (GENERALIZED DIVISION):
r1 ÷∗

2 r2 = (πA (r1) × πC (r2)) −
πA∪C ((πA (r1) × r2) − (r1 × πC (r2)))

In 1988, Stephen Todd suggested—presumably indepen-
dent from Demolombe—a generalized division operator but
he did not publish it himself. However, it has been discussed
by Darwen and Date [11], where it was calledgreat divide,
denoted by÷∗

3. A definition in relational algebra is given
by the following expression:

DEFINITION 6 (GREAT DIVIDE): r1 ÷∗
3 r2 =

(πA (r1) × πC (r2))− πA∪C ((πA (r1) × r2) − (r1 ⋊⋉ r2))

Definition 6 differs only slightly from Definition5 of gen-
eralized division. It uses a join instead of a Cartesian prod-
uct. Darwen and Date write that great divide degenerates to
small divide, as specified in Definition2, if C = ∅ [11]. We
state the following theorem:

THEOREM 1: Set containment division (÷∗
1), generalized

division (÷∗
2), and great divide (÷∗

3) are equivalent opera-
tors.

The three definitions have been suggested independently.
However, while the publications on generalized divi-
sion [12] and great divide [11] solely focus on the rela-
tionship between thelogical operator and the basic division
operator, our previous work on the set containment divi-
sion operator [33, 35] put its emphasis on algorithms that
implementphysicaloperators and investigated applications
for this operator. In the rest of the paper, we will use De-
molombe’s termgeneralized divisionand use the symbol
÷∗ for the operator.

3 Frequent Itemset Discovery: An Applica-
tion of Great Divide

Frequent itemset discovery is an important data min-
ing subtask of association rule discovery algorithms [2]. It
searches for combinations of elements that occur more fre-
quently in a large amount of sets, calledtransactions, than a
user-defined threshold, calledminimum support. Most fre-
quent itemset discovery algorithms such asApriori proceed
iteratively. In thekth iteration, the algorithm computes all
frequent itemsets of sizek. The first iteration simply counts
the frequency of each item in the transactions, filters out
those that have insufficient support, and adds the frequent
ones to the result. Each of the following iterations is two-
phase. In thecandidate generation phaseof the kth iter-
ation, the algorithm computes a superset of the frequent
itemsets of sizek, called candidatek-itemsets. In thesup-
port counting phase, the candidatek-itemsets are probed
against the transactions to check how many times a candi-
date is contained in a transaction. The itemsets that occur
more frequently than the minimum support are added to the
result.

Suppose, we want to discover frequent itemsets us-
ing an RDBMS. Let us focus on the support count-
ing phase. For instance, given a table of transactions
transactions(tid, item) and a table of candidate itemsets
candidates(itemset, item), whereitemsetis a set identifier
anditem is an item identifier. A query-based frequent item-

3

set discovery algorithm can compute aquotienttable con-
taining value pairs(transactions.tid, candidates.itemset)
such that the item values belonging tocandidates.itemset
are contained in the set of items belonging totransac-
tions.tid. This test is exactly the behavior of the great di-
vide operator:quotient= transactions÷∗ candidates. Note
that this computation does not require the candidate item-
sets to have the same sizek. The frequent itemsets can then
be found by grouping the quotient table onitemset, count-
ing thetid values per group, and discarding the groups with
insufficient support.2

4 Embedding the Operators into SQL

In this section, we present a straightforward hypothetical
syntax for the small and great divide operator in SQL and
illustrate how these operators can be used for real queries.
We will use a more straightforward example problem do-
main for the queries than in the previous section, namely
the suppliers and parts scenario from database textbooks.

In the SQL standard [21], a production rule is defined
for table references, which occur in the FROM clause of a
query expression. We extend this clause by a nonterminal
〈quotient〉 as follows:3

<table reference> ::= <table factor> |
<joined table> |
<quotient>

Without going into every detail of the SQL standard, this
rule states that a table can be a base table, derived table,
named query, etc., or the result of a join expression or the
result of a division operation. We specify the following rule
for expressions involving the small and great divide opera-
tors:

<quotient> ::= <table reference>
DIVIDE BY
<table reference>
ON <search condition>

We illustrate the syntax using an example using a
supplier-parts database with a tablesupplies(s#, p#) that
lists the parts (p#) supplied by each supplier (s#) and a ta-
ble parts(p#, color). The following query delivers for each
color the suppliers who supply all parts with that color:4

Q1: SELECT s#, color
FROM supplies AS s DIVIDE BY parts AS p

ON s.p# = p.p#

Note that we do not distinguish between the small and
great divide on the language level. The great divide is a nat-
ural generalization of the small divide and can always be
used on the implementation/execution level. The〈quotient〉

2The idea of using a “vertical” representation for itemsets in the same
way as for transactions that we just described was discussedin [35]. It is
different from all SQL-based approaches of frequent itemset discovery in
the literature as, for example, in [20, 36, 37].

3shown in extended Backus Normal Form (BNF) as in [22].
4We actually ask only for those suppliers who supply at least one part,

that is, thoses# values in asuppliers(s#, . . .) table, where there exists a
tuple in thesuppliestable with thats# value. This is a slight semantic
difference between set containment join and great divide, as mentioned in
Section2.2.

construct is equivalent to asmall divide if all divisor at-
tributes appear in the join condition of the ON clause as a
conjunction5 of equi-joins. An example use of small divide
is the query “Find the suppliers that supply all blue parts”
that was mentioned in Section1.1, which can be formulated
as follows:

Q2: SELECT s#
FROM supplies AS s DIVIDE BY (

SELECT p#
FROM parts
WHERE color = ’blue’) AS p

ON s.p# = p.p#

Concerning the power of the suggested SQL syntax, one
could allow a more general join condition than equi-joins
between columns in the ON clause. However, the result
of such a query would have a semantics that is completely
different from small or great divide. We suggest to disallow
this case. If such a different behavior is required, a user can
still formulate the problem using other, basic operators of
the SQL syntax.

We contrast queryQ1 with an equivalent query that sim-
ulates the universal quantification by two “NOT EXISTS”
clauses, applying the mathematical equivalence between
∀x∃y : p(x, y) and¬∃x¬∃y : p(x, y), wherep is a predi-
cate involving variablesx andy:

Q3: SELECT DISTINCT s#, color
FROM supplies AS s1, parts AS p1
WHERE NOT EXISTS (

SELECT *
FROM parts AS p2
WHERE p2.color = p1.color AND

NOT EXISTS (
SELECT *
FROM supplies AS s2
WHERE s2.p# = p2.p# AND

s2.s# = s1.s#))

A direct translation of this query asks for each supplier and
color whether there is no part of the same color that is not
supplied by the supplier. We use the keyword DISTINCT
in the outermost SELECT clause to remove duplicates from
the result. Otherwise, we would get the same (s#, color)
value combination as many times as there are parts of the
same color inparts.

Clearly, the query using a special syntax for the set con-
tainment problem is more concise and hence (likely) less
error-prone to formulate than the query based on existen-
tial quantifications. Furthermore, it is not simple to devise a
query-rewriting algorithm for a query optimizer that is able
to detect those existential quantification constructs thatcan
be replaced by a (great) divide operator. Only if the appro-
priate joins between inner and outer query are present does
the query solve a real set containment problem.

5 Algebraic Laws

Some of the algebraic laws discussed in this section are
based on the notion of apartitioned relation. We use the
following notations for partitions:

5For tablesr1 andr2 with schemasR1(a, b, c) andR2(b, c), respec-
tively, we would use a query likeSELECT a FROM r1 DIVIDE BY
r2 ON r1.b = r2.b AND r1.c = r2.c.

4

a b

1 1

1 4

2 1

2 2

2 3

2 4

3 1

3 3

3 4

4 1

4 3

(a) r1

b

1

3

4

(b) r2

b

1

3

(c) r′2

b

3

4

(d) r′′2

a

2

3

4

(e) r1 ÷ r′2

a b

2 1

2 2

2 3

2 4

3 1

3 3

3 4

4 1

4 3

(f) r1 ⋉ (r1 ÷ r′2)

a

2

3

(g) r3

Figure 4. An example for Law 1

• r′i andr′′i denote nonemptyhorizontalpartitions of re-
lation ri such thatr′i ∪ r′′i = ri, wherei ∈ {1, 2},
that is, we define a decomposition ofri’s tuples. The
two partitions may actually be different relations. We
just express by this notation that two relations have the
same schema.

• r∗i and r∗∗i denote relations that conform to the
schemas of thevertical partitionsR∗

i andR∗∗
i of Ri,

respectively, such thatR∗
i ∪ R∗∗

i = Ri, wherei ∈
{1, 2}. Hence, we define a decomposition ofRi’s at-
tributes.

For the laws that follow, we will indicate when we re-
quire partitions to be disjoint or not. The proofs of the laws
and theorems can be found in [34].

Before we present the laws, we state two theorems that
emphasize that this binary operator is clearly asymmetric.

THEOREM 2: Small divide is non-commutative, that is,
r1 ÷ r2 6= r2 ÷ r1 for relationsr1 andr2.

THEOREM 3: Small divide is non-associative, that is,r1 ÷
(r2 ÷ r3) 6= (r1 ÷ r2) ÷ r3 for nonempty relationsr1, r2,
andr3.

5.1 Algebraic Laws for the Small Divide

5.1.1 Union

When thedivisor r2 is decomposed into horizontal parti-
tions then one can divide by these divisors separately:

LAW 1: r1 ÷ (r′2 ∪ r′′2) = (r1 ⋉ (r1 ÷ r′2)) ÷ r′′2 .

This law holds also for overlapping divisor partitions, as
illustrated in the example in Figure4. In this example, the
r′2 andr′′2 have one tuple in common with valueb = 3. The
resulting relationr3 is the same if the table(a) is divided
by the union of tables(c) and(d) compared to dividing(f)
by (d).

It can help an RDBMS to employ pipeline parallelism as
follows. Suppose,r1 is grouped onA. We can employ effi-
cient group-preserving algorithms for the inner small divide

a b

1 1

1 2

1 3

(a) r′1

a b

1 2

1 4

(b) r′′1

b

1

4

(c) r2

Figure 5. An example where the precondition
of Law 2 is not fulfilled

r1 ÷ r′2 as well as the semi-join and deliver the result as the
dividend to the outer small divide, which can be realized by
a group-preserving algorithm itself.

When we decompose thedividendhorizontally instead
of the divisor, we must take care of the situation sketched in
Figure5. There is a quotient candidate value (a = 1) whose
tuples are dispersed across the dividend relations but none
of the groups containsall values of the divisor. However,
the union of the groups does. In other words,r′1 ÷ r2 = ∅
andr′′1 ÷r2 = ∅ but(r′1∪r′′1)÷r2 6= ∅. We have to exclude
this situation in the precondition of Law2. Formally, the
following precondition must hold:

c1(r
′
1, r

′′
1) ≡ ∀a ∈ πA(r′1) ∩ πA(r′′1) :

r2 ⊆ πB (σA=a (r′1))∨

r2 ⊆ πB (σA=a (r′′1))∨

r2 6⊆ πB (σA=a (r′1) ∪ σA=a (r′′1))

LAW 2: If condition c1 (r′1, r
′′
1) is true then(r′1 ∪ r′′1) ÷

r2 = (r′1 ÷ r2) ∪ (r′′1 ÷ r2).

Since testing conditionc1 can be expensive, an RDBMS
may use a stricter conditionc2 that is easier to check:

c2(r
′
1, r

′′
1) ≡ πA (r′1) ∩ πA (r′′1) = ∅.

It can be shown easily that for any relationsr1 = r′1 ∪ r′′1
andr2 as defined before, ifc2 holds then alsoc1 holds. By
using conditionc2 instead ofc1 with Law 2, an RDBMS
can parallelize a query execution with degree2 as follows.
Suppose that the query execution engine can access the data
in tabler1 via an index onA. We can employ two parallel
scans on tabler1: one that starts with the lowest value of
A and scans the leaves of the index in ascending order of
A and another that starts with the highest value ofA and
retrieves data in descending order ofA. Both scans stop as
soon as they encounter the same value forA. Exactly one
of them has to process the entire last group. Higher degrees
of parallelism can be achieved by partitioningr1 into n > 2
partitions.

5.1.2 Selection

Let p(X) denote a predicate involving only elements of a
set of attributesX . Since onlyr1 contains the attribute set
A, we can state the following “selection push-down” law:

LAW 3: σp(A) (r1 ÷ r2) = σp(A) (r1) ÷ r2.

For a predicate that involves only attributes inB, the fol-
lowing “replicate-selection” law holds:

5

a b

1 1

1 4

2 1

2 2

2 3

2 4

3 1

3 3

3 4

4 1

4 3

(a) r1

a b

1 1

2 1

2 2

3 1

4 1

(b) σb<3 (r1)

b

1

3

4

(c) r2

b

1

(d) σb<3 (r2)

a

(e) σb<3 (r1) ÷ r2

a

1

2

3

4

(f) σb<3 (r1) ÷ σb<3 (r2)

a b

1 3

1 4

2 3

2 4

3 3

3 4

4 3

4 4

(g) πa (r1) × σb≥3 (r2)

a

1

2

3

4

(h) πa

`

πa (r1) × σb≥3 (r2)
´

a

(i) (σb<3 (r1) ÷ σb<3 (r2)) − πa

`

πa (r1) × σb≥3 (r2)
´

Figure 6. An illustration for Example 1

LAW 4: r1 ÷ σp(B) (r2) = σp(B) (r1) ÷ σp(B) (r2).

As a third example of selection conditions, we will now
analyze the case where there’s a restriction specified on div-
idend attributes inB, only.

EXAMPLE 1:

σp(B) (r1) ÷ r2 =
(

σp(B) (r1) ÷ σp(B) (r2)
)

−

πA

(

πA (r1) × σ¬p(B) (r2)
)

.

This expression is very similar to Law4. We only have
to take care of the situation whereσ¬p(B) (r2) 6= ∅. In this
case, the expressionσp(B) (r1)÷r2 is equal to the empty set
because no dividend tuple has a value ofB that can match
a tuple inσ¬p(B) (r2). Hence, ifσ¬p(B) (r2) contains at
least one tuple, we can enforce that the result relation be
empty by simply removing allA values inr1 from the quo-
tient candidates inσp(B) (r1) ÷ σp(B) (r2). The Cartesian
product is merely used to “switch”πA (r1) “on or off.”6

Figure 6 illustrates the example and exhibits the inter-
mediate results in detail. The predicate on theB columns is
defined asb < 3. Note that the result tables(e) and(i) are
both empty since table(h) is nonempty.

To make our argumentation clearer, we could rewrite our
expression as follows: Since our equivalence represents a
rather extreme case, we do not state it as a law but leave it
as an example. �

6Of course, it would suffice to combineπA(r1) with only a single
tuple ofσ¬p(B) (r2) by the Cartesian product.

5.1.3 Intersection

We can push small divide into intersections of dividend re-
lations.

LAW 5: (r′1 ∩ r′′1) ÷ r2 = (r′1 ÷ r2) ∩ (r′′1 ÷ r2) .

5.1.4 Difference

The following law can be used when we perform two re-
stricted scans over thesamedividend relation where both
restrictions are definedonly on the attributes inA. For ex-
ample,r′1 = σa>10(r1) andr′′1 = σa>20(r1). In this case,
we can push small divide into a difference of the dividend
relations:

LAW 6: If r′1 = σp′(A)(r1) ⊇ σp′′(A)(r1) = r′′1 then
(r′1 − r′′1) ÷ r2 = (r′1 ÷ r2) − (r′′1 ÷ r2).

For a similar law, we require as precondition thatπA (r′1)
andπA (r′′1) are disjoint.7

LAW 7: If πA (r′1) ∩ πA (r′′1) = ∅ then (r′1 ÷ r2) −
(r′′1 ÷ r2) = r′1 ÷ r2.

Clearly, this law can save a lot of resources of an
RDBMS if the computation ofr′′1 ÷ r2 would be expen-
sive. For example, suppose thatA consists of a sin-
gle integer attribute with values[1..106] and the query is
(σa≤10(r1)÷ r2)− (σa>10(r1)÷ r2). Computing only the
first part of the difference is inexpensive.

5.1.5 Cartesian Product

Let A1 andA2 be disjoint subsets of the attribute setA such
thatA1∪A2 = A. Letr∗1 be a relation with schemaR∗

1(A1)
andr∗∗1 be a relation with schemaR∗∗

1 (A2 ∪ B). As usual,
let R2(B) be the schema of the divisorr2. Then it suffices
to apply the small divide only to some of the attributes of
the dividend:

LAW 8: (r∗1 × r∗∗1) ÷ r2 = r∗1 × (r∗∗1 ÷ r2).

Figure7 illustrates Law8 with an example. The law can
help when the query optimizer finds that a predicateθ of a
theta-join⋊⋉θ is always true since⋊⋉true≡ ×.

Let B1 andB2 be disjoint nonempty subsets of the at-
tribute setB such thatB1 ∪ B2 = B. Let r∗1 be a relation
with schemaR∗

1(A∪B1) andr∗∗1 be a relation with schema
R∗∗

1 (B2). Again, letR2(B) be the schema of the divisorr2.
Then, we can state the following

LAW 9: If πB2
(r2) ⊆ r∗∗1 then(r∗1 × r∗∗1) ÷ r2 = r∗1 ÷

πB1
(r2).

Figure8 illustrates Law9 with an example. All intermediate
relations are shown. Note that the Cartesian product(d)
does not necessarily have to be materialized by an RDBMS
provided that the implementation of the subsequent small
divide can cope with pipelined input. The same holds for

7This is not the weakest precondition. For the the law to hold,
it would suffice to require that∀a ∈ σA=a

`

πA

`

r′1
´

∪ πA

`

r′′1
´´

:

r2 ⊆ σA=a

`

πA

`

r′1
´´

∨ r2 ⊆ σA=a

`

πA

`

r′′1
´´

∨ r2 6⊆
σA=a

`

πA

`

r′1
´

∪ πA

`

r′′1
´´

. However, we prove the law only for the
stronger preconditionπA

`

r′1
´

∩ πA

`

r′′1
´

= ∅.

6

a1

1

2

(a) r∗1

a2 b

1 1

1 2

1 3

2 1

2 3

3 2

3 3

(b) r∗∗1

b

2

3

(c) r2

a1 a2 b

1 1 1

1 1 2

1 1 3

1 2 1

1 2 3

1 3 2

1 3 3

2 1 1

2 1 2

2 1 3

2 2 1

2 2 3

2 3 2

2 3 3

(d) r∗1 × r∗∗1

a2

1

3

(e) r∗∗1 ÷ r2

a1 a2

1 1

1 3

2 1

2 3

(f) r3

Figure 7. An example for Law 8

a b1

1 1

1 2

1 3

2 2

2 3

3 1

3 3

3 4

(a) r∗1

b2

1

2

(b) r∗∗1

b1 b2

1 2

3 1

3 2

(c) r2

a b1 b2

1 1 1

1 1 2

1 2 1

1 2 2

1 3 1

1 3 2

2 2 1

2 2 2

2 3 1

2 3 2

3 1 1

3 1 2

3 3 1

3 3 2

3 4 1

3 4 2

(d) r∗1 × r∗∗1

b1

1

3

(e) πB1
(r2)

b2

1

2

(f) πR∗∗
1

(r2)

a

1

3

(g) r3

Figure 8. An example for Law 9

the Cartesian product on the left hand side of Law8 that
was illustrated in7(d).

EXAMPLE 2: With the help of Law9 we can prove that
(r1 × s) ÷ (r2 × s) = r1 ÷ r2. Let B = B1 ∪ B2. We
haveR∗

1(A ∪ B1), R∗∗
1 (B2), R∗

2(B1), R∗∗
2 (B2) and thus

R1(A∪B1 ∪B2) as the dividend schema andR2(B1∪B2)
as the divisor schema. We defines = r∗∗1 = r∗∗2 . The
conditionr∗∗1 ⊆ πR∗∗

1
(r2) is fulfilled sincer∗∗1 = r∗∗2 =

πR∗∗
2

(r2) = πR∗∗
1

(r2). Hence, we have

(r∗1 × s) ÷ (r∗2 × s)

= (r∗1 × r∗∗1) ÷ (r∗2 × r∗∗2) (Definition ofs)

= (r∗1 × r∗∗1) ÷ r2 (Definition ofR2)

= r∗1 ÷ πB1
(r2) (Law 9)

= r∗1 ÷ r∗2 (Definition ofR2)

5.1.6 Join

Join, like small divide, is a derived operator. When a small
divide operator occurs together with a join operator in an
expression, it may be beneficial for the execution strategy
of an RDBMS to rewrite the join operator and subsequently
apply algebraic laws to rewrite the result in combination
with small divide. The laws involving the selection operator
in Section5.1.2as well as the laws concerning the Cartesian
product in Section5.1.5can be used to rewrite expressions
involving join and small divide, sincer ⋊⋉θ s = σθ(r × s),
where⋊⋉θ is a theta-join with the conditionθ. The following
example illustrates such a rewrite.

EXAMPLE 3: Letr∗1 , r∗∗1 , andr2 be relations with schemas
R∗

1(a, b1), R∗∗
1 (b2), andR2(b1, b2), respectively. Further-

more, letr∗∗1 .b2 be a unique attribute and letr2.b2 be a for-
eign key that referencesr∗∗1 , that is,πb2 (r2) ⊆ r∗∗1 . Sup-
pose, we want to compute relationr3 = (r∗1 ⋊⋉b1<b2 r∗∗1)÷
r2. We can derive the following expressions:

r3 = (r∗1 ⋊⋉b1<b2 r∗∗1) ÷ r2

= σb1<b2 (r∗1 × r∗∗1) ÷ r2 (Definition of theta-join)

= (σb1<b2 (r∗1 × r∗∗1) ÷ σb1<b2 (r2))−

πa (πa (r∗1 × r∗∗1) × σb1≥b2 (r2)) (Example1)

= ((r∗1 × r∗∗1) ÷ σb1<b2 (r2))−

πa (πa (r∗1 × r∗∗1) × σb1≥b2 (r2)) (Law 4)

= (r∗1 ÷ πb1 (σb1<b2 (r2)))−

πa (πa (r∗1 × r∗∗1) × σb1≥b2 (r2)) (Law 9)

= (r∗1 ÷ πb1 (σb1<b2 (r2)))−

πa (πa (r∗1) × σb1≥b2 (r2))

(sincea ∈ R∗
1 buta /∈ R∗∗

1)

Note that the termπa (r∗1) × σb1≥b2 (r2) is merely used
to test if σb1≥b2 (r2) contains at least one tuple. If yes,
r3 is an empty relation becauseπa (r∗1) represents alla
values inr∗1 and removing these values from the quotient
r∗1 ÷πb1 (σb1<b2 (r2)) would leave no tuples. Otherwise,r3
is simplyr∗1÷πb1 (σb1<b2 (r2)). Figure9 sketches some in-
termediate results that occur during the computation of our
example expression.

An RDBMS might be able to execute a plan based on this
expression more efficiently than a plan based on the original
expression because no join betweenr∗1 andr∗∗1 is required.
Such a situation occurs, for instance, when there is no index
available onr∗1 .b1 and no index onr∗∗1 .b2, but when there
are two indexes defined on the columnsb1 andb2 of table
r2, respectively. �

Let us focus on a special type of join: the semi-join. Let
r3 be a relation with schemaR3(A). Then we can state the
following

LAW 10: (r1 ÷ r2) ⋉ r3 = (r1 ⋉ r3) ÷ r2.

This law can help an RDBMS ifr3 has few tuples andr1
andr2 have many tuples. It may be cheaper to keepr3 in
memory and to compute the semi-join in one scan overr1,
especially if the join is highly selective and removes many
tuples fromr1. Then, the small divide of the join result with
r2 is likely to be cheap.

7

a b1

1 1

1 2

1 3

2 2

2 3

3 1

3 3

3 4

(a) r∗1

b2

1

2

4

(b) r∗∗1

b1 b2

1 4

3 4

(c) r2

a b1 b2

1 1 2

1 1 4

1 2 4

1 3 4

2 2 4

2 3 4

3 1 2

3 1 4

3 3 4

(d) r∗1 ⋊⋉b1<b2 r∗∗1

b1

1

3

(e) πb1(σb1<b2 (r2))

a

1

3

(f) r3

Figure 9. An illustration of Example 3

a x

1 1

1 2

1 3

2 1

2 3

3 1

3 3

3 4

(a) r0

a b

1 6

2 4

3 8

(b) r1 = aγsum(x)→b(r0)

b

4

(c) r2

a b

2 4

(d) r1 ⋉ r2

a

2

(e) πA(r1 ⋉ r2)

Figure 10. An example for Law 11

5.1.7 Grouping

We consider two special cases involving the grouping oper-
ator. Concerning the first special case, letr0 be a relation
with schemaR0(A∪X) for some nonempty attribute setX .
Let r1 = Aγf(X)→B(r0), wheref is an aggregate function
and its result is assigned to the attributes inB.8 In other
words, each quotient candidate group of the dividend con-
sists of a single tuple. Hence, in order to find a quotient, the
divisor cannot have more than one tuple. For this special
case, we can formulate

LAW 11: r1÷r2 =



























r1

if σc=0

(

γcount(B)→c (r2)
)

6= ∅,
πA (r1 ⋉ r2)

if σc=1

(

γcount(B)→c (r2)
)

6= ∅,
and

∅ otherwise.

Figure10 illustrates an example for this law. Here, the ag-
gregation operator computes the sum of thex values for
each group ofb in tabler0. This value is used as the new
attributea in r1. Since each group formed defined byb has
a single tuple the table(e)constitutes the result.

Now, let us consider another special case. Letr0 be a re-
lation with schemaR0(X∪B) for some nonempty attribute

8The assignmentf(X) → B is a simplification. In general,f is a
list of aggregate functionsf1, . . . , fn, wheren = |B|, such thatf(X) =
(f1(e1(X)), . . . , fn(en(X))) = (b1, . . . , bn) = B and ei(X) is an
arithmetic expression using attributes ofX, for example,e5 = 7x3 −√

x5. The setX may have any number of attributes, it need not be equal
to B.

x b

1 1

1 2

1 3

2 1

2 3

3 1

3 3

3 4

(a) r0

a b

6 1

1 2

6 3

3 4

(b) r1 = bγsum(x)→a(r0)

b

1

3

(c) r2

a b

6 1

6 3

(d) r1 ⋉ r2

a

6

(e) πA(r1 ⋉ r2)

Figure 11. An example for Law 12

setX . Let r1 = Bγf(X)→A(r0), wheref is an aggregate
function and its result is assigned to the attributes inA.8
In other words, each divisor attribute valueB of the divi-
dend occurs in a single tuple, that is, the groups defined by
B have size one. Furthermore, letr2.B be a foreign key
referencingr1.B, that is,r2.B ⊆ πB (r1).

Hence, there can be at most one dividend tuple for each
B value. We simply have to check ifπA(r1 ⋉ r2) contains
a single value. If it does, then this value is the quotient.
Otherwise, there is no quotient.

LAW 12: r1 ÷ r2 =











πA (r1 ⋉ r2)
if σc=1

(

γcount(A)→c (
πA (r1 ⋉ r2))) 6= ∅, and

∅ otherwise.

Figure11illustrates an example for this law. Since table(e)
contains a single tuple, this table also constitutes the quo-
tient.

The two laws involving the grouping operator can im-
prove the query execution time considerably because the
small divide operation is replaced by a single join operation
and a projection on the join result. However, since Laws11
and12 have rather restrictive prerequisites, we believe that
their implementation is beneficial only in special purpose
RDBMS.

5.2 Algebraic Laws for the Great Divide

We have identified several laws for the great divide op-
erator÷∗. In the following, we show some of the laws that
we consider as important.

5.2.1 Union

When thedivisor r2 is decomposed into horizontal parti-
tions then one can divide by these divisors separately:

LAW 13: If πC (r′2)∩πC (r′′2) = ∅ thenr1 ÷∗ (r′2 ∪ r′′2) =
(r1 ÷∗ r′2) ∪ (r1 ÷∗ r′′2).

This law allows to parallelize the execution of a query. Sup-
pose that the dividendr1 is replicated onn nodes of a query
execution engine and that the divisor is equally distributed
according to a hash function onr2.C across the nodes. Then
it is possible to reduce the execution time to1

n
of the origi-

nal time provided that the great divide execution is consid-

8

erably more expensive than the final union/merge operator
plus the cost for data shipping to and from the nodes.

5.2.2 Selection

The following law is the same as Law3 for the small divide
operator.

LAW 14: σp(A) (r1 ÷∗ r2) = σp(A) (r1) ÷∗ r2.

A similar “predicate push-down” law holds for attribute
C of the divisor relation:

LAW 15: σp(C) (r1 ÷∗ r2) = r1 ÷∗ σp(C) (r2).

The following law is the same as Law4 for the small
divide:

LAW 16: r1 ÷
∗ σp(B) (r2) = σp(B) (r1) ÷

∗ σp(B) (r2).

5.2.3 Cartesian Product

The following law is the same as Law8 for the small divide.
It is useful for expressions involving joins when combined
with Laws15and16.

LAW 17: (r∗1 × r∗∗1) ÷∗ r2 = r∗1 × (r∗∗1 ÷∗ r2).

5.2.4 Join

The following example illustrates how an expression in-
volving great divide and theta-join can be rewritten using
the laws discussed before.

EXAMPLE 4: Letr∗1 , r∗∗1 , andr2 be relations with schemas
R∗

1(a1), R∗∗
1 (a2, b1), andR2(b1, b2), respectively. We can

derive the following expressions:

r∗1 ⋊⋉a1=a2
(r∗∗1 ÷∗ r2)

= σa1=a2
(r∗1 × (r∗∗1 ÷∗ r2)) (Def. of theta-join)

= σa1=a2
((r∗1 × r∗∗1) ÷∗ r2) (Law 17)

= σa1=a2
(r∗1 × r∗∗1) ÷∗ r2 (Law 14)

= (r∗1 ⋊⋉a1=a2
r∗∗1) ÷∗ r2 (Definition of theta-join)

Suppose that an index is available onr∗1 .a1 or on r∗∗1 .a2.
The join r∗1 ⋊⋉a1=a2

r∗∗1 in the last expression can then be
computed very efficiently. If this join has a high selectivity,
it is possible that much fewer dividend groups ofb values
have to be tested againstr2 in the last expression compared
to the first expression. �

6 Related Work

An interesting theoretical result about the small divide
operator has recently been published [24]. It justifies the ef-
forts made by previous work on implementing small divide
and set equality joins as efficientspecial purpose operators,
which can achieve a time complexity ofO(n log n) for al-
gorithms based on sorting and counting. They prove that
any expression of the small divide operator in the relational
algebra with union, difference, projection, selection, and

equi-joins, must produce intermediate results of quadratic
size.9

Set containment join is considered an important opera-
tor for queries involving set-valued attributes [17, 19, 27,
29, 28, 31, 32, 39]. For example, set containment test op-
erations have been used for optimizing a workload of con-
tinuous queries, in particular for checking if one query is
a subquery of another. For instance, Chen and DeWitt [8]
suggested an algorithm that re-groups continuous queries to
maintain a close-to-optimal global query execution plan.

Another example of set containment joins is content-
based retrieval using a search engine in document
databases, where a huge set of documents is tested against
a set of keywords that all have to appear in the document.

We have already discussed the area of data mining as
another potential application area in Section3.

The small divide operator has been studied in the con-
text of fuzzy relations, for example, [6]. In a fuzzy rela-
tion, the tuples are weighted by a number between0 and
1. One interpretation of an extended division operator for
fuzzy relations, thefuzzy quotient operator[38], is based
on one of several relaxed versions of the universal quan-
tifier, called “almost all,” which is realized by a so-called
ordered weighted average operator. The fuzzy quotient op-
erator produces those values ofa ∈ πA(r1), where for “al-
most all” elementsb ∈ πB(r2) the tuple((a)× (b)) is in r1
for some fuzzy relationsr1 andr2 with schemasR1(A∪B)
andR2(B), respectively. Other interpretations of a “fuzzy”
version for division are discussed, for example, in [5, 4].

Carlis proposed a generalization of the division opera-
tor, calledHAS[7]. He argues that “division is misnamed”
because there are more operators◦ than division (÷) that
fulfill the equation(r1 × r2) ◦ r2 = r1. He further claims
that division is “hard to understand” because, among other
arguments, “division is the only algebra operation that gives
students any trouble.” Finally, he writes that division is “in-
sufficient” because it is not flexible enough, it allows only
queries of the form “find the sets that containall elements
of a given set” but it does not help for queries asking for sets
that contain, for example, at least five elements of a given
set.

The HAS operator involves three relations:r1 contains
entities about which we want the answer if it qualifies in the
result, r2 contains entities that are used for the qualifica-
tion, andr3 contains the relationships between the entities
in r1 andr2. For example, in the supplier-parts database
mentioned in Section4, r1 = suppliers, r2 = parts, and
r3 = supplies. In addition, the HAS operator uses a combi-
nation of six “adverbs,” calledassociations, to describe the
qualification:strictly more than, strictly less than, some of
but not all plus something else, exactly, none of plus some-
thing else, andnone at all. There are26 − 1 = 63 possible
combinations to choose between one and six associations
for a specific HAS operator. Such a combination is consid-
ered as a disjunction of the participating associations.

We illustrate the algebra syntax used in [7] by show-
ing how the small divide can be expressed by the HAS
operator using one of the63 association combinations:
r1 VIA r3 HAS (exactlyor strictly more than) OFr2. The

9Their main, more general, result is to show that any relational algebra
expression that never produces intermediate results of quadratic size, will
produce only intermediate results of linear size.

9

combination “exactlyor strictly more than” is equivalent to
the adverb “at least,” typically used to describe division.

7 Conclusions

We have presented equivalences of the relational algebra
for two important operators that realize a universal quantifi-
cation, called small and great divide. The latter is a natu-
ral extension of the classic small divide operator that was
introduced by Codd. The algebraic laws can serve as log-
ical rewrite rules within the optimizer of an RDBMS that
provides an implementation of small or great divide in the
execution engine. To achieve efficiency for universal quan-
tification queries, division operatorsmustbe implemented
as first-class operators, as it was recently proven in [24].

Until today, relational division operators have not been
implemented in any commercial RDBMS. However, with
these operators, data-intensive data mining primitives like
frequent itemset discovery or simple text searches using
conjunctive queries can be formulated intuitively and be
coupled more closely with an RDBMS. Hence, such “for-
all” queries enjoy an optimization according to the current
data characteristics and can be processed efficiently by these
special-purpose operators. We do not claim that the laws
presented in this paper constitute the only relevant ruleset.
Nevertheless, we believe that several of our algebraic equiv-
alences are necessary to enable an effective optimization of
queries that use the small or great divide as a first-class op-
erator.

Clearly, logical query rewriting is only one aspect of the
query optimization problem. The mapping of logical opera-
tors to physical operators is another issue. We have recently
implemented a collection of physical great divide operators
into a Java query execution engine prototype based on the
class library XXL [3]. A description of several great di-
vide algorithms together with cost estimations based on in-
put data characteristics (such as grouped or sorted columns
in the dividend and divisor) was given in [35]. Future work
will assess the effectiveness of the algebraic laws when im-
plemented as transformation rules in a query optimizer. Be-
sides such engineering problems, it is interesting to study
further data-intensive applications with an intrinsic univer-
sal quantification problem besides frequent itemset discov-
ery.

Acknowledgments

We thank Rakesh Agrawal for invaluable suggestions,
Bernhard Mitschang for starting the project and guiding our
work at Stuttgart, where much of this work was done, and
Leonard Shapiro for the inspiration.

References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-
Wesley, 1995.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. InSIGMOD, Washington DC, USA, pages
207–216, May 1993.

[3] J. V. d. Bercken, B. Blohsfeld, J.-P. Dittrich, J. Krämer, T. Schäfer, M. Schnei-
der, and B. Seeger. XXL—A library approach to supporting efficient
implementations of advanced database queries. InVLDB, Rome, Italy, pages
39–48, September 2001.

[4] P. Bosc. On the primitivity of the division of fuzzy relations. InSAC, San Jose,
California, USA, pages 197–201, February–March 1997.

[5] P. Bosc, D. Dubois, O. Pivert, and H. Prade. Flexible queries in relational
databases—the example of the division operator.Theoretical Computer
Science, 171(1–2):281–302, 1997.

[6] B. P. Buckles and F. E. Petry. A fuzzy representation of data for relational
databases.Fuzzy Sets and Systems, 7(3), May 1982. 213–226.

[7] J. V. Carlis. HAS, a relational algebra operator or divide is not enough to
conquer. InICDE, Los Angeles, California, USA, pages 254–261, February
1986.

[8] J. Chen and D. DeWitt. Dynamic re-grouping of continuousqueries. InVLDB,
Hong Kong, China, pages 430–441, August 2002.

[9] J. Claußen, A. Kemper, G. Moerkotte, and K. Peithner. Optimizing queries
with universal quantification in object-oriented and object-relational databases.
In VLDB, Athens, Greece, pages 286–295, August 1997.

[10] E. Codd. Relational completeness of database sub-languages. In R. Rustin,
editor, Courant Computer Science Symposium 6: Database Systems, pages
65–98. Prentice-Hall, 1972.

[11] H. Darwen and C. Date. Into the great divide. In C. Date and H. Darwen,
editors,Relational Database: Writings 1989–1991, pages 155–168. Addison-
Wesley, Reading, Massachusetts, USA, 1992.

[12] R. Demolombe. Generalized division for relational algebraic language.
Information Processing Letters, 14(4):174–178, 1982.

[13] H. Garcia-Molina, J. Ullman, and J. Widom.Database Systems—The Complete
Book. Prentice-Hall, 2002.

[14] G. Graefe. Relational division: Four algorithms and their performance. In
ICDE, Los Angeles, California, USA, pages 94–101, February 1989.

[15] G. Graefe. The Cascades framework for query optimization. BTCDE,
18(3):19–29, September 1995.

[16] G. Graefe and R. Cole. Fast algorithms for universal quantification in large
databases.TODS, 20(2):187–236, 1995.

[17] S. Helmer. Performance Enhancements for Advanced Database Manage-
ment Systems. PhD thesis, University of Mannheim, Germany, December 2000.

[18] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for
joins with set comparison join predicates. InVLDB, Athens, Greece, pages
386–395, August 1997.

[19] S. Helmer and G. Moerkotte. Compiling away set containment and intersection
joins. Technical report, University of Mannheim, Germany,April 2002.

[20] M. Houtsma and A. Swami. Set-oriented data mining in relational databases.
DKE, 17(3):245–262, December 1995.

[21] ISO/IEC. Information Technology—Database Language—SQL—Part 2:
Foundation (SQL/Foundation), Working Draft 9075-2:2003, December 2002.

[22] ISO/IEC. Information Technology—Database Language—SQL—Part 2:
Framework (SQL/Framework), Working Draft 9075-2:2003, December 2002.

[23] M. Jarke and J. Koch. Query optimization in database systems. ACM
Computing Surveys, 16(2):111–152, June 1984.

[24] D. Leinders and J. V. den Bussche. On the complexity of division and set joins
in the relational algebra. InPODS, Baltimore, MD, June 2005.

[25] G. M. Lohman. Grammar-like functional rules for representing query opti-
mization alternatives. InSIGMOD, Chicago, Illinois, USA, pages 18–27, June
1988.

[26] D. Maier.The Theory of Relational Databases. Computer Science Press, 1983.
[27] N. Mamoulis. Efficient processing of joins on set-valued attributes. In

SIGMOD, San Diego, California, USA, June 2003.
[28] S. Melnik and H. Garcia-Molina. Divide-and-conquer algorithm for computing

set containment joins. InEDBT, Prague, Czech Republic, pages 427–444,
March 2002.

[29] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment
joins. TODS, 28(1):56–99, March 2003.

[30] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query
rewrite optimization in Starburst. InSIGMOD, San Diego, California, USA,
pages 39–48, June 1992.

[31] K. Ramasamy.Efficient Storage and Query Processing of Set-valued Attributes.
PhD thesis, University of Wisconsin, Madison, Wisconsin, USA, 2002. 144
pages.

[32] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik.Set containment
joins: The good, the bad and the ugly. InVLDB, Cairo, Egypt, pages 351–362,
September 2000.

[33] R. Rantzau. Processing frequent itemset discovery queries by division and set
containment join operators. InDMKD, San Diego, California, USA, June 2003.

[34] R. Rantzau and C. Mangold. Laws for rewriting queries containing division
operators. Technical report no. 2005/08, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Universität Stuttgart,
Germany, October 2005.

[35] R. Rantzau, L. Shapiro, B. Mitschang, and Q. Wang. Algorithms and applica-
tions for universal quantification in relational databases. Information Systems,
28(1):3–32, January 2003.

[36] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. InSIGMOD,
Seattle, Washington, USA, pages 343–354, June 1998.

[37] S. Thomas and S. Chakravarthy. Performance evaluationand optimization of
join queries for association rule mining. InDaWaK, Florence, Italy, pages
241–250, August–September 1999.

[38] R. R. Yager. Fuzzy quotient operators for fuzzy relational databases. InIFES,
Yokohama, Japan, pages 289–296, November 1991.

[39] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting
containment queries in relational database management systems. InSIGMOD,
Santa Barbara, California, USA, May 2001.

10

	1 Introduction
	1.1 Problem Statement and Main Results
	1.2 Outline

	2 The Division Operator
	2.1 The Small Divide
	2.2 The Great Divide

	3 Frequent Itemset Discovery: An Application of Great Divide
	4 Embedding the Operators into SQL
	5 Algebraic Laws
	5.1 Algebraic Laws for the Small Divide
	5.1.1 Union
	5.1.2 Selection
	5.1.3 Intersection
	5.1.4 Difference
	5.1.5 Cartesian Product
	5.1.6 Join
	5.1.7 Grouping

	5.2 Algebraic Laws for the Great Divide
	5.2.1 Union
	5.2.2 Selection
	5.2.3 Cartesian Product
	5.2.4 Join

	6 Related Work
	7 Conclusions

