Symbiosis in the Intranet: How Document Retrieval
Benefits from Database Information

Christoph Mangold

Holger Schwarz

Bernhard Mitschang

Universitat Stuttgart, IPVS
Universitéatsstr. 38, D - 70569 Stuttgart
firstname.lastname@ipvs.uni-stuttgart.de

Abstract

The enterprise information space is split in two
hemispheres. Documents contain unstructured or
semistructured information; structured information is
stored in databases. As regards the content, both
kinds of information are complementary parts. How-
ever, enterprise information systems usually focus on
one part, only. Our approach improves document re-
trieval in the intranet by exploiting the enterprise’s
databases. In particular, we exploit database informa-
tion to describe the context of documents and exploit
this context to enhance common full text search. In
this paper, we show how to model and compute doc-
ument context and present results on runtime perfor-
mance.

1 Introduction

The enterprise information space is split in two dis-
connected hemispheres. The document side contains,
e.g., reports, plans, meeting minutes, email notifica-
tions, and web pages. These documents are created
and maintained according to enterprise workflows. In
contrast, the database side comprises information for
planning, operational management, controlling, etc.
Although the information from both sides is comple-
mentary, it is not integrated on the system level. In the
enterprise this results in a situation where the inter-
connection between both worlds has to be established
in the heads of the employees, which is not only costly
but also time-consuming.

In this paper, we connect documents with databases
for the benefit of document retrieval in the intranet.
Standard text search engines retrieve documents based
on content. Our approach enables the search engine to
additionally exploit document context that is retrieved
from the enterprise’s databases.

To represent documents and context we propose a
graph-based data model. The enterprise’s database

International Conference on Management of Data
COMAD 2005b, Hyderabad, India, December 20-22, 2005
© Computer Society of India, 2005

schemas induce the structure of the graph. Graph
nodes represent documents, relational tuples, and val-
ues. Edges represent attribute and foreign-key rela-
tionships. Since the graph models the context of doc-
uments we call it ContextGraph. From the Context-
Graph, we derive the document contexts with a spe-
cialized shortest path algorithm. Then, we exploit
the context information to extend standard full text
search.

Figure 1 gives an impression of a ContextGraph.
Since the motivation for this work originated from
a manufacturing scenario we use an example from
this area. The ContextGraph contains the document
Docll that is a work instruction. In the enterprise,
work instructions are listed in a document manage-
ment system (DMS) with their URL. Furthermore the
DMS stores the technician who maintains the work in-
struction, which is Bob Blue for Docll. Docll1 itself
can be found in the file system (FS). From the en-
terprise resource planning system (ERPS) we get that
Bob Blue works in Team18 together with Ricky Red.

Consider the following simple scenario: For a new
product, some of the work instructions that are main-
tained by Ricky Red’s team need to be adapted. In
particular, the release of the con-rod has to be delayed.
Hence, the responsible employee feeds the query “re-
lease con-rod” AND “Ricky Red” to the search engine.
However, since Ricky Red is the team leader, he does
not maintain a single working instruction. In this case,
a standard text-based search engine yields results that
contain either “release con-rod” or “Ricky Red”. This
behavior is of no use for the employee since the result
set is potentially large. He might skim through the re-
sult set to filter relevant documents manually or alter-
natively investigate possible query modifications. The
latter may involve expert knowledge from co-workers
or information from databases.

Our system helps the employee to directly access the
desired information. It is based on the notion that in
this situation it is desirable to retrieve, e.g. Docl1 that
is maintained by a co-worker of Ricky Red and rank it
as highly relevant. To achieve this, our approach uses

file:///Z:/wi/doc11.pdf:

“...stand-by for
subassembly of
cock: release
con-rod...”

ERPS DMS FS

Figure 1: Small fraction of a ContextGraph.

information from the enterprise’s ERPS.

The rest of the paper is organized as follows. In
Sec. 2 we discuss related work, the ContextGraph we
present in Sec. 3. In Sec. 4 we discuss the problem of
determining the context. Sec. 5 addresses some per-
formance issues and Sec. 6 concludes the paper.

2 Related Work

In the database area, related work focuses on database
exploration. The typical scenario comprises a user who
is running keyword queries against a database with
unknown schema.

Goldman et al. propose the exploration of a
Lorel/OEM database [9]. There, the user needs to
specify two sets of objects: find and near objects. The
system retrieves objects from the find-set according to
their distance from objects in the near-set. In the rela-
tional database area, related approaches for keyword
search support the user to find relationships in the
database [1,12,13]. For a given set of search keywords,
the systems return a set of joined tupels that contain
the keyword, each. The BANKS system [3] is closely
related to our approach since it represents a relational
database as a graph where tuples and foreign key re-
lationships are nodes and edges, respectively. For a
given keyword query, the system returns a set of sub-
graphs each of which contains at least one hit node
for each search keyword. The ranking of subgraphs
is based on pre-computed node importances and edge
weights.

All of the above-mentionend approaches have in
common that they are limited to databases. None of
them explicitly considers documents. In a scenario,
where all documents are stored inside a database, they
could be applied to solve the problem we described
in Sec. 1. However, this scenario obviously can not
be assumed for the majority of enterprises. Further-
more, the approaches are limited to treat document
text just the same as relational data. I.e., document
search would be an extension to database search. In
contrast, we use the database context as an extension
to full text which has important consequences on our
system architecture. E.g., the system can retrieve doc-
uments with and without context at the same time.

There are ideas to integrate search engines with re-
lational databases [7,10]. In contrast to our approach,
they consider the results of the text search engine as

a (virtual) table in the database system. The user
interacts with the system by means of SQL queries.
I.e., where our approach intends to exploit database
information for information retrieval they aim at the
opposite: To employ search engines as data sources
for relational database systems. A somewhat similar
approach enriches the result of SQL queries with doc-
uments retrieved by text search [18].

Recently, there has been considerable research in
the area of XML retrieval systems, e.g. [2,8, 11, 20].
None of them considers information from relational
database systems. In general, they aim at exploiting
both, the content and the logical structure of XML
documents. In particular, they focus on the exploita-
tion of the internal, hierarchical structure of XML doc-
uments. A query result always consists of document
components. In contrast, our scenario is targeted to-
wards external document context from databases. We
do not presume hierarchical structures and, as opposed
to path queries which yield document components, we
aim at keyword search which results in complete doc-
uments.

In the scope of Semantic Web activities, there is
considerable research on semantic search. Many ap-
proaches base on ontologies that need to be created by
domain experts; some even require the user to be aware
of ontology structures, e.g. [6]. Our approach differs
from them in that domain knowledge is required only
if the edge weights in the ContextGraph are not deter-
mined automatically. Many approaches base on hand-
crafted ontologies, e.g. [4,19]. They are not applica-
ble to our scenario since they mostly rely on concept
hierarchies and linguistic information like synonyms.
Furthermore, they do not cope with text fragments
like document title or abstract but require ontological
concepts that contain one or a few terms, only. Conse-
quently, they are not capable to exploit the high qual-
ity information from the enterprise’s databases. For
these approaches, ontologies need to be created and
custom-tailored for each application domain. This is
not only costly but also provokes correctness and con-
sistency issues. In contrast, our ContextGraph ap-
proach represents established and reliable information
that is consistent with and relevant for the enterprise’s
business.

3 Modeling Document Context

In this section, we introduce the ContextGraph, a di-
rected weighted graph that models the semantic dis-
tance between data items in an enterprise.

The ContextGraph (CG) is derived from the enter-
prise’s databases (DB) by the following simple map-
ping: Each tuple in the DB becomes a node in the
CG. Each attribute value belonging to the tuple also
becomes a node that is connected to the tuple node.
Tuple nodes are mutually interconnected according to
foreign-key relationships in the DB. M:N-relationships

in the DB are denormalized and represented as graph
edges. Documents are represented in CG by special
nodes that contain the document’s URL, only. Edges
are weighted with a measure for semantic distance,
which is out of the scope of this paper.

Rocha [17] proposed to model all attributes of a tu-
ple as one single graph node. However, we favor the
smaller node granularity, as it has been proposed, e.g.,
in the OEM data model [9] for two reasons: First,
it permits to assign different semantic distances (see
below) to attributes. And secondly, a graph that con-
tains atomic nodes only is more flexible regarding the
integration of non-relational sources (for a discussion
of this issue refer to [9]).

Fig. 2 shows a portion of the DMS table WorkIn-
struction and portions of the ERPS tables Employee,
and Team, that map to the ContextGraph in Fig. 1.

Enterori Employee Team
nterprise
Resource | Name Team (FK) |... | [Name Leader (FK) | ...
Planning Bob Blue | Team18 Team18 | Ricky Red
System Ricky Red |Team18
Workinstruction
Document —
Management DoclID [URL |Maintained by (FK)|...
System Docll |file://... [Bob Blue

Figure 2: Example. Tables that map to the Context-
Graph in Fig. 1, where FK denotes a foreign key.

To exploit the information represented in the Con-
textGraph, each document needs to be aware of its
context. For two nodes ni,ns € CG we define the se-
mantic distance dist(ny,ng) to be the weight of the
shortest path from n; to ny. Furthermore, let cRange
be a positive value that denotes the context range.
Then we define the context of a node n € CG as the
set of nodes that are reachable from n within distance
cRange:

Context(n) = {v € CG | dist(n,v) £ cRange}.

Likewise, the context of a document d is the context
of the node ng4 that represents d.

4 Computing the Context

The problem of determining document context based
on the ContextGraph is equivalent to find shortest
paths in the graph. Clearly, an all-pairs-shortest-path
(APSP) algorithm such as the Floyd-Warshall or the
Johnson algorithm [5, p. 558] would yield the context
information for each document node. From a theo-
retical viewpoint the complexity is O(|V|?) for Floyd-
Warshall and O(|V'|?-1g |V |+|V|-| E|) for Johnson. An-
other standard approach for APSP is to run |V| single-
source-shortest-path (SSSP) algorithms such as Dijk-
stra’s algorithm which amounts to O(|V|-|E|1g |V]) in
a standard implementation.

Since the ContextGraph can grow arbitrarily large,
we need a solution that is optimized towards our sce-
nario. Based on the following two observations we find
that our problem requires only a subset of the results
of an APSP: First, we only need connectivity infor-
mation for a subset of all nodes, i.e., the document
nodes, only. Secondly, nodes that are far away from
a document node have little relevance for the docu-
ment. Hence, we only need the distances between a
document node and the nodes in its context.

The execution of a restricted Dijkstra algorithm [5,
p.527] on each document node exploits both optimiza-
tions. The Dijkstra algorithm is a greedy SSSP al-
gorithm that discovers paths in the order of increas-
ing weights. The restriction stops the algorithm when
path weights exceed the cRange limit, i.e., when the
context is identified.

We additionally considered the Hidden Path algo-
rithm [14] that does not benefit from the first optimiza-
tion but computes the context of all nodes. It works as
|V| individual Dijkstra algorithms in parallel, i.e., one
for each graph node. Its running time benefits from
the fact that information can be reused among the par-
allel Dijkstra algorithms. The Hidden Path algorithm
also discovers paths in increasing weight order. We de-
signed a restricted variant of the original Hidden Path
algorithm which profits from the second optimization.
In the next Section, we show some results of our exper-
iments with the restricted HiddenPath algorithm and
compare it with Dijkstra’s algorithm.

5 Evaluation

In this section, we present some results of our runtime
experiments. Any discussion about the architecture
or implementation of our system is out of the scope
of this paper [15,16]. To assess performance of our
system we downloaded data from the citeseer archive!
of computer science research papers. We built a simple
database that contains the document meta data as,
e.g., author and affiliation.

5.1 Computing Time for Shortest Paths

To determine document contexts we implemented the
most promising main-memory based shortest-paths al-
gorithms. In Figure 3 we compare the restricted Hid-
den Path algorithm with the Dijkstra algorithm. As
described in Section 4, the Dijkstra computes the re-
stricted shortest paths for document nodes only. The
best results we obtained with the restricted Hidden-
Path algorithm.

5.2 Query Time

In Figure 4, we show the query time for different graph
sizes. The values denote the mean time of 20 differ-
ent queries with varying number of keywords, which

Thttp://citeseer.ist.psu.edu/oai.html

— @ — Dijkstra doc —@— restr. HiddenPath

8
7 - a
= 6 =
Es ==
o 4 =
E 3 = -
[S
2 .
_m-- P e — 9 °©
TE—e—e—*
0+ ! ; ; ;

5000 10000 15000 20000 25000 30000 35000 40000
Data Set [#documents]

Figure 3: Running time of shortest path algorithms.

were processed subsequently. We compare the query
time for two different index layouts, that we term “one-
step” and “two-step” index with the query time on the
pure text index. Although the queries on both context
indexes run slower than on the pure text index, they
are clearly fast enough to run as an interactive pro-
cess. Where the single-step index shows a factor of
about 2.7, the smaller two-step index yields an over-
head factor of 19. In our tests, each single response
time was well below the 0.5-second threshold.

‘l 1-stepd 2-stepO text only‘

200

150 —

100+

Time [ms]

50

o 1,_-_:1_,_-_:1_,_._1,_._1,_._1,_._

5000 10000 15000 20000 25000 30000 35000 40000

Data Set [#documents]

Figure 4: Query time.

6 Conclusion

In this paper, we introduced our approach to exploit
database information to improve intranet document
retrieval. We showed how to derive a graph structure
from databases and how to embed documents inside
the graph. Then, we discussed how to compute doc-
ument context from this graph. Our performance ex-
periments show that only little overhead is introduced
by exploiting document context.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:
A system for keyword-based search over relational
databases. In ICDE’02, page 5, 2002.

[2] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava,
and D. Toman. Structure and content scoring for
XML. In VLDB’05, pages 361-372, 2005.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using BANKS. In ICDE’02, page 431,
2002.

[4] A. Burton-Jones, V. C. Storey, V. Sugumaran, and
S. Purao. A heuristic-based methodology for semantic
augmentation of user queries on the web. In Intl. Conf.
on Conceptual Modeling, ER’03, pages 476-489, 2003.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to algorithms. MIT Press, 1990.

[6] J. Davies and R. Weeks. QuizRDF: Search technology
for the semantic web. In Hawaii Intl. Conf. on System
Sciences (HICSS), pages 112-119, 2004.

[7] S. Dessloch and N. Mattos. Integrating SQL databases
with content-specific search engines. In VLDB’97,
pages 528-537, 1997.

[8] N. Fuhr and K. Grossjohann. XIRQL: a query lan-
guage for information retrieval in XML documents.
In SIGIR’01, pages 172-180, New York, NY, USA,
2001. ACM Press.

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian,
and H. Garcia-Molina. Proximity search in databases.
In VLDB’98, pages 26-37, 1998.

[10] R. Goldman and J. Widom. WSQ/DSQ: a practical
approach for combined querying of databases and the
web. In SIGMOD’00, pages 285296, 2000.

[11] J. Graupmann, R. Schenkel, and G. Weikum. The
SphereSearch engine for unified ranked retrieval
of heterogeneous XML and web documents. In
VLDB’05, pages 529-540. VLDB Endowment, 2005.

[12] V. Hristidis, L. Gravano, and Y. Papakonstanti-
nou. Efficient IR-style keyword search over relational
databases. In VLDB’03, pages 850-861, 2003.

[13] V. Hristidis and Y. Papakonstantinou. Discover: Key-
word search in relational databases. In VLDB’02,
pages 670-681, 2002.

[14] D. R. Karger, D. Koller, and S. J. Phillips. Finding
the hidden path: Time bounds for all-pairs shortest
path. SIAM Journal on Computing, 22(6):1199-1217,
12 1993.

[15] C. Mangold, H. Schwarz, and B. Mitschang. Docu-
ments meet databases: A system for intranet search.
In COMAD’06, 2006.

[16] C. Mangold, H. Schwarz, and B. Mitschang.
u38: A framework for database-supported enterprise
document-retrieval. In IDEAS’06, 2006.

[17] C. Rocha. A hybrid approach for searching in the
semantic web. In WWW’04, pages 374-383, 2004.

[18] P.Roy, M. K. Mohania, B. Bamba, and S. Raman. To-
wards automatic association of relevant unstructured
content with structured query results. In CIKM’05,
pages 405-412, 2005.

[19] N. Stojanovic. On analysing query ambiguity for
query refinement: The librarian agent approach. In
Intl. Conf. on Conceptual Modeling, FR’03, pages
490-505, 2003.

[20] C. Yu, H. V. Jagadish, and D. R. Radev. Querying
XML using structures and keywords in timber. In
SIGIR’03, pages 463-463, New York, NY, USA, 2003.
ACM Press.

