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Abstract. More and more spatial data is accessible over the web or through portals of
wireless service providers. In this context the main selection criteria for the data are the
type of the requested data objects and their position in the real world. Integration and
performance issues are challenged by the need to process ad hoc queries in an interac-
tive fashion. In this paper we investigate how a main memory query engine can be used
to meet these requirements. It has the added benefit of being easily deployable to many
components in a large-scale data integration system. Hence, we analyze how such a
query engine can best exploit the query characteristics by employing an index structure
that leverages spatial and type dimensions.

In order to support query processing in the best possible way we investigate a
specific multi-dimensional main memory index structure. Compared to the straightfor-
ward approach using separate indexes on type and position we can increase the perfor-
mance up to almost an order of magnitude in several important usage scenarios. This
requires to tweak the mapping of type IDs to values in the type dimension, which we dis-
cuss extensively. This enables the overall system to be used interactively, even with large
data sets.

1. Introduction

In the upcoming areas of location-based services and ubiquitous computing new data-
intensive applications emerge, which support their users by providing the right informa-
tion at the right place, i.e., providing on demand what fits best to the user’s current situa-
tion. Usually, the user’s position and the application he is currently using determine the
relevant information, so most information requests issued by the application contain spa-
tial predicates and predicates restricting the type of the data. In this paper, we present a
dedicated main memory query engine that is tailored to this environment and that sup-
ports application-specific processing capabilities. In particular, we analyze which index
structures are best suited to maximize its performance.

The idea for this query engine emerged from the experiences with a data and ser-
vice provisioning platform for context-aware applications. Data providers manage spa-
tially referenced data, e.g., rooms, facilities, and sensors in a building, or the map data of
a city. There, several data management systems that are specialized to the characteristics
of the managed data (i.e., update rate and selection usage) [9] have been developed. In
order to combine the data of multiple providers an integration middleware [24] has been
developed. It achieves a tight semantic integration of the data instances using an extensi-
ble integration schema [16]. A plug-in concept allows to employ domain-specific func-
tionality in the middleware like detecting duplicates, merging multiple representations,
or aggregating and generalizing (map) data. The platform is used by various location-
based applications like a city guide (a tourist application) or a digitally assisted scaven-



ger hunt (a multiplayer mixed reality game) [17]. According to our experience, applica-
tions get by with simple selection queries.

Our query engine is also of interest to others. It can be directly integrated into
implementations of the OGC Catalogue Services standard [18] or within the FGDC
clearinghouse [15], which both offer a discovery mechanism for digital geospatial data.
Similarly, implementations of geographic information systems may profit from our
query engine. Furthermore, grid metadata catalog services [26] or discovery services in a
service-oriented architecture [2] can apply our approach in order to optimize their
engines that select different types of resources or services based on given restrictions.

1.1. Contribution

In this paper, we describe the design and implementation of a main memory query
engine employing an index structure that leverages spatial dimension and type dimen-
sion, such that location-conscious queries are most efficiently supported. The focus is not
on indexing and index structures, but on configuring the query engine’s internal data
structures to exhibit the best possible index organization. In order to do this, we evaluate
two different approaches to organize an index structure that combines a spatial dimen-
sion and a type dimension. We detail on three different variants to map the type informa-
tion (type IDs) to values in the type dimension. This has a substantial impact on the
performance of the query engine, but has not been considered previously. We also point
out how to determine the best range for the mapped values.

Many components in a large-scale information system may profit from the pro-
posed query engine. Therefore, we describe a solution architecture for such an informa-
tion system and introduce four different usage scenarios for four of its components, each
having different characteristics. In order to achieve a sub-second response time of the
overall system (including network latencies, (de)serialization and other processing over-
head) the individual query engines have to process a typical query returning about 1,000
objects in 10 milliseconds, as a rough estimate. Therefore, we emphasize a main memory
approach in order to achieve fast response times and allow for an easy deployment.

We run a substantial number of experiments and assess the suitability of the vari-
ous techniques specifically for each scenario. Compared to an approach using separate
indexes on type and space we can increase the performance up to almost an order of
magnitude in certain cases. Our goal is to enable the reader to apply our insights profit-
ably to his problem at hand.

The remainder of this paper is structured as follows. In Section 2 we introduce
the typical data managed by our query engine and the typical queries issued. In Section 3
we characterize its usage scenarios. We describe the different approaches to organize the
index structures used by our query engine in Section 4. In Section 5 we describe the con-
ducted experiments and analyze their results. We give an overview on the related work in
Section 6. Finally, we conclude the paper and indicate future work in Section 7.

2. Data and Queries

Typically, applications in the domain of location-based or context-aware applications
operate on object-structured data, see Figure 1. In the GIS world, objects are also called
"features". The schema consists of a collection of types. An object is associated to a type



which determines the name and data types of the attributes that an object of this type may
use to store information. Types are structured in a is-a-hierarchy, see Figure 1 for a typi-
cal example.

Typical type hierarchy Typical data
Type ID - -
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Figure 1: Simplified excerpt of a typical type hierarchy (schema) and typical data

We assign a unique number called type ID to each type. Using an optimal assign-
ment (termed linearization in [14]) we are able to determine for each type a continuous
interval that contains exactly the type’s own ID and the IDs of the subtypes of this type.
This works always for type hierarchies with single inheritance [14].

We assume that in the targeted application domains every object has a position or
an extent so that already the root type of the hierarchy comprises a generic geometry
attribute that we exploit for indexing purposes. Examples for such schemas are the
TIGER/Line data model [27], augmented world models like the one used in [16], or the
upcoming standard for city models, CityGML [11]. Objects have linestrings and poly-
gons as geometries, which all can be approximated by bounding boxes from an indexing
point of view. Typical data sets comprise various kinds of roads (local road, main road,
highway, ...), buildings, points-of-interest (museum, church, viewpoint, ...), and so on,
see Figure 1 for some ideas.

Expressed in natural language, typical queries are "Give me all roads (no matter
what kind) in the given rectangle", "Give me all major roads in the corridor between my
current and my target position", or "Give me all French restaurants within 1 mile". All
these queries have in common that they have a spatial predicate restricting the position of
the result objects and a type predicate restricting the type of the result objects. Usually,
the query addresses also all subtypes of the sought type. Therefore, we strive for exploit-
ing this commonality by supporting such queries with a tailored index approach.

3. Usage Scenarios

An information system can employ the proposed query engine in various ways and
places. We focus on location-based and context-aware systems that integrate data
dynamically from many data providers ranging from web sites over digital libraries and
geo-information systems to sensors and other stream-based sources. Figure 2 shows a
typical architecture for such systems.

The processing model is as follows. An application on a mobile device issues a
query for data relating to the user’s vicinity. The query is first processed by the local
query engine. A query for the missing data is issued to the integration middleware.
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Figure 2: Architecture of a location-conscious data provisioning system inte-
grating data from various providers

There, the query engine of the middleware processes the query. For retrieving the miss-
ing data the integration middleware determines the relevant providers using the discovery
service, which itself runs a query engine. The integration middleware requests the data
from these data providers. They evaluate location-based queries using a query engine as
well. When integrating their results a query engine supports the integration middleware
in evaluating additional predicates and performing location-based data merging. Finally,
the integrated result is sent to the application. On all levels query processing can be con-
siderably enhanced by means of data caches (cf. Figure 2).

As mentioned before, those query engines basically consist of a specific index
structure that supports predicate-based queries that predominantly consist of location and
type predicates. Hence, the efficiency of the query engine is mostly determined by the
performance of the supporting index structure. Obviously, all of the above four types of
components (mobile device, integration middleware, discovery service, and data pro-
vider) running such query engines do benefit from the index structures we investigate in
this paper.

However, each component manages a different piece of the data, has different
typical queries, and updates or exchanges the data in a different way and at a different
frequency. Hence, we analyze the experiments in Section 5 individually for each compo-
nent. Table 1 summarizes and quantifies these characteristics, which have been derived
from the experiences with our service provisioning platform for context-aware applica-
tions [24].

The term selectivity factor (SF) refers to the ratio of objects qualifying for the
result set to the total number of objects (the data set size). If a predicate has a low SF then
only few objects qualify for the result set, and vice versa. The Spatial SF refers to the
ratio of the area of the query window to the area of the data set’s universe, which is given
by the convex hull around the geometries of all objects in a data set. Update rate counts
the number of objects that are updated between two consecutive queries. E.g., an update
rate of 0.1 means that only one object is changed during a period where ten queries are
processed.



Table 1: Selectivity factors (SF) and update rates (humber of updated objects per
number of queries) of the usage scenarios

Usage Scenario Spatial SF Type SF Update rate

Data Provider 1% - 20% 20% - 100% 0.01
Discovery Service 1% - 5% 1% - 20% 0.1
Integration Middleware 10% - 50% 1% - 20% 10
Mobile Device 10% - 50% 10% - 100% 100

3.1. Summary of the Requirements

From the previous discussion we can devise the following requirements to our location-
conscious query engine:

* Simple query capabilities suffice. Applications get by with predicate-based selection
queries.

* Combine Type and Space. Typical queries contain a spatial predicate and a type
predicate.

» Cope with different workloads. The selectivity factors of the typical queries and the
update rate depend on the usage scenario.

* Fast response times. In order to allow for interactive applications that are backed by
a complex information system, the individual query engine has to respond in the
order of 10 milliseconds.

Concerning the query capabilities there is a nice analogy of our approach to the
well-known one of XPath processing. Our dedicated query engine compares to a full
blown SQL engine in a similar way as an XPath engine compares to an XQuery engine.
Likewise, its performance is determined by the performance of its internal index struc-
tures, again similar to the XPath engine, whose performance depends on its internal data
structures. We emphasize a main memory approach in order to achieve fast response
times and to allow for an easy deployment. Hence, we need to reflect on how to organize
main memory data structures and add location information to them in order to bring out
the best performance. For this, the next steps are to describe our data structures and how
the query engine uses them to process queries in Section 4, analyze the performance in
Section 5, and review previous approaches in Section 6.

4. Index Structures

In this section we give details about the different approaches that we investigated to build
an index structure that combines the spatial dimension and the type dimension. This
combination is a natural consequence from the observation in Section 2 that the majority
of queries involves selection predicates on at least these two dimensions. For each
approach we explain how the query engine processes a query step by step.

We refer to the spatial dimension as a single dimension, although it actually
involves two dimensional coordinates. Also, we will abstract from the details of particu-
lar spatial index structures (e.g., R*-Tree, Grid-File, or MX-CIF Quadtree, see [8] for a
survey) because the underlying spatial index structure can be easily exchanged without
significantly shifting the relative performance of the presented approaches. We focus on



how to combine existing well-known index structures in new ways to best solve the prob-
lem at hand.

The following approaches are designed to work in main memory, which is a
requirement to achieve reasonable response times. Partitioning techniques can be applied
to split the data into chunks that a single system can maintain in main memory. Further-
more, this allows us to flexibly deploy our query engine to any component in the entire
system with very little administrative overhead in contrast to deploying a full fledged
database system.

All approaches use hash data structures that map a type’s name to its ID, and this
ID to a list of the IDs of all sub or super types in constant time. The size and contents of
these lookup tables depends only on the type hierarchy so that they are small in size com-
pared to the entire data set and they are not affected by updates.

4.1. Separate Indexes (SEP)

The Separate Indexes approach maintains two distinct data structures, see Figure 3. The
first data structure uses a spatial index to organize the objects solely by their geometry.
The second data structure uses an array containing for each type a separate list of the cor-
responding objects. Objects are inserted into both data structures, which have to be in
sync at all times.

Cost-based
optimizer

chooses

Separate Lists
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Figure 3: Data structures in the Separate Indexes (SEP) approach

Spatial index
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For answering a query a cost-based optimizer assesses the selectivity of the spa-
tial predicate and the type predicate. Then, the more selective predicate (lower selectivity
factor) is used to generate a list of candidates using the corresponding data structure.
Finally, these candidates are filtered using the remaining predicate.

This approach gives us the bottom line of the least achievable performance as it
uses only standard database technology without any problem-specific improvements.
This approach tends to be slow because it exploits an access path for at most one dimen-
sion and filters all candidates along the other dimension.



4.2. Real 3D Index (R3D)

The Real 3D Index approach is especially tailored to the typical queries introduced in
Section 2. It maintains a single spatial index that involves three orthogonal dimensions,
see Figure 4. Two dimensions are used to store the bounding boxes of the objects’ geom-
etries. The third dimension is used to store the objects’ type ID. Each object is inserted
into this index only once.
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Figure 4: Data structures in the Real 3D Index (R3D) approach

In this approach a query involving a spatial predicate and a type predicate can be
expressed as a three dimensional bounding box where the range in the type dimension
comprises the ID of the sought type and the IDs of all of its subtypes. Thus, each query
can be translated into a single bounding box that is used for a single traversal of the Real
3D Index.

The mapping of types to values in the type dimension is the critical aspect in this
approach. As shown in Figure 5 the space between the mapped values of two adjacent
types influences the clustering of objects and child nodes in the inner nodes of the index
tree. If there is a large gap between the mapped values of two types (wide spacing, left
part of Figure 5), then objects are grouped by their type value rather than by their posi-
tion in the spatial dimension. In the example objects with three different positions and
only two different types are grouped in the same inner index node. If the mapped values
of two types are close to each other (narrow spacing, right part of Figure 5), then it is
vice versa. Inner index nodes store objects with only two different positions but three dif-
ferent types. This is due to the fact, that most indexing methods try to keep the bounding
boxes of the inner nodes as squarish as possible. As we will see in Section 5, the spacing
of the values in the type dimension has a huge impact on the performance of the index. It
determines if whole branches can be pruned away when traversing the index tree. With
wide spacing, subtrees with the wrong type can be skipped quite early. With narrow
spacing, the same goes with subtrees having too distant positions.
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We have investigated three different kinds of spacing, which are visualized in
Figure 6. In all variants, the mapped values are scaled to span a predetermined type map-
ping range, which is about as large as the average distance between neighboring objects
multiplied by the number of types in the type hierarchy, see Section 5.2 for more details.
The dashed boxes indicate the range containing the mapped values of a type and all of its
(transitive) subtypes.

* Bottom-up equal spread (ES): Each type’s value in the type dimension equals the
type’s ID multiplied by a constant scaling factor. This is the simplest variant which
disregards the type hierarchy to a large extent. It is a close relative to the approach
pursued in [14]. In the example in Figure 6 we have 10 types and the type mapping
range is 1000 units, so that the distance between two mapped values is 100 units.

* Top-down biased by type hierarchy (TH): On each level of the type hierarchy the
available mapping range is evenly distributed among the current type and its sub-
types. In Figure 6, type 0 has three direct subtypes (1, 5, and 8), so that the available
mapping range of 1000 units is split into four segments. Type 5, in turn, has to split
its range (500 to 749) into three segments because it has two subtypes. This variant
preferredly groups objects having the same supertype in the inner tree nodes.

* Top-down biased by object distribution (OD): On each level of the type hierarchy
the available mapping range is distributed among the current type and its subtypes
based on the number of instances each type has. In Figure 6, we have a total of 56
object instances. Two object instances have type 0, so that the gap to type 1 is

5% - 1000 = 36 units. Note that this method requires additional statistical knowledge

on the object distribution. This variant groups objects in the inner tree nodes accord-
ing to the actual distribution of the objects on the types. Frequent types get their own
subtree already close to the root of the index tree. Objects having rare types are pre-
dominantly grouped by their geometry and the index tree splits up by type only very
close to the leaves of the index tree, see also Figure 5.

5. Experiments

In order to assess the performance of the approaches we implemented all of them in Java.
We used the MX-CIF quadtree [23] implementation of the JTS Topology Suite [31] as
our spatial index structure and adapted it to cope with more than two dimensions. We
added some optimizations so that in the end it was faster than the XXL library’s [30] R*-
Tree implementation for both inserting and querying objects. However, we point out that
the actually used spatial index method has only a marginal influence on the relative per-
formance of the different approaches.

We used a dual processor Dell workstation having 2GHz Intel Xeon processors
and 2 gigabytes of RAM, half of which was assigned to the Java virtual machine. All
experiments were run on a single processor while the other one was idle to minimize dis-
turbances caused by the operating system. In order to get a reasonable precision when
measuring sub-millisecond response times we used the high resolution timer package
[22].

We conducted the experiments using a subset of the TIGER/Line 2003 data sets
[27]. In particular, we ran queries against the data sets of nine counties in California, see



Table 2: Data sets used in the experiments

A.bb.re- County Size Universe (in km) Numl?er
viation Width  |Height |of objects
#1 Yuba 33.2 27.6 11923
#2 Glenn small 42.6 70.8 16839
#3 San Francisco 15.0 78.4 22666
#4 Alameda 37.6 49.7 46285
#5 Santa Clara medium |42.1 42.8 53727
#6 Sacramento 49.2 45.5 71743
#7 Riverside 59.0 26.5 151489
#8 Kern large 98.6 17.0 175082
#9 San Diego 90.6 114.8 203122

Table 2 for their characteristics. We extracted the linestring and polygon based features
leading to data sets comprising between 12k and 200k objects.
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Figure 7: Excerpt of the type hierarchy based on the CFCC feature codes used in
the TIGER/Line data sets

The data sets contain data about roads, railroads, other ground transportation,
landmarks, hydrography, property boundaries, etc. We interpreted the CFCC feature
codes [28] as type names and built up a type hierarchy with four levels, see Figure 7. The
single lettered CFCC codes constitute the direct children of the hierarchy’s root node.
The codes having two letters make up their children, and so on. In total, the type hierar-
chy consists of 258 nodes.

5.1. Computing the total average query and update response time (TAQURT)

As a system using our query engine cannot switch between different indexing
approaches on the fly, we do not compare individual measurements. Instead, we compute
a weighted average response time for each combination of indexing approach, usage sce-



nario, and data set. For this, we picked a representative subset of all types and a set of ten
differently sized query areas. For each combination of type (fixed type SF) and query
area (fixed spatial SF) we measured the response time, leading to a grid of measure-
ments. We interpret the measurements as support points for a piecewise linear surface
function having the spatial SF and the type SF as the independent variables. For each
approach, usage scenario, and data set we compute the weighted average query response
time by computing the weighted integral of the surface function along the axes of the
independent variables. The usage scenarios provide the parameters describing typical
workloads. Their minimum and maximum SFs (see Table 1) define the integration limits.
The surface function is weighted by the reciprocal of the multiplied selectivity factors.
The rationale behind this is that small queries retrieving only few objects are more fre-
quent than large queries. Calculating the weighted average response time by integrating
the piecewise linear surface function has the benefit of allowing to arbitrarily set the min-
imum and maximum selectivity factors. Furthermore, the integral allows to calculate a
more meaningful average value that takes each measurement’s SF into account.

Finally, the usage scenario also determines the frequency of updates. The total
average query and update response time (TAQURT) is the sum of the average insertion
cost per object weighted by the update rate and the average query response time:

TAQURT = averageQueryResponseTime
+ (averagelnsertionCostPerObject * updateRate)

Thus, we get a TAQURT for each combination of indexing approach, usage sce-
nario, and data set. By aggregating the query and update performance into a single figure
we can evaluate the approaches from a "total cost of ownership" perspective and by con-
centrating on the four usage scenarios we keep the experiments clear.

5.2. Comparing the type mapping variants of the Real 3D Index

In this section, we compare the three mapping variants equal spread (ES), type hierarchy
(TH), and object distribution (OD) introduced in Section 4.2 in order to determine the
best one. The mapping variants differ in the spacing in the type dimension between the
mapped values of two adjacent type IDs. Taking the type IDs themselves as the mapped
values in the type dimension (1:1), as proposed in [14], is a very bad idea that leads to an
average performance loss between 37% and 418%, see Figure 9.

We vary the range of the mapped type values in five steps, denoted A, B, C, D,
and E, see Table 3. The sizes of the selected mapping ranges are around the order of
magnitude of the anticipated optimal mapping range, which is approximated by calculat-
ing the average distance of the objects of one type along one of the spatial axes (4200
meter in our data sets) and multiplying it by the number of types in the hierarchy (258).
This way objects are clustered equally along the spatial dimension and the type dimen-
sion in the inner nodes of the index tree. The selected mapping ranges are quite represen-
tative as in most cases one of the medium ranges shows the best performance, see
Figure 8.

Table 3: Type mapping ranges

mapping range A B C D E
total range (in kilometer) 15 150 1,500 |[15,000 |60,000




We compute the columns displayed in Figure 8 as follows. We group the mea-
surements by usage scenario and data set. For each combination of mapping variant and
mapping range we compute its relative response time as the ratio of its TAQURT to the
minimal TAQURT in each group. Then, we average the relative response time across all
data sets.
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Figure 8: Relative total query and update performance of the Real 3D Index map-
ping variants for each scenario

The first observation is that the data provider and mobile device usage scenarios
are less sensitive to the mapping range than the other two scenarios. This is due to them
having a high type SF. The main insight of this figure is that it suffices to get close to
(within an order of magnitude) the best possible mapping range to get reasonable perfor-
mance (5% worse than best possible). However, if you are far off the mark (mapping
range A) then the performance degrades considerably. Unfortunately, the best mapping
range differs depending on the usage scenario and mapping variant. Averaged across all
scenarios, the ES variant achieves the best performance with mapping range C. The TH
and OD variants work best with mapping range D.

Figure 9 displays a subset of the results shown in Figure 8. For each mapping
variant in each usage scenario only the column corresponding to the mapping range that
yields the fastest relative TAQURT is displayed. Additionally, they are compared to the
1:1 mapping variant and to the Separate Indexes approach (SEP).

Figure 9 clearly shows that the OD variant delivers the best performance. The
data provider and mobile device usage scenarios both have a high type SF and the perfor-
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Figure 9: Comparing the best mapping ranges of Figure 8 with the 1:1 mapping
variant and the SEP indexing approach for various usage scenarios

mance differences are less pronounced there. The OD variant leads there by about 7%. In
the other two scenarios the lead is at least 20%. However, the OD variant has the disad-
vantage that it needs advance knowledge about the distribution of the objects on the types
of the type hierarchy.

The best alternative to the OD variant is the TH variant, which is always between
1% and 8% better than the ES variant. The 1:1 variant is far behind and in most cases it is
even worse than the SEP approach. This highlights the importance of choosing an ade-
quate type mapping range. Doing so gives the R3D approach a comfortable lead over the
SEP approach in the usage scenarios having a high type SF. When the type SF is low the
R3D approach really outperforms the SEP approach by almost an order of magnitude. In
the discovery service usage scenario, where spatial SF and type SF are both low, even the
1:1 mapping variant of the R3D approach is faster than the SEP approach.

5.3. Index construction

In this section we analyze the costs involved with maintaining each index structure. The
costs are divided into the average time needed to insert an object into the index and the
average memory occupied by each object (see Figure 10). In both figures the total values
can be determined by multiplying the per object values with the number of objects in the
data set. In our further considerations we approximate the cost of updating an object with
the cost of inserting one. Thus, we can figure out both the initial cost for setting up the
entire index from scratch and the running costs involved with processing updates.
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Figure 10: Average time for inserting a single object into the index, and average memory
occupied by a single object (including geometry, bbox, type ID, and indexing overhead)

Figure 10 shows for the Separate Indexes approach (SEP) that the time per object
increases only slightly with an increasing data set size, so that the approach scales quite
well. The Real 3D Index (R3D) is 2.4 to 3.2 times slower than the SEP approach for
small data sets. For large data sets it is only 2.2 to 2.6 times slower than the SEP
approach. As shown in Figure 10, the type mapping range (B to E) has a significant
impact on the index creation time. The larger the type mapping range is, the more time is
needed to build the index. The other type mapping variants (ES and TH) not shown in
Figure 10 behave similarly.

The average amount of memory (including indexing overhead) occupied by a sin-
gle object is about the same for all data sets, see Figure 10. Large data sets do not lead to
worse memory utilization. The least memory is occupied by the SEP approach. All R3D
variants have about the same memory footprint. They occupy about 50% more memory
than the SEP approach.

To put it in a nutshell, the SEP approach clearly outperforms the R3D approach in
terms of only index maintenance costs. It uses less memory and is faster in building up
the index.

6. Related Work

As indicated in the introduction, OGC Catalogue Services [18] (OGC CS) and Grid
Metadata Catalog Services [26] (MCS) can benefit from the proposed query engine. Cur-
rently, vendors like ESRI, Galdos, or Ionic offer geodata catalog services complying with
OGC CS Implementation Specification [18] and geodata servers complying with OGC’s
Web Feature Service Implementation Specification [19]. However, they focus on build-
ing systems that leverage existing ORDBMS and rely on their query engines. Thus, they
have little influence on the query engine and they do not offer one that is deliberately
customized to the typical query load described in Section 2. Also research projects like



the GDI NRW Testbed [3] are more concerned with designing the overall architecture
and interaction patterns than with optimizing the underlying data structures.

In [32], the implementation of an OGC CS using a Grid MCS is investigated.
While the authors do not address the internal implementation of the service, it empha-
sizes the importance and impact of our work. Recent research in the MCS area is con-
cerned with managing extensible sets of arbitrary attributes [6], but not with optimizing
index structures or exploiting class hierarchies. In [7], the authors describe how to lever-
age class hierarchies in ebXML Registries, but the authors do not detail on an efficient
implementation or index support.

IBM’s Cloudscape and Oracle’s TimesTen main memory databases are pure rela-
tional systems and do not offer any support for type hierarchies or spatial indexes. Mon-
etDB allows for geographic extensions [4], but still has no support for hierarchical
relationships. Current research in this area focuses on minimizing CPU branch mispre-
dictions [21] and developing CPU cache conscious data structures [13] to alleviate the
main memory access bottleneck. This research is complementary to ours.

6.1. Spatial indexes

A detailed overview on the most important spatial index structures is given in [8]. As we
focus on building a query engine rather than on developing a new index structure we pick
an existing index structure that assumedly best fits out requirements of performing well
with real data sets and coping with high update rates. We chose the MX-CIF quadtree for
meeting these requirements and being simple to implement. We do not recommend the
best spatial index structure, but we analyze how to utilize any existing index structure to
combine spatial dimension and type dimension.

In [29], several approaches to combine spatial indexes and text indexes are pre-
sented in order to build a geographical search engine on the web. They aim at enhancing
the search precision and recall. However, in the text part of web pages there are consider-
ably more distinct words than we have types in our type hierarchy. No hierarchical rela-
tionships between the words are defined or exploited. Finally, their data is stored in files
on disk.

6.2. Object-oriented databases

In the area of object-oriented databases (OODB) related indexing problems have been
discussed [10, 12, 14, 20]. Indexes combine an object’s type with one or several of its
attributes. However, attributes may only have a single value instead of a range as in the
spatial dimension. Therefore, only point access methods are considered whereas we need
to deal with spatially extended geometries requiring spatial access methods. We provide
an extensive analysis using real (spatial) data sets. Also, we consider the effort to accom-
modate changes in the index in order to get a total-cost-of-ownership assessment of the
performance in real usage scenarios.

The Multikey type (MT) index [14] is basically similar to our Real 3D index
approach using the type hierarchy based mapping variant. However, [14] concentrates on
providing an optimal linearization for type hierarchies having multiple inheritance. Scal-
ing the type dimension is not discussed at all, which proves to have a significant impact
in our experiments.



6.3. Object-relational databases

Conceptually, in an ORDBMS each type corresponds to a table and each attribute to a
column. While some systems (e.g., PostgreSQL) store objects as a row in the table for its
type, other systems (e.g., DB2) store all objects in a single hierarchy table [5] which has
an additional column for storing the type of an object. In the first case, many tables have
to be queried if the sought type is a non-leaf type in the type hierarchy. In the latter case,
DB?2 internally creates a two-dimensional index on a given column and on the type col-
umn. However, it uses a point access method to accomplish this combination, which is
inadequate as we have discussed in Section 6.2.

If we have an explicit type column and separate indexes on this column and the
geometry column then we can either fetch the qualifying tuple IDs from both indexes and
intersect these sets before fetching the remaining object data [1]. Alternatively, we can
pick the more selective index to determine a set of candidates, and filter them afterwards
[25]. Our experiments have shown, that the latter approach, which we address in
Section 4.1, is always more efficient in main memory.

7. Conclusion

In this paper, we have presented a main memory location-conscious query engine that
exploits the characteristics of typical queries, which contain spatial predicates and predi-
cates restricting the type of the data. The query engine can be deployed to many compo-
nents in a large-scale information system and contribute to let the whole system be
usable interactively. Both reasons advocate for a main memory approach.

As our experiments have shown, the Real 3D Index approach offers the best over-
all performance. However, it is crucial to determine an adequate type mapping range or
otherwise performance will degrade considerably. We have investigated three different
variants to map type IDs to values in the type dimension. The variant relying of object
distribution statistics offers the best performance, however the statistics have to be col-
lected beforehand. Both aspects have not been discussed previously. In the usage scenar-
ios with a high type selectivity factor the Real 3D Index approach beats the Separate
Indexes approach, which uses conventional database technology, by about 20%. If the
type selectivity is low, then the lead increases to almost an order of magnitude. However,
the Separate Indexes approach uses only two thirds of the memory and builds up its
index at least twice as fast compared to the Real 3D Index approach.

In future work, we will investigate the deployment of the query engine to all com-
ponents of our data and service provisioning platform for context-aware applications and
assess its impact on the overall system. We intend to optimize the overall processing per-
formance under changing workloads (mobile users) and changing data (high level con-
text information derived from sensor data). Thus, our main memory query engine paves
the way for virtualizing the whole query processing task by facilitating the distribution of
query capabilities across several components based on resources, load, cache contents,
etc. Additionally, we plan to extend the index by further dimensions such as valid time or
measurement time.
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