
Efficient Flash-based Virtual Memory for

Sensor Networks

Andreas Lachenmann, Pedro José Marrón, Kurt Rothermel

Universität Stuttgart, Germany
{lachenmann,marron,rothermel}@ipvs.uni-stuttgart.de

Abstract. In this paper we present a virtual memory system for sensor
networks that uses flash-memory to extend the amount of RAM available
on each node. By analyzing access traces from simulation tools it creates
an efficient memory layout that makes virtual memory viable despite the
resource constraints typical for sensor networks.

1 Introduction

Most sensor nodes are equipped with just a few kilobytes of RAM. Therefore,
main memory is usually a very scarce resource when developing sensor network
applications. In fact, several applications already require more memory than
available on current sensor nodes. For instance, TinyDB [1] requires the user to
select at compile-time which functionality to include in the code image.

As applications for sensor networks increase in complexity, RAM limitations
will continue to cause difficulties for developers. In traditional computing sys-
tems, virtual memory [2,3] has been widely used to address this problem. With
virtual memory, parts of the contents of RAM are written to secondary stor-
age when they are not needed. This mechanism is easy to use, since the system
takes care of managing the memory pages. However, current operating systems
for sensor networks (e.g., [4, 5]) do not include support virtual memory.

Sensor nodes are equipped with flash memory as secondary storage, which is
much larger than main memory (between 512 kB and 1 MB). It is organized in
pages of several hundred bytes that have to be written en bloc. Accessing it is
much more expensive than accessing RAM: it takes several milliseconds to read
or write a flash page whereas variables in RAM can be accessed in a few processor
cycles. In addition, accesses to flash memory are comparatively energy expen-
sive. Nevertheless, this type of memory is appropriate for the implementation of
virtual memory on sensor nodes.

In this paper we present ViMem, a virtual memory system for TinyOS-based
sensor networks that uses flash memory to extend the size of RAM available to
the application. Since energy is a limited resource in sensor networks, ViMem

tries to minimize the number of flash memory operations. It uses variable access
traces obtained from simulations to rearrange variables in virtual memory at
compile-time so that only a small number of flash accesses is necessary.



2 Design Overview

ViMem consists of two main parts: a compiler extension and a runtime compo-
nent, which are described in this section.

Application developers should be able to use variables in virtual memory just
like those in RAM. However, since sensor network hardware does not directly
support virtual memory, all access to data in virtual memory must be redi-
rected to ViMem’s runtime component. Our system accomplishes this by using
a pre-compiler that modifies all such variable accesses. This pre-compiler changes
source code written in nesC [6], the programming language used by TinyOS [4].
We have selected nesC and TinyOS because of their active research community
that has developed a large number of application and system components.

The developer maintains full control of which variables are kept in RAM
and which ones are stored in virtual memory. Only those tagged with a spe-
cial attribute are put into virtual memory. This way, variables that are used in
interrupt handlers and other performance-critical functions can always be kept
in RAM. The pre-compiler executes the memory layout algorithm described in
Section 3 to place variables on pages in virtual memory.

ViMem’s runtime system is responsible for the management of memory pages
kept in RAM and for the provisioning of data to the application. The challenge
here is to determine which memory page has to be replaced when another one is
loaded from flash memory. Therefore, the algorithm has to predict which pages
are most likely used again in the future. In addition, it has to consider the costs
for replacing a page (writing modified pages is more expensive than just reading).

This algorithm was not the main focus of our research. Therefore, for ViMem’s
replacement policy we have adapted the Enhanced Second-Chance Algorithm [3],
which approximates a least-recently used (LRU) page replacement strategy.

3 Memory Layout Algorithm

This section describes our memory layout algorithm that determines the place-
ment of variables in virtual memory. It is the core part of our approach to reduce
the number of flash accesses and, thus, improve on efficiency. The algorithm has
two main goals: First, it aims to reduce the overall number of page replacements.
Second, it puts special effort in decreasing the number of write accesses to flash
memory.

3.1 Use of Variable Access Traces

In general, finding an optimal memory layout is not possible since the exact
order in which variables are accessed at runtime depends on many factors. For
example, in sensor networks data gathering requests from users as well as sensory
input and packets received from other nodes may influence the application flow.
Therefore, our memory layout algorithm can only provide a heuristic that does
not necessarily find the best solution for each execution path.



Although the specific order of data accesses is not predictable, there are typi-
cally patterns that recur. Our algorithm uses simulation traces to determine such
patterns for variables stored in virtual memory. Gathering information about
variable accesses using simulation does not introduce any overhead at runtime
and, thus, does not alter the behavior of the application itself.

If no simulation data is available (e.g., when building a new application), the
ViMem pre-compiler uses the variable references in the source code to estimate
the number of accesses. Obviously, this information can be inaccurate because
it is unclear how often a function is called or which branch of an if-statement is
selected at runtime, for example.

The pre-compiler splits up complex variables, such as arrays and structs, and
examines each part individually. For example, the first elements of an array might
be accessed more frequently than the last ones. Therefore, instead of recording
the access just for complex variables as a whole, all data accesses are associated
with individual data elements. We define as such a data element an atomic part
of a complex variable with a simple data type like “int”.

3.2 Grouping of Data Elements

Having gathered information about accesses to data elements, the memory layout
algorithm forms groups of those that are often accessed together. When reading
an access trace the pre-compiler calculates the weights of a fully-connected graph
G = (V,E, f, g), where the nodes V are the data elements and the edges E
represent the relationship between the data elements. In this graph both the
nodes and edges are weighted: The weight of a node, given by f : V → IR,
indicates how often the corresponding data element has been accessed, and the
weight of an edge, defined by g : E → IR, gives information about the proximity
of two data elements.

For each sensor node in the network, the pre-compiler maintains an ordered
list of data elements that have been accessed recently. Each data element appears
in this list at most once with only its most recent access being present. The sum
of the sizes of all these elements may not exceed the size of a flash page. Thus,
these elements represent those that should be preferably in RAM when the new
element is accessed. When the ViMem pre-compiler adds a data access from the
trace, it increments both the access count in the data element’s node and the
proximity value of all data elements accessed previously.

Fig. 1 shows an example of how an access trace is processed. The figure
displays parts of an access trace for one node, the graph G, and the list of
recently accessed elements. For simplicity, it assumes that the size of a memory
page is just 8 bytes. The figure shows the simple variables “a”, “b”, and “c”
as well as struct “s”. As described above, the algorithm splits up the parts of
the struct and examines each field individually. In the example the last line of
the access trace has been processed, which leads to the following changes. First,
the element is added to the list of recently accessed data elements (I). Since the
total size of the elements in this list is greater than the page size, the algorithm



b: 1

Recently accessed:
Access trace:

Read s.y
Write a
Read a
Write s.y
Read s.x
Read b
Read c
Read c
Read s.y
…

1

0

1

1 3

0
0

2

1

2

a: 2

s.x: 1 s.y: 3

c: 2

b: 2 bytes

c: 4 bytes

s.y: 2 bytes

s.x: 4 bytes

s.y: 2 bytes

a: 1 byte

s.y: 2 bytes

M
ax

. 8
 b

yt
es

I

II

III

IV

V

Fig. 1. Example for processing an access trace

removes the oldest element (“s.x”, II). Then it increments the weights of “s.y”
(III) and of all its edges to elements in the list (IV and V).

After reading the complete access trace, ViMem’s pre-compiler traverses the
graph G using a breadth-first search that takes into account the proximity values.
It begins with one of the nodes from which the edge with the maximum proximity
value starts. Being at node v, the search follows an edge e only if g(e)/f(v) > k,
where k is a threshold that indicates which data elements should be definitely
put on one page of flash memory. The search is aborted if the elements reached
no longer fit on a single page. All data elements that are reached using this
search mechanism are grouped in order to be placed on the same memory page.

3.3 Data Placement

After determining the groups of data elements used together, the memory layout
algorithm places them on actual memory pages. This part of the algorithm pro-
cesses the elements in the order of their access frequencies and places them with
a first-fit strategy. This way data elements that are accessed often are placed on
the same memory page, which can probably stay in RAM for most of the time.

The algorithm uses two sets of pages: one with elements that are mostly read
and one with those that are modified more often. If a “mostly-read” page has
to be removed from RAM, this approach makes it more likely that it does not
have to be written back to flash memory.

4 Simulation Results

We modified TinyDB to make use of ViMem and obtained simulation results
with the Mica2 simulator Avrora [7]. In Fig. 2 we show the number of page
faults, i.e., the number of read accesses from secondary storage. In many cases
ViMem’s memory layout algorithm greatly reduces the number of accesses to
flash memory. Using only the data references from the source code it is already
able to decrease the percentage of accesses leading to page faults by more than
60%. Nevertheless, memory layouts that have been optimized for a given scenario
can reduce the percentage of page faults even further by additional 80%.



 0

 10

 20

 30

 40

 50

TinyDB
with two queries

TinyDB
with one query

TinyDB
without queries

P
er

ce
nt

ag
e 

of
 p

ag
e 

fa
ul

ts

Simple first−fit
Source code

Trace without queries
Trace with one query

Fig. 2. Number of page faults

5 Summary

In this paper we have described ViMem, our virtual memory system for TinyOS-
based sensor nodes. It uses a compile-time approach to create an efficient memory
layout based on data access traces obtained from simulation. We have presented
results that show that this algorithm reduces the overhead of virtual memory
significantly. The remaining overhead does not hinder the implementation of
complex applications for sensor networks. Therefore, using ViMem the memory
limitations of sensor nodes are not as strict as before.

References

1. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an ac-
quisitional query processor for sensor networks. In: Proc. of the Int’l Conf. on
Management of Data. (2003) 491–502

2. Denning, P.J.: Virtual memory. ACM Comput. Surv. 2(3) (1970) 153–189
3. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. 6th edn.

John Wiley & Sons (2002)
4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture

directions for networked sensors. In: Proc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems. (2000) 93–104

5. Dunkels, A., Grönvall, B., Voigt, T.: Contiki – a lightweight and flexible operating
system for tiny networked sensors. In: Proc. of the First Workshop on Embedded
Networked Sensors. (2004)

6. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In: Proc. of the
Conf. on Programming Language Design and Implementation. (2003) 1–11

7. Titzer, B., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with
precise timing. In: Proc. of the Fourth Int’l Conf. on Information Processing in
Sensor Networks. (2005) 477–482


