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Abstract The small divide operator has two input relations, the

dividend and the divisor. The dividend is composed of zero

Relational division, also known asmall divide is a or more groups of tuples and each group is matched against
derived operator of the relational algebra that realizes a @ll tuples of the divisor relation. The great divide is a Ratu
many-to-one set containment test, where a set is repre_ral extension of small divide, where the divisor can be com-
sented as a group of tuples: Small divide discovers which Posed of zero or more groups of tuples like the dividend. It
sets in a dividend relation contain all elements of the set tests each divisor group against each dividend group.
stored in a divisor relation. The great divide operator ex- _ What is the role of algebraic laws for query optimiza-
tends small divide by realizing many-to-many set contain- tion? Before a query is executed by the query execu-
ment tests. It is also similar to the set containment join tion engine of a relational database management system
operator for schemas that are not in first normal form. (RDBMS), the query optimizer rewrites the algebraic rep-

Neither small nor great divide has been implemented in f€sentation of the query according to transformation rules
commercial relational database systems although the op- TYPically, one type of transformation rules is based on-alge
erators solve important problems and many efficient algo- Praic laws and the other maps logical operators to a physical
rithms for them exist. We present algebraic laws that al- OPerators. For instance, the logical operator join is méppe

low rewriting expressions containing small or great divide t0 the physical operator hash-join.

illustrate their importance for query optimization, andsli _An algebraic law is a logical equivalence between two
cuss the use of great divide for frequent itemset discovery,different representations of an algebraic expressionh Bot
an important data mining primitive. representations describe the same set of tuples for every

A recent theoretic result shows that small dividastbe possible database content. Together with heuristics and/o
implemented by special purpose algorithms and not be sim-Cost estimations, the optimizer applies transformatidesru
ulated by pure relational algebra expressions to achieve ef {0 Subexpressions of the query such that the entire query
ficiency. Consequently, an efficient implementation reguir €2 be evaluated with the minimal resource consumption
that the optimizer treats small divide as a first-class opera ©OF the shortest response time. Algebraic laws for the basic

tor and possesses powerful algebraic laws for query rewrit- OPerators of the relational algebra are discussed, for exam
P P 9 query ple, in [13, 23]. The implementation of transformation rules

ng- (rewrite rules) in a commercial RDBMS are described, for
example, in 5, 30]. Frameworks for building query opti-
mizers, like Cascaded ] and XXL [3], allow to study the

1 Introduction code that is required to realize transformation rules in an

RDBMS.
To the best of our knowledge, no commercial RDBMS

In this section, we motivate our work, give an intuition of has an implementation of relational division. One reason is
the small and great divide operators, and outline the paper. that there is no keyword in the SQL standard that would
allow to express universal quantification (that is, the all-
quantifier) intuitively. Another reason is that set contain
ment tests are not considered as important as the exidtentia
element test that is realized by the join operator. However,

The division operator can be used to answer queriesspecial applications like frequent itemset discovery doul
involving universal quantification like “Find the suppker be processed efficiently and formulated more intuitively if
that supplyall blue parts.” Division is a derived operator division would be a first-class operator. Suppose that an
like join, that is, it can be expressed by the basic algebraRDBMS offers one or more efficientimplementations of di-
operators projection, selection, Cartesian product (some vision, thatis, physical division operators like hashigion
times called cross-product), union, and difference. How- or merge-sort division1[6, 35]. Since division is a derived
ever, several algorithms exist that realize its behavioremo operator, an optimizer could replace the division operayor
efficiently than an execution plan based on the basic op-an expression that simulates the operator and apply tnansfo
erators [14]. More importantly, recent theoretic work has mation rules on the basic operators in the expression. In ad-
demonstrated that division must be implemented as a standdition, it should also be able to apply rewrite rules to the di
alone operator to achieve efficien@4. vision operator directly since efficient implementations a

1.1 Problem Statement and Main Results



The original definition of the division operator was given

T by Codd [L0], formulated as a query in tuple relational cal-

- culus:

2 3

7 4 DEFINITION 1 (CODD’S DIVISION): 71  + 1o =

S 1 ] —— {t|t=t1. ANt1 €11 Are Cip (t)}, where i, (x) is

R : ) re e

5 [ 1 palled theimage set ofx underr; and is defined by
(@) 1 (dividend) (b) r2 (divisor)  (c) r3 (quotient) ir, (2) ={y | (z,y) € 11}

In this calculus expression, the tetm= ¢;.A means that a
tuple in the result (quotient) consists of the attributeuesl
Figure 1. Division: r, =7y = 73 for A of the dividend tuplé; . . o
In the following, we give two further equivalent defini-
tions of division, provided by Healy and Maier iq] using
available in the query execution engine_ rele}ti_o_nal algebré. We use Codd’s, He_aly’s, and Maier’s
The algebraic laws presented in this paper either preservedefinitions for the proofs of our algebraic laws.
the division operator (it occurs in the both expression efth  perviTION 2 (HEALY’ S DIVISION): 71+ = 74 (11)—
equivalence) or produce some non-trivial rewrite resut th T (74 (1) X 72) — 1)
may improve efficiency of the computation in an RDBMS.
Note that there are an infinite number of equivalent expres-DEFINITION 3 (MAIER’S DIVISION): 71+ 72 =
sions for any given algebraic expression. We have tried tof );c,., 74 (5=t (1))
distill effective and interesting laws for rule based opzm o )
ers. In [11], the basic division operator was callsthall di-
No previous work has covered the rewriting of queries Videto distinguish it from a generalization of it, called great
involving division or generalized division although data- divide, to be discussed next.
intensive applications like frequent itemset discoveryido
benefit from a division syntax in SQL and an efficientim- 22 The Great Divide
plementation of the operator in a query execution engine.

. Before we discuss three equivalent definitions of an ex-
12 Outline tended division operator, we briefly consider another op-
erator related to them: the set containment join. Let
The remainder of this paper is organized as follows. In R1(A U By), R2(B2 U C), and R3(A U By U By U ()
the following section, we discuss several definitions fer th be relation schemas, whede= {a1,...,a,}, By = {b1},
small and great divide, which are used in the proofs of the B, = {b>}, andC' = {c, ..., ¢, } are attribute sets4 and
laws. In Sectior8, we motivate the potential of the great C are disjoint and may be empt§; and B» are disjoint
divide for an important data mining primitive. In Sectidn and nonemptyA and B; are disjoint, andB, andC' are
we suggest a hypothetical SQL syntax extension for the op-disjoint. Note that the set8; and B, consist of a single
erators before we present the algebraic laws in Se&ion set-valuedattribute, respectively. Let; (R;), r2(R2), and
Section6 discusses related work. We conclude the paperr;(R3) be relations on these schemas. Beécontainment
in Section?7. Due to lack of space, the proofs of theorems join 1 xp,55, 12 = 73 IS a join between the set-valued
and algebraic laws are given in the appendix of technical attributesh; andbs, where we ask for the combinations of
report 34], where they are presented in sufficient detalil to tuplest; € r; andt, € r5 such that set; .b; contains all el-
make them easy to comprehend. ements of set,.b,. Several efficient algorithms and strate-
gies for realizing this operator in an RDBMS have been pro-
posed 18, 28, 29, 31, 32].
We have recently suggested a generalization of division
that we calledset containment divisigndenoted by--7,
We will discuss the original division operator as well as a because of its similarity to the set containment jo&3|[
generalization of it, which was given three different names Let R, (A U B), Ry(B U C), andR3(A U C) be relation
in previous work. After this section, we will refer to the two  schemas, wheré = {a1,...,a,}, B = {b1,...,b,}, and
operators as small divide and great divide for the rest sfthi ¢ = {cy,...,¢,} are nonempty sets of attribute$,and B

paper. are disjoint, and3 andC' are disjoint. Let; (R;), 72(R2),

2 TheDivision Operator

2.1 TheSmall Divide 1Another algebraic definition given in the literature is
ri = ry2 = ((r1 Xr2) X r2)xry [9], where semi-join k),
anti-semi-join §), and left outer join {1x) are used. An indirect
approach based on counting was discussed18), [where gvr(r1)
is the grouping operatorlB], G is a list of ri’'s attributes and

Let R, (A U B) and Ry(B) be relation schemas, where
A = {ai,...,an} andB = {by,...,b,} are nonempty
disjoint sets of attributes. Let; (Rl) and TQ(RQ) be re- F is a list of aggregation functions applied to an attribute rgf
lations on these schemas. We cajl the dividend ooy = wig(Ag%oum(B)% (r Kp,g) X Yeount (B) e (7«27)%.
the divisor, andr3 the quotientof the division operation A definiton in tuple relational calculus isri = 7o =

ri =12 = r3. The schema of; is R3(A). Figurelil-  (t|viy em3ti er it =t ANt1.B=12.B} [11. A def-
lustrates example input and output relations of the dinisio initon mixing tuple relational calculus with relationallgabra is
operator. ri+ra={t€malri)| (¢) Xxr2 Cri} [1].



DEFINITION 5 (GENERALIZED DIVISION):

T ro+s T = (ma(r1) x mo (r2)) -

Sl ) Tavc ((ma (r1) X r2) = (r1 X 7c (r2)))

ER T In 1988, Stephen Todd suggested—presumably indepen-
— T 1 dent from Demolombe—a generalized division operator but
5 4 32 EN he did not publish it himself. However, it has been discussed

(@) r1 (dividend) (b) 72 (divisor) (c) r3 (quotient) by Darwen and Datel[l]_, .Wh(-;-re it was Calle@reat dIVIde
denoted by=-%. A definition in relational algebra is given
by the following expression:

Figure 2. Generalized division:  ry ~* 7y =13 DEFINITION 6 (GREAT DIVIDE): 71 =5 72 =
(ma (r1) X 7o (12)) = Tauc ((ma (r1) X r2) — (r1 ¥ 72))

Q

b1 [
T, 4] [y T e 17 ;
1,2,3,4} | [ {1,2,4} [ 1] 4} 1,3}
1,3,4} [ {13} [2] ¥ 1,3}

@ ®) 72 ECED

[ by [ by [

Definition 6 differs only slightly from Definition5 of gen-
eralized division. It uses a join instead of a Cartesian prod
uct. Darwen and Date write that great divide degenerates to
small divide, as specified in Definitid if C' = () [11]. We
state the following theorem:

THEOREM 1: Set containment division=;), generalized
division (=3), and great divide £{3) are equivalent opera-
tors.

wof 0| |
ol oo [ 2
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Figure 3. Set containment join: 71 Xy, 5p, 72 =
3

. The three definitions have been suggested independently.
andr3(R3) be relations on these schemas. Although we de'However, while the publications gr? generalizepd divie Yy

fine a new operator, we continue to use the terms dividend,gjgn, [17] and great divide 11] solely focus on the rela-

divisor, and quotient for the relations, r, andrs, respec-  tignship between thiegical operator and the basic division
tively. The dividend relatiomn; has the same schema as for operator, our previous work on the set containment divi-

the small divide. However, the divisor relationhas addi-  gjon operator33, 35 put its emphasis on algorithms that
tional attribute<”. The set containment division operator is implementphysicaloperators and investigated applications
defined as follows: for this operator. In the rest of the paper, we will use De-
DEFINITION 4 (SET CONTAINMENT DIVISION): molombe’s termgeneralized divisiorand use the symbol
1172 = Usena(ra) (M + 75 (0=t (r2))) X (1) +* for the operator.

The idea is to iterate over the groups defined by the at- . .
tributesr».C'. Each group is a separate divisor for a divi- 3 Frequent Itemset Discovery: An Applica-
sion with dividendr;. We “attach” the divisor group value tion of Great Divide
to the resulting quotient tuples by a Cartesian product be-
tween each quotient group and a one-tuple relatipn

The similarity between set containment division and set
containmentjoin can be seen by comparing Fig@raisd3.
Despite the similarity of the output, the operators haveesom
subtle differences:

Frequent itemset discovery is an important data min-
ing subtask of association rule discovery algorith@js [t
searches for combinations of elements that occur more fre-
guently in a large amount of sets, calke@insactionsthan a
user-defined threshold, call@inimum supportMost fre-

1. The input relations of set containment join are not in gquentitemset discovery algorithms suchAgsiori proceed
first normal form due to the set-valued attributes. iteratively. In thekth iteration, the algorithm computes all
) o ~frequentitemsets of size The firstiteration simply counts
2. Set containment division does not preserve the “join” the frequency of each item in the transactions, filters out
attributes in. those that have insufficient support, and adds the frequent
. - - . ones to the result. Each of the following iterations is two-
3. Setcontainmentjoin allows empty sets as join attribute jhoce  In theandidate generation phass the kth iter-
values whereas set containment division does not haVE’.Eltion, the algorithm computes a superset of the frequent
the notion of an empty set. itemsets of sizé:, called candidaté-itemsets. In theup-
4. The attribute setd andC of the set containment join ~ POrt counting phasethe candidaté:-itemsets are probed
may be empty. against the transactions to check how many times a candi-
date is contained in a transaction. The itemsets that occur
Despite these differences, the operators both solve the sammore frequently than the minimum support are added to the
problem—to find those pairs of sets;, s2) from two col- result.
lections of sets wherg, D ss. Suppose, we want to discover frequent itemsets us-

In 1982, Robert Demolombe suggestegemeralized di- ing an RDBMS. Let us focus on the support count-
visionoperator, denoted by, that is equivalent (see The- ing phase. For instance, given a table of transactions
orem1 below) to set containment divisiori?]. Besides  transactiongtid,item) and a table of candidate itemsets
a definition of the operator in tuple relational calculus and candidate§temsetitem), whereitemsetis a set identifier
predicate calculus, he gives an algebraic definition: anditemis an item identifier. A query-based frequent item-



set discovery algorithm can computejaotienttable con- construct is equivalent to amall divide if all divisor at-
taining value pairs(transactiondid, candidatestemset tributes appear in the join condition of the ON clause as a
such that the item values belonging dandidates.itemset  conjunctior of equi-joins. An example use of small divide
are contained in the set of items belongingttansac- s the query “Find the suppliers that supply all blue parts”

tions.tid This test is exactly the behavior of the great di- that was mentioned in Sectidnl, which can be formulated
vide operatorguotient= transactions:-* candidatesNote as follows:

that this computation does not require the candidate item-
sets to have the same sizeThe frequent itemsets can then @ EE'(-]'\EACT S olies AS s DIVIDE BY
be found by grouping the quotient table i@mset count- ep (

SELECT p#

ing thetid values per group, and discarding the groups with FROM Bar ts

i ici WHERE color = 'blue’) AS

insufficient support. N o b =Cg' 8;# ue’) p

4 Embedding the Operatorsinto SQL Concerning the power of the suggested SQL syntax, one

could allow a more general join condition than equi-joins
) ) ) ~ between columns in the ON clause. However, the result
In this section, we present a straightforward hypothetical of such a query would have a semantics that is completely
syntax for the small and great divide operator in SQL and different from small or great divide. We suggest to disallow
illustrate how these operators can be used for real queriesthis case. If such a different behavior is required, a user ca
We will use a more straightforward example problem do- still formulate the problem using other, basic operators of
main for the queries than in the previous section, namely the SQL syntax.
the suppliers and parts scenario from database textbooks. e contrast querg); with an equivalent query that sim-
In the SQL standard[l], a production rule is defined  yjates the universal quantification by two “NOT EXISTS”
for table referenceswhich occur in the FROM clause of a  clauses, applying the mathematical equivalence between
query expression. We extend this clause by a nontermlnalvxgy . p(z,y) and—3z—Jy : p(z,y), wherep is a predi-

(quotient as follows? cate involving variables andy:
<table reference> ::= <table factor> | @B: SELECT DI STI NCT s#, col or
<j oi ned tabl e> | FROM  supplies AS s1, parts AS pl
<quoti ent > WHERE NOT EXI STS (
SELECT «
Without going into every detail of the SQL standard, this FROM  parts AS p2
rule states that a table can be a base table, derived table, VHERE - p2. col of 2 E’l' color AND
named query, etc., or the result of a join expression or the SELECT *
result of a division operation. We specify the followingeul FROM  supplies AS s2
for expressions involving the small and great divide opera- WHERE  s2. p# = p2. p# AND
tors: s2.s# = sl.s#))
<quotient> ::= <table reference> A direct translation of this query asks for each supplier and
E{ XLPS rB\e(f or ences color whether there is no part of the same color that is not
ON <sear ch condition> supplied by the supplier. We use the keyword DISTINCT

in the outermost SELECT clause to remove duplicates from

We illustrate the syntax using an example using a the result. Otherwise, we would get the sars# €olor)
supplier-parts database with a talslepplie$s# p#) that value combination as many times as there are parts of the
lists the partsg#) supplied by each supplies#) and ata-  Same color irparts

ble partgp#, color). The following query delivers for each _Clearly, the query using a special syntax for the set con-

color the suppliers who supply all parts with that cdior: tainment problem is more concise and hence (likely) less

Ol SELECT s | error-prone to formulate than the query based on existen-
: S#, color tial quantifications. Furthermore, it is not simple to dewas
FROM  suppl :Df,gs:AS. E#D' VIDE BY parts AS p query-rewriting algorithm for a query optimizer that is @bl

to detect those existential quantification constructsd¢hat
Note that we do not distinguish between the small and be replaced by a (great) divide operator. Only if the appro-
great divide on the language level. The great divide is a nat-priate joins between inner and outer query are present does
ural generalization of the small divide and can always be the query solve a real set containment problem.
used on the implementation/execution level. Tteotient

2The idea of using a “vertical” representation for itemsatthe same 5 Al gebfalC Laws
way as for transactions that we just described was discuagdéd)]. It is
different from all SQL-based approaches of frequent itérdiszovery in

the literature as, for example, iag, 36, 37, Some of the algebraic laws discussed in this section are

3shown in extended Backus Normal Form (BNF) as28]] based on the notion of partitionedrelation. We use the
“We actually ask only for those suppliers who supply at leastart, following notations for partitions:
that is, thoses# values in asuppliergs# ...) table, where there exists a
tuple in thesuppliestable with thats# value. This is a slight semantic 5For tables; andrs with schemasR; (a, b, ¢) and Rz (b, c), respec-
difference between set containment join and great dividenentioned in tively, we would use a query IIk8ELECT a FROM r1 DI VI DE BY
Section2.2 r2ONrl.b=r2.b ANDrl.c =r2.c.
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Figure 4. An example for Law 1

e 7/ andr/ denote nonemptiorizontalpartitions of re-
lation r; such that; U r} = r;, wherei € {1,2},
that is, we define a decompositiongfs tuples The
two partitions may actually be different relations. We
just express by this notation that two relations have the

same schema.

e 77 and r* denote relations that conform to the

2

schemas of theertical partitions R; and R;* of R;,
respectively, such thak! U R;* = R;, wherei €
{1,2}. Hence, we define a decomposition®fs at-

tributes

For the laws that follow, we will indicate when we re-
quire partitions to be disjoint or not. The proofs of the laws

and theorems can be found 34].

1]
1 1 [« T3] ]
T2 12
T3 I
@] () 7 © 72

Figure 5. An example where the precondition
of Law 2 is not fulfilled

r1 = 14 as well as the semi-join and deliver the result as the
dividend to the outer small divide, which can be realized by
a group-preserving algorithm itself.

When we decompose thadividendhorizontally instead
of the divisor, we must take care of the situation sketched in
Figure5. There is a quotient candidate value£ 1) whose
tuples are dispersed across the dividend relations but none
of the groups containall values of the divisor. However,
the union of the groups does. In other wordsz 7, = ()
andry +ry = @ but(r; Ur{)+rs # 0. We have to exclude
this situation in the precondition of La& Formally, the
following precondition must hold:

c(ry,r)=Va e ma(r)) Nmwa(ry) :
ry C T (0a=a (7)) V
ro C g (0a=a (7)) V
ro € T (0A=a (1) Uoa=a (7))
Law 2: If condition ¢y (], ) is true then(r; UrY) +
ro = (r] +ra) U (rf +ra).

Since testing conditio; can be expensive, an RDBMS
may use a stricter conditian that is easier to check:

ca(ry,ri) = ma () Nma (rf) =0,

Before we present the laws, we state two theorems that
emphasize that this binary operator is clearly asymmetric. It can be shown easily that for any relations= ; U 7/

THEOREM2: Small divide is non-commutative, that is,

ry -+ 19 # 1o + 11 fOr relationsr; andrs.

THEOREM3: Small divide is non-associative, thatis, =
(ro +r3) # (r1 + re) + r3 for nonempty relations,, r,

andrs.

5.1 Algebraic Lawsfor the Small Divide

5.1.1 Union

When thedivisor ry is decomposed into horizontal parti-
tions then one can divide by these divisors separately:

Law 1: r = (rhbUry) = (r1 x (r1 = 714)) =14

This law holds also for overlapping divisor partitions, as
illustrated in the example in Figuee In this example, the
ry andry have one tuple in common with valbe= 3. The
resulting relation-; is the same if the tabléa) is divided
by the union of tablegc) and(d) compared to dividingf)

by (d).

It can help an RDBMS to employ pipeline parallelism as
follows. Supposey; is grouped od. We can employ effi-
cient group-preserving algorithms for the inner small diévi

andry as defined before, if; holds then alse; holds. By
using conditionc, instead ofe; with Law 2, an RDBMS

can parallelize a query execution with degpeas follows.
Suppose that the query execution engine can access the data
in tabler; via an index onA. We can employ two parallel
scans on table;: one that starts with the lowest value of

A and scans the leaves of the index in ascending order of
A and another that starts with the highest valuedodnd
retrieves data in descending orderAfBoth scans stop as
soon as they encounter the same valueAorExactly one

of them has to process the entire last group. Higher degrees
of parallelism can be achieved by partitioningnton > 2
partitions.

5.1.2 Selection

Let p(X) denote a predicate involving only elements of a
set of attributesX. Since onlyr; contains the attribute set
A, we can state the following “selection push-down” law:
Law 3: Op(A) (7‘1 - 7‘2) = Op(A) (Tl) - T2.

For a predicate that involves only attributesinthe fol-
lowing “replicate-selection” law holds:



5.1.3 Intersection

1 1
1 4
z [ 1 We can push small divide into intersections of dividend re-
1 R lations.
I — LAW 5 (7 N 1Y) 19 = (rf = 72) O (8] = 72)
3 [ 3 2 | 1 . 1 1) = T2=1\r =72 e T2).
3 4 2 2
4 1 3 1
413 411 5.1.4 Difference
(@ (b) op<s3 (r1)
The following law can be used when we perform two re-
stricted scans over theamedividend relation where both
restrictions are defineonly on the attributes iml. For ex-
L] ) . ample,r; = o,>10(r1) andr{ = o,>20(r1). In this case,
©) obes (r) =72 () obes (m we can push small divide into a difference of the dividend
relations:
1 3
s LAaw 6: If 7”/1 = Op/(A) (7‘1) D) Up//(A)(Tl) = 7‘/1/ then
/ 1 . /. /.
2 [ 1 (rp =) +re=(ry +r2) — (r] +1r2).
N For a similar law, we7require as precondition that(r})
4 4 17 e ..
(@) 7o (FLT K055 (12)  (h) 70 (7 (1) % 0025 (72)) andr 4 (r{) are disjoint’

= LAW 7: If mq (r}) N wa(ry) = 0 then (r] +ry) —
_ — (] +ra) =7r] +ro.
(i) (ob<s (1) + opes (r2)) = Ta (wa (71) X 033 (r2))
Clearly, this law can save a lot of resources of an
RDBMS if the computation of{ =+ ro would be expen-
Figure 6. An illustration for Example 1 sive. For example, suppose thdt consists of a sin-
gle integer attribute with valued..10°] and the query is
(O'aglO(Tl) - 7‘2) — (O’a>10(7°1) - 7‘2). Computing only the
first part of the difference is inexpensive.
Law 4: ry + Op(B) (7‘2) = O0p(B) (Tl) ~ Op(B) (7‘2).

As a third example of selection conditions, we will now 5.1.5 Cartesian Product
analyze the case where there’s a restriction specified en div

idend attributes irB, only. Let A; andA, be disjoint subsets of the attribute sesuch
that4; UAs = A. Letr] be arelation with schem@; (A;)
EXAMPLE 1: andr;* be a relation with schem&;*(A, U B). As usual,
let Ro(B) be the schema of the divisos. Then it suffices
op(B) (r1) + 12 = (0p(m) (r1) + op(p) (12)) — to apply the small divide only to some of the attributes of

the dividend:

LAaw 8: (7 x ri*) -1y =71] X (ri* +ra).

7a (ma (r1) X oopp) (r2)) -

This expression is very similar to Lad We only have Figure7 illustrates Law8 with an example. The law can
to take care of the sifuation whewe,(s) (r2) # 0. In this he%p when the query optimizer finds thgt a predicatd a
case, the expression g) (r1) =79 is equal to the empty set theta-joinxy is always true sincetye= x.
because no dividend tuple has a valugiothat can match Let B, and B, be disjoint nonempty subsets of the at-
a tuple ino_,(p) (r2). Hence, ifo_,p) (r2) contains at  tripute setB such thatB, U B, = B. Letr? be a relation
least one tuple, we can enforce that the result relation bewith schemak; (AU B;) andr;* be a relation with schema
empty by simply removing alil values inr; from the quo- R3i*(Bs). Again, letRs (B) be the schema of the divisey.
tient candidates im, gy (r1) + op(p) (12). The Cartesian  Then, we can state the following
product is merely used to “switcht4 (1) “on or off.”® LAW 9: If 7, (rs) C 7% then (1t x ri*) = 1o = 1} =

Figure 6 illustrates the example and exhibits the inter- 75 (r,). ’ B
mediate results in detail. The predicate on theolumns is

defined a® < 3. Note that the result tablde) and (i) are Figure8illustrates Lawd with an example. Allintermediate
both empty since tablgh) is nonempty. relations are shown. Note that the Cartesian proddict

To make our argumentation clearer, we could rewrite our does not necessarily have to be materialized by an RDBMS

- ¢ . rovided that the implementation of the subsequent small
expression as follows: Since our equivalence represents § ; P :
rather extreme case, we do not state it as a law but leave i lvide can cope with pipelined input. The same holds for

asan example. = "This is not the weakest precondition. For the the law to hold,
it would suffice to require thaa € oa—q (ma (r}) Uma (rY)) :
T2 C oa—q(ma(r})) Vr2 C oca—q(ma(r{)) Vre ¢
60f course, it would suffice to combing4 (r1) with only a single 0a=a (ma (r]) Uma (r{)) . However, we prove the law only for the
tuple ofo () (r2) by the Cartesian product. stronger preconditionr 4 (7)) N4 (7)) = 0.
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Figure 7. An example for Law 8
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Figure 8. An example for Law 9

the Cartesian product on the left hand side of L&hat
was illustrated irv(d).

ExXAMPLE 2: With the help of Law9 we can prove that
(7‘1 X S)— (7‘2 X S) =ry+7ry. LetB = By U By. We
have R;(A U By), Ri*(B2), R3(B1), R5*(B2) and thus
R1(AU By UBs) as the dividend schema afitd (B, U B2)
as the divisor schema. We defige= r{* = r;*. The
conditionr* C mgs«(r2) is fulfilled sincer;* =

= T2* =
TRy (r2) = wa(rg) Hence, we have

) =
(ri xs) + (r3 X s)

= (r] x ")+ (r3 xr3") (Definition of s)
(ri x ™) +rg (Definition of Ry)

B, (12) (Law 9)

—ri
=r]+r5;  (Definition of Ry)

5.1.6 Join

Join, like small divide, is a derived operator. When a small
divide operator occurs together with a join operator in an
expression, it may be beneficial for the execution strategy
of an RDBMS to rewrite the join operator and subsequently
apply algebraic laws to rewrite the result in combination
with small divide. The laws involving the selection operato
in Section5.1.2as well as the laws concerning the Cartesian
product in Sectiorb.1.5can be used to rewrite expressions
involving join and small divide, since xg s = o(r X s),
wherex g is a theta-join with the conditiof. The following
example illustrates such a rewrite.

EXAMPLE 3: Letr}, ri*, andr, be relations with schemas
Ri(a,by), Ri*(b2), and Ra(by, bs), respectively. Further-
more, letr;*.b2 be a unique attribute and let.b, be a for-
eign key that references*, that is,m, (r2) C ri*. Sup-
pose, we want to compute relation = (1 Xp, <p, 777) =
ro. We can derive the following expressions:

73 = (1] Moy <y 117) F 72
= Op,<b, (1] X 177) =+ 1o (Definition of theta-join)

= (Ubl <bz (TT X TT*) ~ Oby <bsy (TQ)) -

7o (Mo (r] X 777) X 0p, >0, (r2))  (Examplel)
= ((rf X ri*) + ov,<p, (12)) —

o (Mo (1] X 117) X 04, >p, (12)) (Law 4)
= (r] + 7o, (0py<bs (r2))) —

Ta (g (r] X 17%) X Opy>b, (12)) (Law 9)

= (TI -~ Ty (0b1 <by (TQ))) -
Ta (7Tll (TT) X Oby >by (TQ))
(sincea € R} buta ¢ R}™)

Note that the termr, (r]) x op,>p, (r2) IS merely used

to test if oy, >, (r2) contains at least one tuple. If yes,
rs is an empty relation because, (r}) represents alk
values inr; and removing these values from the quotient
ry <+ my, (0p,<b, (12)) would leave no tuples. Otherwise,

is simplyry =, (0w, <b, (r2)). Figure9 sketches some in-
termediate results that occur during the computation of our
example expression.

An RDBMS might be able to execute a plan based on this
expression more efficiently than a plan based on the original
expression because no join betwe¢randr;* is required.
Such a situation occurs, for instance, when there is no index
available o} .b; and no index oni*.b2, but when there
are two indexes defined on the coluninsandb, of table
rq, respectively. |

Let us focus on a special type of join: the semi-join. Let
rs be a relation with schemBsz(A). Then we can state the
following

LAaw 10: (7’1 +7’2) X r3 = (7’1 X 7’3) - T2.

This law can help an RDBMS if3 has few tuples and;
andr, have many tuples. It may be cheaper to kegn
memory and to compute the semi-join in one scan eyer
especially if the join is highly selective and removes many
tuples fromr;. Then, the small divide of the join result with
ro is likely to be cheap.
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Figure 9. An illustration of Example 3
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Figure 10. An example for Law 11

5.1.7 Grouping
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Figure 11. An example for Law 12

setX. Letr; = pysx)—a(ro), wheref is an aggregate

function and its result is assigned to the attributestif
In other words, each divisor attribute valizof the divi-
dend occurs in a single tuple, that is, the groups defined by
B have size one. Furthermore, let B be a foreign key
referencing.B, thatis,rs.B C wp (r1).

Hence, there can be at most one dividend tuple for each
B value. We simply have to checkaify (11 x ro) contains
a single value. If it does, then this value is the quotient.
Otherwise, there is no quotient.

A (r1 X 73)

if Oc=1 ('Ycount(A —c (
ma (r1 X 7‘2)); 0, and
(0 otherwise.

LAW 12: r| 1y =

Figurellillustrates an example for this law. Since taf#g

We consider two special cases involving the grouping oper-contains a single tuple, this table also constitutes the quo

ator. Concerning the first special case,rgte a relation
with schemaR, (AU X) for some nonempty attribute s&t
Letr; = avyx)—s(ro), wheref is an aggregate function

and its result is assigned to the attributesAr¥ In other

tient.

The two laws involving the grouping operator can im-
prove the query execution time considerably because the
small divide operation is replaced by a single join operatio

words, each quotient candidate group of the dividend con-and a projection on the join result. However, since Las
sists of a single tuple. Hence, in order to find a quotient, the and12 have rather restrictive prerequisites, we believe that

divisor cannot have more than one tuple. For this special

case, we can formulate
T1
if Oc=0 (Vcount(B)Hc (TQ))
7TA. (Tl X 7‘2)
if Oc=1 (Vcount(B)Hc (TQ))
and
() otherwise.

# 0,
Law 11: ri+ry = 7&0

FigurelOillustrates an example for this law. Here, the ag-
gregation operator computes the sum of thealues for
each group ob in tablery. This value is used as the new
attributea in ;. Since each group formed definedblias
a single tuple the tabl@) constitutes the result.

Now, let us consider another special case.rlydie a re-
lation with schemaR, (X U B) for some nonempty attribute

8The assignmenf(X) — B is a simplification. In generalf is a
list of aggregate functiong,, ..., fn, wheren = | B|, such thatf(X) =
(fi(e1 (X)), ..., fn(en(X))) = (b1,...,bn) = B ande;(X) is an
arithmetic expression using attributes &f, for example,es = Tx3 —
V5. The setX may have any number of attributes, it need not be equal
to B.

their implementation is beneficial only in special purpose
RDBMS.

5.2 Algebraic Lawsfor the Great Divide

We have identified several laws for the great divide op-
erator--*. In the following, we show some of the laws that
we consider as important.

5.2.1 Union

When thedivisor r5 is decomposed into horizontal parti-
tions then one can divide by these divisors separately:

Law 13: If e (1) Nwe (1) = O thenry =* (rh U rh)
(r1 =*7h) U (r =" 7).

This law allows to parallelize the execution of a query. Sup-
pose that the dividend is replicated om nodes of a query

execution engine and that the divisor is equally distridute
according to a hash function op.C across the nodes. Then

it is possible to reduce the execution time}ltanf the origi-
nal time provided that the great divide execution is consid-



erably more expensive than the final union/merge operatorequi-joins, must produce intermediate results of quacirati

plus the cost for data shipping to and from the nodes.

5.2.2 Selection

The following law is the same as Lador the small divide
operator.

Law 14: Op(A) (7‘1 - 7‘2) = 0p(A) (Tl) =%y,

A similar “predicate push-down” law holds for attribute
C of the divisor relation:

LAW 15: 0,0y (r1 =% 12) = 11 +* o) (r2).

The following law is the same as Ladfor the small
divide:

LAW 16: 1 -+ Op(B) (7‘2) = 0p(B) (Tl) +* Op(B) (7‘2).

5.2.3 Cartesian Product

The following law is the same as Lafor the small divide.
It is useful for expressions involving joins when combined
with Laws15and16.

LAw 17: (7§ x ri*) = rg =15 X (ri* +* ra).

5.24 Join

The following example illustrates how an expression in-
volving great divide and theta-join can be rewritten using
the laws discussed before.

EXAMPLE 4: Letrj, ri*, andrs be relations with schemas
Ri(a1), R*(az,b1), and R (b1, b2), respectively. We can
derive the following expressions:

TT Nai=as (TT* = TQ)
= O =a, (1] X (r1™ +" 1r2)) (Def. of theta-join)
= Oay=ay (1] X 717) +"1r2)  (Law17)
= Oay—ay (17 X 177) +% 12 (Law 14)
(r] Mg =a, 717) +* ro (Definition of theta-join)

Suppose that an index is available ©na; or onri*.as.
The joinr] X,,—q, 77" in the last expression can then be
computed very efficiently. If this join has a high selecijyit
it is possible that much fewer dividend groupsbofalues
have to be tested againstin the last expression compared
to the first expression. O

6 Reated Work

An interesting theoretical result about the small divide
operator has recently been publish2d|[ It justifies the ef-
forts made by previous work on implementing small divide
and set equality joins as efficiespecial purpose operators
which can achieve a time complexity 6f(n logn) for al-

gorithms based on sorting and counting. They prove that

size?

Set containment join is considered an important opera-
tor for queries involving set-valued attributek?| 19, 27,

29, 28, 31, 32, 39]. For example, set containment test op-
erations have been used for optimizing a workload of con-
tinuous queries, in particular for checking if one query is
a subquery of another. For instance, Chen and De\gjitt [
suggested an algorithm that re-groups continuous queries t
maintain a close-to-optimal global query execution plan.

Another example of set containment joins is content-
based retrieval using a search engine in document
databases, where a huge set of documents is tested against
a set of keywords that all have to appear in the document.

We have already discussed the area of data mining as
another potential application area in Sectin

The small divide operator has been studied in the con-
text of fuzzy relationsfor example, §]. In a fuzzy rela-
tion, the tuples are weighted by a number betwéemnd
1. One interpretation of an extended division operator for
fuzzy relations, thduzzy quotient operatdi38g], is based
on one of several relaxed versions of the universal quan-
tifier, called “almost all,” which is realized by a so-called
ordered weighted average operatdthe fuzzy quotient op-
erator produces those valuesw€ 7 (r ), where for “al-
most all” element$ € 7 (r2) the tuple((a) x (b)) isinr
for some fuzzy relations, andrs with schemasz; (AU B)
andR.(B), respectively. Other interpretations of a “fuzzy”
version for division are discussed, for example 5n4].

Carlis proposed a generalization of the division opera-
tor, calledHAS[7]. He argues that “division is misnamed”
because there are more operatotthan division ¢) that
fulfill the equation(r; x ro) o 7o = r1. He further claims
that division is “hard to understand” because, among other
arguments, “division is the only algebra operation thaegiv
students any trouble.” Finally, he writes that divisioniis-*
sufficient” because it is not flexible enough, it allows only
queries of the form “find the sets that contaih elements
of a given set” but it does not help for queries asking for sets
that contain, for example, at least five elements of a given
set.

The HAS operator involves three relations: contains
entities about which we want the answer if it qualifies in the
result, 7o contains entities that are used for the qualifica-
tion, andrs contains the relationships between the entities
in r; andry. For example, in the supplier-parts database
mentioned in Sectiod, r; = suppliers r, = parts and
r3 = supplies In addition, the HAS operator uses a combi-
nation of six “adverbs,” calledssociationsto describe the
qualification: strictly more than strictly less thansome of
but not all plus something elsexactly none of plus some-
thing else andnone at all There ar&® — 1 = 63 possible
combinations to choose between one and six associations
for a specific HAS operator. Such a combination is consid-
ered as a disjunction of the participating associations.

We illustrate the algebra syntax used ifj py show-
ing how the small divide can be expressed by the HAS
operator using one of thé3 association combinations:
r1 VIA r3 HAS (exactlyor strictly more than OF ro. The

9Their main, more general, result is to show that any relatiaigebra

any expression of the small divide operator in the relationa expression that never produces intermediate results afrgtia size, will

algebra with union, difference, projection, selectiond an

produce only intermediate results of linear size.



combination &xactlyor strictly more thatiis equivalent to 5]
the adverb “at least,” typically used to describe division.

(6]
7 Conclusions 7]

We have presented equivalences of the relational algebrajg)
for two important operators that realize a universal gdianti
cation, called small and great divide. The latter is a natu- o
ral extension of the classic small divide operator that was
introduced by Codd. The algebraic laws can serve as log-
ical rewrite rules within the optimizer of an RDBMS that
provides an implementation of small or great divide in the [11]
execution engine. To achieve efficiency for universal quan-
tification queries, division operatorsustbe implemented
as first-class operators, as it was recently prove@4h [

Until today, relational division operators have not been
implemented in any commercial RDBMS. However, with [14]
these operators, data-intensive data mining primitiviess |i
frequent itemset discovery or simple text searches using
conjunctive queries can be formulated intuitively and be [16]
coupled more closely with an RDBMS. Hence, such “for-
all” queries enjoy an optimization according to the current 7]
data characteristics and can be processed efficiently bg the [1g]
special-purpose operators. We do not claim that the laws
presented in this paper constitute the only relevant rtilese [1q)
Nevertheless, we believe that several of our algebraiarequi
alences are necessary to enable an effective optimization o2
queries that use the small or great divide as a first-class opy.y
erator.

Clearly, logical query rewriting is only one aspect of the [22]
query optimization problem. The mapping of logical opera- 3
tors to physical operators is another issue. We have regcentl
implemented a collection of physical great divide opemtor [24
into a Java query execution engine prototype based on thgys
class library XXL [3]. A description of several great di-
vide algorithms together with cost estimations based on in- ¢,
put data characteristics (such as grouped or sorted column{in
in the dividend and divisor) was given iB5]. Future work
will assess the effectiveness of the algebraic laws when im-[28]
plemented as transformation rules in a query optimizer. Be-
sides such engineering problems, it is interesting to study(29]
further data-intensive applications with an intrinsicuert [30]
sal quantification problem besides frequent itemset discov

ery.

[12]
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