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Abstract. Many applications in wireless sensor networks rely on data
from neighboring nodes. However, the effort for developing efficient solu-
tions for sharing data in the neighborhood is often substantial. Therefore,
we present a general-purpose algorithm for this task that makes use of the
broadcast nature of radio transmission to reduce the number of packets.
We have integrated this algorithm into TinyXXL, a programming lan-
guage extension for data exchange. This combined system offers seamless
support both for data exchange among the components of a single node
and for efficient neighborhood data sharing. We show that compared to
existing solutions, such as Hood, our approach further reduces the work
of the application developer and provides greater efficiency.

1 Introduction

As sensor networks gain momentum and applications are increasingly developed
by experts in the application domain rather than experts in sensor networks,
there is a growing need to simplify standard tasks while achieving the efficiency
of optimized applications. To address this issue both programming abstractions
and efficient general-purpose algorithms have to be considered.

In sensor network applications one such standard task is data sharing among
neighboring nodes. For example, the location of neighboring nodes [1, 2] or in-
formation about their current role [3] are used by several algorithms and appli-
cations. Typically, developers create application-specific protocols for this task.
This approach tends to incur significant development overhead and, for exam-
ple, with a tight development budget, might often lead to inefficient solutions.
Therefore, a general-purpose algorithm would not only reduce the development
effort but also make neighborhood data sharing more efficient. In this paper we
describe such an algorithm for neighborhood data sharing that strives to min-
imize the number of bytes transmitted. In addition, we use this algorithm as
the basis of programming abstractions to facilitate the development of efficient
applications that use data from neighboring nodes.

Although neighborhood data sharing only involves communication in a lim-
ited part of the sensor network and the size of such data is often small, the
data of all nodes throughout the network adds up to considerable amounts.
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Therefore, optimizing such transmissions locally on each node can result in sig-
nificant improvements regarding the number of messages sent and enhance the
energy efficiency of the whole network. So far, however, most work has focused
on disseminating data to all nodes in the network (e.g., [4–6]) or on data-centric
algorithms that transmit data to a sink node (e.g., [7]). In contrast, sharing data
efficiently within the neighborhood has not been studied in sufficient detail yet.
Even work dealing with programming abstractions for data sharing left the ac-
tual data transmission algorithm to be created by the application developer [8],
or only provided simple ones [9].

There are two classes of data sharing algorithms: push-based and pull-based
approaches [10]. With push-based approaches a node providing data sends it
without having received an explicit request for it. Obviously, such approaches
can lead to inefficiencies when the node’s neighbors do not need this data. Es-
pecially in heterogeneous networks a node cannot necessarily infer what data
its neighbors need because they may execute different code. Thus nodes might
transmit unnecessary data or omit data that is actually required.

The second class of data sharing algorithms is composed of pull-based ap-
proaches. Here nodes only send data when they have received a request for it.
This approach is better suited for heterogeneous networks, since each node may
request the data it actually needs. The only shared assumptions are that neigh-
bors can provide the requested data and use the same naming scheme. However,
a pull-based approach can incur significant overhead for sending requests.

Therefore, we have developed Neidas (“NEIghborhood DAta Sharing algo-
rithm”), an efficient pull-based algorithm for neighborhood data sharing. Similar
to network-wide dissemination approaches, our algorithm makes use of over-
hearing requests and data from neighboring nodes. It leverages the advantages
of both pull-based and push-based strategies: The algorithm works well with
heterogeneous networks and reduces the overhead for requests.

Typically, data is not just shared among neighboring nodes but also be-
tween the software components of a single node. We address this problem with
TinyXXL [11], an extension to the nesC programming language [12]. TinyXXL
simplifies cross-layer data sharing and decouples the components accessing data.
Its runtime component, the TinyStateRepository , provides efficient access to such
data. We have integrated Neidas into TinyXXL to create a comprehensive ap-
proach for data sharing among components on a single node and on neighboring
nodes, which reduces the effort for the developer.

The rest of this paper is organized as follows. Section 2 describes related
work. In Section 3 we present our data sharing algorithm and in Section 4 its
integration into TinyXXL. Section 5 evaluates our approach. Finally, Section 6
gives an outlook on future work and concludes this paper.

2 Related Work

Publish/subscribe systems have been used in different domains to make data
available. In sensor networks several algorithms following a publish/subscribe-
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like paradigm have already been proposed. Perhaps the best-known example is
SPIN [4], which uses such an approach to disseminate data in the network. How-
ever, these approaches typically require explicit interaction between every two
nodes publishing and subscribing to data, which is not needed by our algorithm.

Gossiping algorithms are flooding-like approaches where nodes randomly for-
ward data packets that they have received. Trickle [5] uses a gossiping variant
to efficiently distribute information about code images in the whole network. It
has been integrated into Deluge [6], a code distribution algorithm, and adapted
for the Drip protocol [13] to transmit queries to all nodes in the network. Neidas
is inspired by the concepts of Trickle but deals with multiple nodes requesting
potentially different data. Trickle, in contrast, can assume a single or few data
sources and just one kind of data. In addition, with Neidas changes of data are
kept local whereas Trickle disseminates them through the network.

Hood [8] is a programming abstraction that tries to ease neighborhood data
exchange in sensor networks. However, it leaves important parts to be added by
the application developer, e.g., data transmission policies that are responsible for
sending data and requests. This allows for more flexibility than our system but
increases the development effort. In addition, Hood does not strive to provide a
comprehensive system for both intra-node and neighborhood data exchange.

Likewise, abstract regions [9] provide programming primitives for local com-
munication. An abstract region is defined using radio connectivity or the location
of nodes, for example. Extending the neighborhood beyond immediate neighbors
within radio range is something not considered by our approach yet. Like Hood,
abstract regions only include a very basic data transmission algorithm. Similarly,
logical neighborhoods [14] can be used for communication within a set of nodes
that are not necessarily just the nodes in radio range. However, with this system
a data sharing mechanism would still have to be implemented by the application
developer based on other primitives.

There are numerous algorithms and applications that make use of data ob-
tained from their neighbors. Most of them include custom solutions for neighbor-
hood data sharing. Prominent examples are algorithms for self-organization [3],
routing [1], and medium access control [15]. By factoring out the transmission of
data using TinyXXL, developers could focus more closely on the actual purposes
of their algorithms and applications.

3 Neighborhood Data Sharing Algorithm

Neidas is a data sharing algorithm that retrieves data from all neighboring nodes
in radio range and continuously transmits updates when this data changes. It
is based on the observation that – even in heterogeneous networks – there are
typically several nodes within radio range that are interested in the same data.
Therefore, our algorithm can take advantage of polite gossiping, which was first
introduced in the Trickle algorithm [5]. With this approach nodes wait a ran-
dom time before sending data or a request for data from neighboring nodes. If
during this time kr neighbors send the same request, polite gossiping suppresses
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(1) In each request round:
Wait for the listen-only period and random interval
For each data item needed from neighbors:

If less than kr identical requests have been received:
Send request

(2) In each data send round:
For each data item requested by other nodes:

If data item not requested in last data send rounds:
Remove request

Wait for listen-only period and random interval
For each data item requested by other nodes:

For local data and data received from neighbors:
If less than kd copies of data with same version
number have been received from this node:

Send data including version number
Double duration of data send round

(3) If new neighbors arrive:
Reset duration of data send round to one request round

(4) Request received:
Mark data as requested
Increment counter for request

(5) Data received:
If data requested and data is from node in neighborhood:

If version number > stored version number
Store data, source node, and version number

Else if version number == stored version number
Increment counter for this data

Fig. 1. Overview of the Neidas algorithm

the transmission of redundant messages. Therefore, this algorithm leverages the
broadcast nature of radio transmission: If several nodes have the same request,
making each node send it would be unnecessary. Similarly, Neidas uses the same
mechanism to locally forward the data provided by neighbors.

To deal with transmission failures and dynamic topologies Neidas periodi-
cally resends requests and data in so-called request and data send rounds. Fig. 1
gives an overview of the basic operation of the algorithm. Our algorithm is exe-
cuted: periodically in each request round (1) and data send round (2), when new
nodes arrive in the neighborhood (3), and when requests (4) or data packets (5)
are received. The following subsections describe the Neidas algorithm in more
detail.

3.1 Neighborhood Management

Since Neidas retrieves and stores data from neighboring nodes, it needs to know
which nodes are in the neighborhood. Our current implementation includes an
algorithm that intercepts all Neidas packets to build this neighborhood table.
This algorithm does not incur any message overhead because it does not send
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Fig. 2. Actions within request rounds

any packets itself. If it has not received any packets within a predefined interval,
it removes this particular node from the table.

If there is already an algorithm available that provides the required inter-
faces, it can be used instead to avoid duplicate data in memory. For instance,
neighborhood information can be retrieved from the TinyStateRepository (our
cross-layer data repository [11]), SP’s neighbor table [16], or accessed directly
from the algorithm providing the data. To demonstrate this flexibility we imple-
mented several such algorithms.

3.2 Sending Requests

Neidas is a pull-based algorithm, i.e., nodes send requests for data that they
need. It takes advantage of overhearing messages by suppressing requests if
other nodes have already sent the same one. The algorithm periodically re-
sends requests to deal with dynamic neighborhoods and transmission failures.
Therefore, it divides time into fixed-length request rounds, which are shown in
Fig. 2.

Starts of rounds do not have to be synchronized on neighboring nodes. This
can lead to an increased number of messages if nodes send their requests early at
the beginning of a round. To avoid this problem, each round starts with a listen-
only period [5] in which a node just listens for messages from its neighbors (see
Fig. 2). In the rest of the round each node randomly selects a point of time at
which it will send its request if by then it has not overheard at least kr identical
ones. Otherwise, it suppresses its own request in the current round.

Since neighborhoods may overlap, not necessarily all the neighbors of a node
receive a request when the node overhears one. Therefore, a node might suppress
its own transmission although not all of its neighbors have received the same
request. This is especially a problem because there might be no other node in
the neighborhood requesting that data item. Trickle can easily deal with this
issue since all nodes transmit the same kind of information and because version
numbers ensure that the most recent information is always sent. Neidas, in
contrast, addresses this problem in the following way. First, the threshold kr is
set to a slightly greater value. We obtained good results with kr = 3. Secondly,
the random delay before sending a request ensures that not always the same
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nodes with the same set of neighbors send a request. Finally, following a soft-
state approach with timeouts longer than a single round, nodes do not have to
receive a request in every round. As shown in our simulations, in static topologies
all nodes within radio range receive a request after some rounds.

If communication links are asymmetrical, i.e., node A hears node B, but B
cannot receive messages from A, Neidas remains functional, since it does not
necessarily require direct interaction between nodes to request and transmit
data – given that there are other nodes with the same request. Thus Neidas
fully makes use of the broadcast nature of radio transmission with its polite
gossiping scheme.

3.3 Sending Data

Besides sending requests, Neidas takes care of sending the requested data itself.
Nodes transmit this data in two cases. First, they send all their matching data
periodically – including data received from neighboring nodes. This helps to
make sure that after some retransmissions all neighbors have received it. Second,
when the local data is modified, nodes send additional updates to their neighbors.
This way the neighbors receive the most current data even before the next regular
retransmission.

For sending data Neidas also takes advantage of polite gossiping: Nodes that
have received data from one of their neighbors transmit it in addition to their
local values. Since data is associated with a single node, only exactly the same
data from the same node can suppress a transmission. In order to ensure that
just the most current data is resent, the data includes a version number which is
incremented whenever the data changes. To deal with version number overflows,
receivers only accept data if this number is within a given range.

Since data is only relevant for the immediate neighbors and since only data
originating from the same node can suppress its transmission, the polite gossiping
threshold kd for data can be smaller than kr for requests. In addition, the version
numbers define a prioritization where more recent data will not be silenced by
older versions.

Nodes only accept data originating from one of the neighbors in radio range.
This makes sure that data received via a third node is not disseminated through-
out the network but kept within the neighborhood. Although Neidas currently
only uses the radio range to define the neighborhood, with polite gossiping it
would be easy to transmit data to differently defined groups of neighbors such
as those proposed by abstract regions [9].

Data is not sent in every round in which it has been requested. The reason
for this is that Neidas tries to reduce the number of packets. Since the data itself
is often somewhat larger than a request message, it is important to minimize
the number of data transmissions. Therefore, we have introduced data send
rounds. All data requested in the last and current data send round is sent if kd

neighboring nodes have not already transmitted the same data. As Fig. 3 shows,
a data send round is composed of one or more request rounds. The length of
the data send round is doubled after each round (up to a predefined maximum
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Fig. 3. Relation between request rounds and data send rounds

duration), in the figure from the length of one request round to four of them.
It is reset to the length of a single request round when new nodes arrive in
the neighborhood. This way these nodes receive prompt replies to their requests
while greatly reducing the number of messages in static topologies. Note that
changes to the length of the data send round are local to each node; they do
not require any coordination among nodes. The length value reflects each node’s
estimate how often resends are necessary to make sure that all neighboring nodes
receive a data item while keeping the rate of messages low.

We use a soft-state approach to remove requests after some time. Requested
data, however, is not removed as long as the node stays within the neighborhood
and there is enough memory available. So even after long data send rounds or
several failed data transmissions, a node using Neidas still can access a previously
received version of its neighbors’ data from the local cache.

3.4 Further Optimizations

It is well known that radio communication consumes large amounts of energy
[17]. In addition, there is also a significant MAC layer overhead associated with
every packet. Therefore, reducing the number of messages is even more important
than simply reducing the amount of data to be transmitted. In TinyOS and its
standard MAC layer protocol [18], for instance, the MAC layer preamble, the
header and the checksum included in all packets add between 17 (full duty cycle
of receivers) and 2,663 bytes (low power listening with 1% duty cycle). Thus
with a default data payload size of 29 bytes the overhead of sending a packet is
between 58% and more than 9,000%.

Requests for neighborhood data and the data itself are expected to be com-
paratively small. Therefore, as an optimization Neidas accumulates several re-
quests or data transmissions into a single packet. This is easily possible since
Neidas uses small integer IDs instead of long names to identify the data and its
type.

Sometimes even further optimizations are possible. Many applications and
algorithms periodically send messages that do not fill the complete payload.
Therefore, Neidas can take advantage of this free space by piggybacking its
requests and data onto these messages. If the radio is operated in promiscuous
mode, it does not even matter whether or not the packet is addressed to the
same node as the piggybacked data, which – in our implementation – is always
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broadcast to all nodes in radio range. However, piggybacking is not feasible in
all cases. For example, it is possible that the application does not send any data
itself or that there are not enough free bytes available in the messages. Therefore,
if after a time interval specified by Neidas the data has not been piggybacked,
the piggybacking component sends a separate packet for this data.

This approach may incur some additional delays. During this time neighbor-
ing nodes might already have transmitted the same request, so that using polite
gossiping it no longer has to be sent. Therefore, Neidas checks before actually
sending the request if it is still necessary; otherwise, it cancels it.

Our implementation works with all packets sent by any TinyOS-based appli-
cations and protocols because it replaces the TinyOS components which provide
the so-called active message interface immediately above the MAC layer. For
both the higher-level and the MAC layer component itself piggybacking is com-
pletely transparent.

4 Programming and Runtime Support

4.1 Cross-Layer Data Exchange with TinyXXL

TinyXXL [11] is an extension of the nesC programming language [12] that decou-
ples software components to ease cross-layer data exchange. With TinyXXL data
shared among components is declared in a similar way to interfaces. Components
using this data then can define dependencies without explicitly specifying the
component providing it.

With automatic optimizations performed by the TinyXXL compiler, it is
possible to develop applications that make use of cross-layer data from reusable
components. For example, the compiler ensures that a single kind of data is
stored only once in limited RAM and that no energy-intensive data gathering
is performed redundantly. In addition, with its “virtual data items” TinyXXL
allows the developer to create conversions and arbitrary database-like operators
such as “count” and “average” to access data. This way not just the raw internal
data of a component can be used by other ones but also derived data.

A pre-compiler translates TinyXXL source code into pure nesC code. It cre-
ates the components of the TinyStateRepository that stores the data at runtime.
The TinyStateRepository offers a publish/subscribe interface with – for efficiency
reasons – static subscriptions at compile-time.

4.2 Integration of Neighborhood Data Sharing

Previous versions of TinyXXL only allowed for data exchange among the com-
ponents of a single node. To create a comprehensive system both for this kind of
intra-node data exchange and for neighborhood data sharing we slightly modi-
fied TinyXXL to support accessing the data of neighbors and use Neidas in the
TinyStateRepository . This combined system is called TinyXXL/N .

If a component wants to access data of its neighbors, it has to declare this
property as a dependency. Then it may use the neighbors’ data similar to an array
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1 module DataAccessM {
2 uses interface Timer ;
3 uses xldata RoleData as RoleDataLocal ;
4 uses xldata RoleData as RoleDataN [ ] ;
5 . . .
6 event r e s u l t t Timer . f i r e d ( ) {
7 u i n t 8 t i ;
8 for ( i =0; i<Neighbors . count ; i++) {
9 i f ( RoleDataLocal . r o l e

10 == RoleDataN [ Neighbors . nodes [ i ] ] . r o l e ) {
11 . . .

Fig. 4. Accessing neighborhood data with TinyXXL/N

with the neighbors’ node IDs. For instance, the code snippets in Fig. 4 show in
line 4 how a dependency for role information [3] of neighboring nodes is declared.
The brackets at the end of the line, which are not given for the dependency on the
corresponding local values (line 3), denote that data is requested from neighbors
and then accessed in an array-like fashion. With these declarations both local
role information and that of neighboring nodes can be accessed (see lines 9 and
10 in the figure). If the data of a node is accessed which has not been received
yet, a default value specified with the declaration of the data is returned (e.g.,
a reserved value indicating the absence of data). Since RAM is very limited on
sensor nodes, Neidas does not store separately which nodes have already sent
their data.

If data from neighboring nodes is declared to be accessed by at least one
component, the TinyXXL compiler reserves some memory for caching this data
locally. In addition, it adds calls to the Neidas algorithm to retrieve and con-
tinuously update the data. The compiler ensures that for each data item – even
if it is requested by several components – there is only one such request sent
and that the same data from a single node is stored only once in RAM. This
way applications can benefit from the advantages of Neidas without adding the
burden of implementing data exchange on the application developer. In fact, it
is possible to retrieve some arbitrary data from the TinyStateRepository . The
developer of the code running on the neighboring nodes does not have to be
aware of the fact that an already existing piece of data might be needed by
another node. This is an important advantage of our approach that facilitates
independent development of software in heterogeneous sensor networks as well
as reusability and exchangeability of components, whose data is automatically
shared with neighboring nodes when necessary.

One inherent assumption of this solution is that on neighboring nodes the
data is provided by a component and stored in the TinyStateRepository . Because
of optimizations performed by the TinyXXL compiler, data is only gathered
on a node if there is a component that needs to access it locally. Otherwise,
it removes the data gathering code to reduce runtime overhead. In this case
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these nodes cannot answer requests for such neighborhood data. Therefore, like
with manually implemented data sharing, the developer has to ensure that data
needed from neighboring nodes is available.

If a node just accesses its local values and not those of its neighbors, there is
almost no overhead associated with the integration of Neidas. In this case Neidas
does not transmit any request messages. In addition, its RAM consumption
is almost negligible: There is no need to reserve memory for local copies of
neighborhood data, if the node does not use it. However, Neidas has to reserve
two single bits for each kind of data in order to check if it has been requested
by neighboring nodes within the most recent data send rounds.

Our solution offers the benefits of TinyXXL also for neighborhood data shar-
ing. For example, it decouples components providing and accessing data: The
component providing a piece of data that is needed by another node can be
different from the one requesting data. In fact, in heterogeneous networks the
component providing this data does not have to be part of the application re-
questing it. In addition, just like with local data it is possible to use virtual data
items to transform data or perform some computations on it. Thus a neigh-
boring node does not have to store a piece of data in order to provide it, as
long as it can be converted to the target format. Furthermore, by taking advan-
tage of the TinyStateRepository ’s publish/subscribe mechanism the system can
transmit updated data to its neighbors if it has been modified.

5 Evaluation

5.1 Experimental Setup

We have simulated Neidas and TinyXXL/N using Avrora [19], which accurately
emulates the behavior of Mica2 nodes. Unless otherwise noted, each simulation
scenario contains 50 nodes which are randomly placed in a 60 m × 60 m rect-
angular area. Since communication is only local to the neighborhood, we expect
that the results are also valid for larger-size networks.

The nodes’ radio model is set to a lossy model, which is based on empirical
data and has a transmission range of about 15 m. The TinyOS MAC layer takes
care of multiple accesses to the radio channel. The measurements shown are
the average of 10 runs of 600 simulated seconds each. We have set Neidas’s
polite gossiping thresholds kr to 3 and kd to 1. As described above, experiments
have shown that good results can be obtained with these values. The duration
of a request round has been set to 10 s for all algorithms but in long-running
experiments this value can be neglected – as long as all algorithms use the same
duration. Nodes are turned on randomly in the first 10 s and are not switched
off before the end of the simulation. Unless otherwise noted, we have not made
use of piggybacking optimizations.

5.2 Efficiency of Neidas

We have created straight-forward implementations of standard pull-based and
push-based algorithms, which are likely to be integrated in similar form in real
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applications. For a meaningful comparison, all of them use the same underlying
data format and marshaling components as Neidas.

The pull-based algorithm periodically requests the data of neighboring nodes
but does not suppress requests already heard. Similar to Neidas it does not
service a request immediately but waits until the next round. However, it does
not distinguish between request and data send rounds. The push-based algorithm
periodically broadcasts its data without the need for requests. Neither of these
algorithms resends data from neighboring nodes.

In our simulations all nodes provide a single data item of 10 bytes. We have
varied the ratio of (randomly selected) nodes that needed this data. The only
messages sent are those to request and transmit data.

Fig. 5 shows the total number of bytes transmitted by each node on average
– including the packet header, preamble, etc. Since there are no big differences
in the processing overhead of the three algorithms, overall energy consumption
is dominated by the radio. Therefore, the energy consumed by the algorithms
can be inferred from the number of bytes transmitted.

The push-based algorithm always transmits the same number of bytes be-
cause it does not distinguish between nodes that need data and those that do
not. In contrast, for the pull-based algorithm the number of bytes transmitted
grows with the percentage of nodes requesting data. If this percentage is greater
than about 70%, the pull-based algorithm is less efficient than the push-based
one because of the additional overhead for request messages. Even when all nodes
request data, the overhead for these requests is relatively small. The reason for
this is that the pull-based algorithm uses the efficient underlying techniques
from Neidas to build packets. Therefore, requests are usually sent together with
the data as a single message, and there is no overhead for the packet header,
preamble, etc. Otherwise, the numbers of the pull-based algorithm would be up
to 500% greater (not shown in the figure), because the payload is very small and
thus the overhead of sending extra packets has even greater effects.

Neidas transmits much fewer bytes than these two algorithms. Depending on
the number of nodes requesting data, it only sends between 30% and 62% of the
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number of bytes of the push-based algorithm and between 44% and 58% of the
pull-based algorithm. Up to 20% of the savings compared to the corresponding
pull-based approach are due to polite gossiping of requests. This percentage
increases with higher node densities. Enlarging the length of data send rounds
is responsible for the rest of the savings.

Fig. 6 compares the average latency until a node entering the neighborhood
receives requests and data. The request latency of Neidas is up to 4 s greater
than that of the pull-based algorithm because of suppressed request messages in
overlapping neighborhoods. However, when comparing the latency of the data
itself, the values for both algorithms are almost identical because with Neidas
nodes are able to provide also data requested from their neighbors. The data
latency of the push-based algorithm, of course, is even shorter, since with this
algorithm nodes do not wait for requests before they send their data. The values
for the data latency may seem comparatively high given the duration of the
request rounds of 10 s. However, these numbers are average values until the data
from all neighboring nodes has been received. Due to lossy links and collisions,
some nodes have to send their data several times.

Fig. 7 shows the average number of bytes transmitted for different node
densities. To get these values we have varied the total number of nodes from 25
to 200. The size of the area is kept constant and always 40% of the nodes request
data from their neighbors. The figure shows that the values for the pull-based
algorithm increase by about 38% with higher densities until all nodes are in the
neighborhood of at least one node requesting data. For the push-based algorithm
the number of bytes is constant, since each node sends its data independent of
other ones. With Neidas, the number of bytes transmitted by each node even
decreases by about 30% with higher densities although in these cases more nodes
have to send their data. This is because more nodes overhear packets from their
neighbors which avoids sending the same request several times.

As the results show, Neidas is suitable for both heterogeneous and homoge-
neous networks. Considering the benefits such as the small number of transmitted
bytes shown in Fig. 5 and its ability to profit from high node densities (Fig. 7),
for many applications Neidas offers a good compromise between efficiency and
timely delivery of data.
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5.3 Comparison with Hood

We have implemented a simple algorithm that builds a tree to route data to a
sink node with both Hood and TinyXXL/N . In this example all nodes request
their neighbors’ depth in the routing tree. They then select the neighbor with
the smallest depth as their parent and adjust their own depth value. Using
Hood we have implemented two versions: The first one minimizes the number
of messages by solely relying on Hood’s auto-push policy that only broadcasts
updates when the data changes. The second one is able to deal better with
new nodes and transmission failures of lossy links by periodically requesting the
neighbors’ values in addition to the automatic updates. This version resembles
more closely the properties of Neidas but with its forwarding of neighbor data
Neidas is able to provide even better reliability. Depending on the properties
required by the application, the solution actually implemented by the developer
will probably lie somewhere within the boundaries defined by the two Hood
versions. The TinyXXL/N implementation, however, automatically integrates
Neidas so that the application developer does not have to deal with these low-
level details.

Both the Hood versions and the TinyXXL/N version of the code use equiv-
alent neighborhood management algorithms. These algorithms do not send any
information themselves but use the node IDs transmitted with each request and
data packet. It is an integral part of Hood’s concepts that the neighborhood
management algorithm has to be written by the application developer whereas
in the TinyXXL/N version Neidas’s default neighborhood management algo-
rithm is used.

Fig. 8 visualizes the total number of bytes sent by the Hood versions and the
TinyXXL/N version for different node densities. Since the standard push-only
version of Hood sends data just when it is modified, this algorithm transmits
the smallest number of bytes. However, it is not able to deal with transmis-
sion failures and newly deployed nodes as it sends data only once. These two
properties are fulfilled by the other two versions of the application. Therefore,
these implementations offer different functionality and can hardly be compared.
Thus we limit the following discussion to the TinyXXL/N variant and the Hood
version including data pulls.

As expected, the number of bytes sent by TinyXXL/N decreases with high
densities since it is based on Neidas. In contrast, the Hood version does not make
use of overhearing messages and, therefore, has to transmit significantly more
data if the number of nodes in radio range increases. For the highest node density
the TinyXXL/N version sends only 24% of the number of bytes transmitted by
Hood.

When compiled for Mica2 nodes, our sample application including the oper-
ating system components reserves 810 bytes of RAM in the Hood versions and
just 608 bytes in the TinyXXL/N version (25% less). Most of TinyXXL/N ’s
savings are due to fewer variables used in the marshaling components as well as
in the components storing data. With RAM sizes of just a few kilobytes such
optimizations are crucial in order to be able to create complex applications.



14 A. Lachenmann et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5  10  15  20  25  30  35  40

A
vg

. n
um

be
r 

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Avg. number of nodes in radio range

Hood auto-push
Hood push/pull

TinyXXL/N

Fig. 8. Bytes transmitted compared
with Hood

 0

 1000

 2000

 3000

 4000

 5000

 25  30  35  40  45  50

A
vg

. n
um

be
r 

of
 b

yt
es

 tr
an

sm
itt

ed
 p

er
 n

od
e

Total number of nodes

Application-specific
TinyXXL/N

TinyXXL/N with piggybacking

Fig. 9. Bytes transmitted for the Sense-
R-Us application

From a developer’s point of view creating the application with TinyXXL/N
incurs significantly less overhead. The routing tree algorithm described above
was implemented in 176 lines of code with Hood (for the version including data
pulls) vs. 88 lines of code with TinyXXL/N . This means that the TinyXXL/N
implementation needs 50% fewer lines of code than the Hood implementation.
Most of these savings, however, are due to the fact that Hood requires the de-
veloper to implement a separate neighborhood management algorithm, which is
already present in the TinyXXL/N solution. Although such numbers do not nec-
essarily allow to draw conclusions about the complexity of the code, they can give
a rough estimate about the effort needed by the application developer. Consider-
ing that Hood already reduces complexity compared to manual implementations
[8], the overhead reductions of TinyXXL/N are even more significant.

5.4 Integration in Sense-R-Us

Sense-R-Us [2] is an application that uses a sensor network to provide the func-
tionality of a smart environment where the current location of researchers in our
department can be queried. In addition, Sense-R-Us is able to detect meetings
using both sensory inputs and information about neighboring nodes. In this ap-
plication there are stationary nodes placed in rooms and mobile ones that are
carried by persons. The mobile nodes use neighborhood data from the station-
ary ones to localize themselves by requesting information about the location of
neighboring nodes. A mobile node’s location is set to the value of a neighboring
node, which has been selected using the received signal strength.

We compare an implementation of Sense-R-Us that has been built using
TinyXXL/N with the original one for which neighborhood data sharing has
been implemented manually. This version uses Sense-R-Us’s custom querying
protocol, which tries to reduce the number of messages by intelligently selecting
the nodes to be queried. However, it does not leverage broadcast communication
and comes at the expense of significant development overhead.

In our experiments we simulated up to 50 nodes of which 22 ones are sta-
tionary. The remaining nodes are mobile and move using a random walk model.
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Fig. 9 shows the number of bytes transmitted by the application-specific imple-
mentation of Sense-R-Us, a version using TinyXXL/N , and another TinyXXL/N
version that takes advantage of the piggybacking optimization described in Sec-
tion 3.4. These numbers also include packets transmitted by other components,
e.g., to discover neighboring nodes. As the figure shows, for low densities with
no or only few mobile nodes the performance of the TinyXXL/N versions is
worse compared to the optimized application-specific solution. If, however, the
node density is increased, the TinyXXL/N version can take advantage of over-
hearing messages and the number of bytes sent by each node decreases. For the
application-specific implementation, in contrast, the number of bytes sent in-
creases by almost 50% when adding more mobile nodes. The reason for this is
that this implementation relies solely on point-to-point communication. There-
fore, separate messages might have to be sent even if other nodes have similar
requests. If TinyXXL/N ’s piggybacking optimization is used, the number of
bytes transmitted is reduced by between 8% and 13% compared to the other
TinyXXL/N implementation. These savings are due to the reduced number of
packets sent by this variant. Although piggybacking could also be incorporated
in an application-specific solution, using TinyXXL/N has the advantage that it
comes “for free” without requiring the developer to manually implement it.

6 Conclusions and Future Work

In this paper we have presented Neidas, a pull-based algorithm for neighborhood
data sharing. Compared to other approaches it provides better efficiency by sup-
pressing duplicate requests in the neighborhood. If the node density is high, the
average number of bytes transmitted by each node decreases. We have integrated
this algorithm with TinyXXL, an extension of the nesC programming language
for cross-layer data sharing. The combined system, TinyXXL/N , is a compre-
hensive system for both data exchange among components and neighborhood
data sharing. Using Neidas as its basis TinyXXL/N offers efficient data sharing
at largely reduced development costs. For example, in heterogeneous networks
the developer of a node providing data does not even have to be aware that this
data might be required by another one. We are convinced that this combined
system will lead to efficient applications which are developed with reduced effort.

Regarding future work we plan on making Neidas adaptable to the density
of nodes requesting data by dynamically adjusting the threshold kr. This will
further reduce the number of requests in dense networks while increasing the
share of nodes in the neighborhood that receive a request.
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