Documents meet Databases:
A System for Intranet Search

Christoph Mangold

Holger Schwarz

Universitat Stuttgart, IPVS
Universitéatsstr. 38, D - 70569 Stuttgart
firstname.lastname@ipvs.uni-stuttgart.de

Abstract

In enterprise intranets, information is encoded in doc-
uments and databases. Logically, the information in
both worlds is tightly connected, however, on the sys-
tem level there is usually a large gap. In this paper, we
propose a system to retrieve documents in the enter-
prise intranet. The system is an extension to common
text search. It does not only consider the content of
documents but also it exploits the enterprise databases
to determine the documents’ context.

1 Introduction

In enterprise intranets, information is encoded in doc-
uments and databases. Both kinds of information are
crucial for the success of the enterprise. Both kinds of
information are tightly connected as regards their con-
tent. However, both kinds of information are usually
not integrated on the system level. For a discussion of
this issue see, e.g. [1,5]. In the enterprise, the miss-
ing links on the system level need to be compensated
by employees. l.e., the missing links have to be es-
tablished in the heads of the employees, which is a
long-lasting and expensive process.

This paper introduces our system that connects
documents with databases for the benefit of document
retrieval in the enterprise intranet. Standard text
search engines retrieve documents based on content.
Our search engine additionally exploits document con-
text that is retrieved from the enterprise’s databases.

To model documents and their context we use a
graph data model, called ContextGraph. We map
databases to the ContextGraph such that graph nodes
represent relational tuples, and values. Attribute
and foreign-key relationships map to edges in the
graph. Documents are represented by special docu-
ment nodes. To determine the contexts of documents
in the ContextGraph we use a specialized shortest
paths algorithm.

International Conference on Management of Data
COMAD 2005b, Hyderabad, India, December 20-22, 2005
© Computer Society of India, 2005

In Figure 1, we give an impression of a Context-
Graph. The example shows the document Docl1 that
is a Work Instruction. In the enterprise, the document
is listed in a document management system (DMS).
With its URL, the content of the document can be
found in the file system (FS). The DMS not only con-
tains the URL but also a link to the technician Bob
Blue who maintains the work instruction. From the
enterprise resource planning system (ERPS) we get
that Bob Blue works in Team18 together with Ricky
Red.

file:///Z:/wi/doc11.pdf

" Doc11 “...stand-by for

file:///Z:/wil| cock: release
docl1.pdf con-rod...
ERPS DMS ES

Figure 1: Small fraction of a ContextGraph.

Consider the following simple scenario: For a new
product, some of the work instructions that are main-
tained by Ricky Red’s team need to be adapted. In
particular, the release of the con-rod has to be delayed.
Hence, the responsible employee feeds the query “re-
lease con-rod” AND “Ricky Red” to the search engine.
However, since Ricky Red is the team leader, he does
not maintain a single work instruction. In this case, a
standard text-based search engine yields results that
either contain “release con-rod” or “Ricky Red”. This
behavior is of no use for the employee since the result
set is potentially large. He might skim through the re-
sult set to filter relevant documents manually or alter-
natively investigate possible query modifications. The
latter may involve expert knowledge from co-workers
or information from databases.

Our system helps the employee to directly access the
desired information. It is based on the notion that in
this situation it is desirable to retrieve, e.g. Docl1 that

is maintained by a co-worker of Ricky Red and rank it
as highly relevant. To achieve this, our approach uses
information from the enterprise’s ERPS.

In the rest of the paper we give an overview of the
system in Section 2 and summarize in Section 3.

2 System Overview

In this section we discuss the ContextGraph and how
we build it from the enterprise’s databases. We give a
brief overview of our ranking strategy, sketch the sys-
tem architecture and finally present the user interface
of the system.

2.1 The ContextGraph

As we motivated in the Introduction, we use enter-
prise’s databases to determine the context of docu-
ments in the intranet. To achieve this, we derive the
ContextGraph (CG) from the enterprise’s databases
(DB) using the following simple mapping: Each tu-
ple in the DB becomes a node in the CG. Each at-
tribute value belonging to the tuple also becomes a
node that is connected to the tuple node. Tuple nodes
are mutually interconnected according to foreign-key
relationships in the DB. M:N-relationships in the DB
are denormalized and represented as graph edges. A
documents is represented in CG by a special node that
contains the document’s URL, only. We detail on the
ContextGraph in [3].

To exploit the information represented in the Con-
textGraph, each document needs to be aware of its
context. For two nodes ni,ny € CG we define the
semantic distance dist(ny,n2) to be the length of the
shortest path from n; to ns. Our system permits to
assign different semantic distances to different types of
edges, but this is beyond the scope of the paper.

Let cRange be a positive value that denotes the
context range. Then, we define the context of a node
n € CG as the set of nodes that are reachable from n
within distance cRange:

Context(n) = {v € CG | dist(n,v) < cRange}.

Likewise, the context of a document d is the context
of the node ny that represents d.

2.2 Ranking

The ranking of search results is a critical issue for
search engines. The result quality of a search engine
is considered good if and only if for a given query the
most relevant documents appear at the top of the re-
sult list. Hence, a good ranking function distinguishes
those documents that are most likely to be relevant for
the query.

In general, ranking measures can be divided into
measures for document importance and document rel-
evance. Document importance is a query independent

measure. In a scenario where users prefer new docu-
ments, the last change date is a good indicator for doc-
ument importance. In contrast, document relevance
measures the appropriateness of documents concern-
ing a given query. In the common full text search
scenario, document relevance is determined based on
the content of the document.

Our approach extends the relevance measure to not
only consider the content of a document but also its
context. Le., for a given search term, we do not only
check its appearance inside the document, but also in
the document’s context. If a search term appears in
the contexts of two documents it is a straightforward
idea to boost the ranking of the document with smaller
semantic distance to the search term.

We realize this by storing terms with different se-
mantic distances in different parts of the index. When
retrieving documents, we consider the distance of
found search terms for the ranking of results.

2.3 System Architecture

In Figure 2, we give an overview of our system, for
more details see [4]. To enable scalability, we chose
an index based architecture. At indexing time, the
indexer analyzes databases and documents and gener-
ates a data structure — the index — that can be searched
efficiently at retrieval time.

At the bottom of Figure 2, the RDB Import compo-
nent inputs data from relational databases and gener-
ates a ContextGraph. The Shortest Path component
determines document contexts and graph distances by
running a specialized shortest path algorithm on the
ContextGraph [3]. For each document, the Contextu-
alizer component uses the Document Import compo-
nent to retrieve the document text from the respective
URL. Then, it combines the document text with the
results of the Shortest Paths component, i.e., the doc-
ument context, and passes both to the Index Builder
component. Finally, the Index Builder component is
responsible to organize this information such that it
can be stored in the index data structure.

ndexer % Admin % User

| Index Builder |—— | We‘? Browser |

GUI'(ServIets) |

| . Contextualizer | |
. &

u ShorteTst Paths |
Document
import | LEOMeXtGraph 1T Search Engine
RDB Import %

Index

Index Evaluation |

Documents Database

Figure 2: System architecture.

At query time, the user inputs a keyword query into
a search form in his web browser. The browser sends
the user query via web server and servlet engine to the
Index Evaluation component. The latter is responsible
to rewrite the user query according to the following
constraints:

e Index structure. The query needs to fit the index
structure that is determined by the Index Builder
component.

e Ranking. Document relevance is partially com-
puted at query time and needs to be considered
when rewriting the query.

e User parameters. The user may set some param-
eters at query time that need to be reflected, see
Section 2.4.

Subsequently, the Index Evaluation component ac-
cesses the index and retrieves relevant documents that
are finally returned to the user.

In our implementation we use the Lucene search
engine framework [2] as part of the Index Builder and
as part of the Index Evaluation component.

2.4 User Interface

The user interface of our system is shown in Figure 3.
The input field (a) takes user keywords. Right below,
the (advanced) user may adjust the following para-
meters (b):

e Number of results. Results retrieved per query.

e Context range. The user can adjust the value of
cRange, however cRange is bound by the value
that has been chosen at indexing time. If the
user sets cRange= 0 the search engine disregards
context information and operates like a standard
text search engine.

e Not range. Where context-based search is triv-
ial for search terms connected with the boolean
operators AND and OR, the usage of NOT poses
the problem that too many documents might be
pruned from the result set. We solve this problem
by introducing the separate parameter NotRange
that overrides the cRange parameter for negated
query terms.

e Context influence. Determines the influence of
context information to the ranking of results. The
user may choose that results are computed based
on content only, on context only, or on a combi-
nation of both.

The area in Figure 3 (c) shows the query results.
It comprises three columns: The (colored) boxes in
the first column give hints on the ranking of results.
Here, dark boxes indicate relevant documents, light

boxes represent lower ranks. Column two shows docu-
ment links and column three contains a set of buttons
that transfer the respective document with its context
to the visual ContextGraph browser that is shown in
Figure 3 (d). In the browser, the user may explore the
ContextGraph interactively. It supports the expansion
of the direct neighborhood of nodes. Furthermore, the
user may apply edge filters to focus on certain infor-
mation and various layout filters.

To elucidate the ranking value of search results, a
left-click on the ranking box in the first column of
Figure 3 (c) opens a window that explains how the
value has been computed. Figure 4 shows a sample
window. In this example the query is “Pleuel 16sen”
AND XLK1 (where “Pleuel 16sen” is german for “re-
lease con-rod”). The ranking explanation for the found
document shows that the document contains “Pleuel
16sen” in its content (upper part) and XLK1 in both,
the context and the content of the document (lower
part).

3 Summary

In this paper we introduced our approach to exploit
database information for the benefit of intranet doc-
ument retrieval. We presented a search engine that
considers not only unstructured document content
but also structured information from the enterprise’s
databases. We introduced the ContextGraph as an ab-
straction of databases and explained our ranking strat-
egy. We gave an overview of the system architecture
and finally introduced the user interface.

References
[1] S. Chakrabarti. Breaking through the syntax
barrier: Searching with entities and relations.

In ECML 2004, volume 3201 of LNCS, page 9.
Springer-Verlag, 2004.

[2] O. Gospodneti¢ and E. Hatcher. Lucene in Action.
Manning Publications, 12 2005.

[3] C. Mangold, H. Schwarz, and B. Mitschang. Sym-
biosis in the intranet: How document retrieval ben-
efits from database information. In COMAD 2006,
2006.

[4] C. Mangold, H. Schwarz, and B. Mitschang. u38:
A framework for database-supported enterprise
document-retrieval. In IDEAS’06, 2006.

[5] A. Somani, D. Choy, and J. C. Kleewein. Bringing
together content and data management systems:

Challenges and opportunities. IBM Systems Jour-
nal, 41(4):686-696, 2002.

T§ u38 - Mozilla

M= |
. Fle Edit View Go Bookmarks Tools Window Help

s @O o @ Q \%http:f,iutpp\apaz:aasaﬂu:satmnt

B uwes

XLK1-tl05xr40h.pdf
XLK1-t105x120.pdf
XLK1-tI05x.pdf

(d
XLK1-tl05mkie42ul.pdf

(© XLK1-tl05mkiie42h.pdf

XLK1-tl05mkie42a.pdf

XLK1-tl05mkiie42.pdf
XLK1-tl05mki2e55h.pdf
XLK1-tl05mkii2e55a. pdf

XLK1-tl05mkii2.pdf

Figure 3: User Interface. (a) Input field. (b) Parameter adjustment. (c) Result panel. (d) Visual browser

[E£ Score Details for Document 0 - Mozilla

i [0l x|
[I
. A
Explaining Document 0 |
(http:/as informatik uni-stuttgart de/as/u38iLIK1-HI0Sxr40h pdf)
Expand Al Collapse All
1.0119991 = sum of.
0.18853868 = product of.
053269336 = weightDOCTEXT "pleuel lszen” in 118), product of
0,245 ryWeight(DOCTEXT: pleuel lsen), product of:
4Pleuel I6sen”
in content
N
XLK1
in context
{HE‘LA D_03:xk1 in
seryWight{RELATED_0:
hHRELATED_03:xlk1 in 118), product of:
LATED, 1)
J/
0.2132
0.
XLK1
in content
0.8 = coord(4/5) =
D=9 O & [oore =T == [2

Figure 4: Sample explanation for result ranking.

