
Improving Application Integration with Model-Driven
Engineering

Clemens Dorda Uwe Heinkel Bernhard Mitschang
Institute of Parallel and Distributed Systems (IPVS), University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany
{Firstname.Lastname}@ipvs.uni-stuttgart.de

ABSTRACT
Modern software for Enterprise Application Integration (EAI)
provide tools for modeling integration scenarios. A drawback of
these tools is the missing functionality to exchange or integrate
models of different EAI products. Consequently, developers can
describe real heterogeneous IT environments only partially. Our
goal is to avoid the creation of these so-called ‘integration
islands’. For that purpose we present an approach which
introduces an abstract view by technology-independent and
multivendor-capable modeling for both development and
maintenance. With this approach, we propose a toolset- and
repository-based refinement of the abstract view to automate the
implementation with real products and the deployment on real
platforms.

Keywords
Enterprise Application Integration, Model-Driven Engineering,
Software Lifecycle.

1. INTRODUCTION
The history of integration projects in enterprises is almost as long
as the usage of information systems itself. People often refer to
the advantages and positive effects of application and system
integration, e.g. for faster and more automated business process
execution, but they very often disregard the risks for the IT
infrastructure. For example, a drawback of integration projects is
the endangering for the agility of the IT infrastructure, because
they link together previously autonomous application systems.
Consequently, the overall system agility gets considerably
reduced and subsequent changes are difficult to adapt.
This ability decreases more and more with every new integration
project. During an integration project, developers build large
distributed systems. In the following sections, we call these large
distributed systems integration landscape. In such an integration
landscape, we have dependencies between existing stand-alone
applications. For example, if an online shop accesses the current
warehouse stock, then it is impossible to change the schema of the
warehouse stock without considering the online shop
programming logic. The poorer the documentation, the greater the
problem, since knowledge of the integrated applications is usually
distributed over many people or organizations inside of an
enterprise.
These facts result in a situation where central applications cannot
be enhanced, because the risk becomes too big for an
unintentional negative impact on other critical systems. Therefore,
with an increasing grade of integration, it becomes more and more
difficult, complex, and expensive to adapt the system landscape to
changing needs. The agility gets lost.

In this paper, we present methods to maintain agility over the
whole lifecycle of an integration landscape. We want to achieve
our goals by introducing both an approach, which describes a
process model for integration projects, and an appropriate generic
tool support for development and documentation. The goal of this
approach is to improve especially documentation aspects
compared to the state-of-the-art of available integration solutions.
However, our approach does not address semantic integration
problems, for example semantic data heterogeneity. This topic is
very complex on its own, and there are other researchers who
address this problem. A good introduction is given in [1]. Further
experiences and challenges with Enterprise Information
Integration (EII) are subsumed in [2].
This paper is structured as follows: in Section 2, we discuss main
problems of integration projects and introduce typical integration
scenarios. After that, we give an overview about related work in
Section 3. Section 4 introduces our RADES (Reference
Architecture for the Development and Support of EAI Solutions)
approach and describes its concepts as well as its tool support. In
Section 5, we give a short conclusion and outlook on future work.

2. PROBLEM STATEMENT
To motivate our RADES approach, we have a closer look at
typical integration problems and scenarios. In the first subsection,
we identify three main problems of integration projects. These
problems are difficult to handle with current tools. Based on these
problems, we derive and discuss the most important scenarios of
application and system integration in the second subsection. From
our point of view, tool support for application and system
integration should focus on these scenarios.

2.1. The Main Problems of Integration
Projects

In general, integration projects suffer from three inherent
problems: (1) divergence between system documentation and the
current state of system runtime, (2) heterogeneity, and (3)
distribution of systems and organizations.
The first problem we discuss is the divergence between system
documentation and system runtime. During an information
system's life cycle, there are for example changes to interfaces or
message formats from time to time. Unfortunately, many people
forget to update the related documentation. The consequence is an
inconsistent system documentation, and as a result of that an often
unknown system state of the participating application systems.
A problem that comes along with inconsistent documentation is
informal documentation, which often leads to varying
interpretations by different readers. The consequence is an
extensive reengineering of the system's runtime environment.

The second problem, heterogeneity, intensifies the first problem.
Due to the fact that system landscapes become more and more
heterogeneous, people have to deal with different integration
products from different vendors. Consequently, they also have to
deal with different philosophies of tool support and meta data
management. This makes it more and more difficult to get a
consistent view over the whole integration landscape. However,
heterogeneity is not only limited to systems and applications –
heterogeneity also applies to people. Integration projects are often
done with different partners, who use different processes,
documentation methods, or notations. Consequentially,
heterogeneity is a problem for all integration project artifacts.
The distribution of IT systems and organizations is the third
problem. Looking at distributed systems and applications, it is
obvious that people have to put big effort to do consistent
changes, because they have to be done on many places. These
changes are error-prone, because developers mostly have to
perform them manually. Looking at organizations, distribution of
responsibilities over different people and departments leads to a
troublesome retrieval of required information.
People usually try to solve these three problems by keeping them
technologically and organizationally simple. The technical
solution consists of a loose coupling of both application and
resource systems through the integration product. Assuming a
suitable architecture, developers can do changes in application
systems transparent behind the affected interfaces by changing
their implementation. The organizational solution consists of a
strict project management and documentation guideline.
These solutions are good and very important, and they are the
precondition for our approach. Nevertheless, it is necessary to
introduce additional concepts, because these solutions are not
sufficient to solve all of the problems mentioned above.
First of all, organizations need a central point for application and
system documentation. Usually, this documentation point will be
realized with a document management system. We call this a
central documentation system in the succeeding sections. The
documentation stored in this central system should allow a
consistent and homogeneous up-to-date view onto the runtime
environment of integration solutions. Second, a defined process
model has to guarantee the consistency between documentation
and runtime, supported by appropriate tools. Finally, this process
model must fit seamlessly into existing engineering processes.

2.2. Scenarios for Application Integration
To define an approach which addresses the requirements
mentioned in the last section, it is necessary to look at some
typical scenarios in integration projects. We are convinced that an
appropriate process model must support these scenarios.
The first scenario is the management of documentation. This
scenario is outstanding, because it affects the other ones. We
already mentioned the need for a central documentation system,
but more difficult is the problem how to create good and
sufficient documents. This leads to the question how we can
measure the quality of documentation in general. However, we do
not discuss this topic in our paper. For our needs, a good solution
is to find a way to get as much documentation as possible from
our meta data. Together with human-made documentation, we
need an automated way to collect this documentation and store it
into the central documentation system.
A new development of an integration solution is the second
scenario. Usually, developers start working from a preliminary
design and refine it step by step towards a runtime environment.
From our point of view it is important that developers store their

in-between work into the central documentation system
mentioned above. Another important requirement is the capability
to check the results of a refinement step for consistency with the
results from the step before. This requires a precise definition of
the development approach as well as a precise definition of the
result notation. After the last development step it should be
possible to generate all required configuration data or code for the
integration platform. For that purpose, developers should check
out the meta data from the central documentation system.
Our next scenario, management of changes and maintenance, is
quite similar to the second scenario. This scenario requires the
support of two different alternatives, changes on meta data or
changes in code. The first one is similar to the new-development
scenario and includes the documentation of changes into the
repository, which leads to several refinement steps until
generation of program code or configuration data. The second one
is a scenario which is more difficult to handle. In this scenario,
developers do their changes within the code or configuration data
of the integration product, e.g. to fix a problem quickly. Here,
mechanisms must be available, that detect these changes and
propagate them to the central documentation system. After that,
consistency checks must follow and must implicate well-defined
steps to propagate these changes backwards to the higher
development levels. Subsequently, the central documentation
system should guarantee that all documentation is consistent
again.
A very common scenario is our last scenario, the migration of
integration products. From time to time, enhancements to
integration technology require the migration of an integration
product to another version, or to another product from another
vendor. We mentioned in Section 2.1 the problem of different
meta data, which results often in a complete reimplementation.
With the existence of a consistent central documentation as we
pointed it out, it is possible to use the content as an interchange
format between integration products. Together with applicable
generators and adapters for the target product, which are required
anyway for the scenarios before, this information shortens the
implementation for the migration project.

3. RELATED WORK
In this section, we discuss commercial approaches and scientific
work, which partially solve some of the problems we identified in
Section 2. This discussion shows that even though there are some
good approaches to address the problems of application
integration, they can not solve these problems all-embracing.

3.1. Commercial Approaches
Software producers of commercial EAI products have integrated
various mechanisms into their bundled development tools, which
discard the common bottom-up approach for application
integration. Instead, they provided tools which allow or force
developers to use a top-down approach for development. This
solves some of the problems mentioned in Section 2, but some
requirements are not implemented yet.
One of these requirements is the lack of common standards,
which makes it difficult to replace one EAI product by another
product from a different vendor. This drawback reduces the
agility especially of large enterprises, because different
requirements for integration projects implicate the usage of
different products, as well as the evolution of IT systems
implicate heterogeneity. Finally, this means for development,
documentation and maintenance of integration solutions, that the
incompatibility among EAI products anticipates the

implementation of common practices for integration development,
based on the packaged tools. Consequently, existing technology
cannot solve satisfactory the problems mentioned in Section 1.

3.2. Scientific Work
There are some research projects which try to address the figured
problems from different point of views.
The Model Integrated Computing (MIC) approach [3] describes a
method how developers can model all relevant information about
a system in development with domain specific modeling. The
approach describes possibilities how to derive new models from
existing models, and how to generate code from models with
generators. Related to our needs, one drawback of this approach is
both the lack of a well-defined domain model for EAI and a
standardized modeling language.
Nevertheless, the idea behind this approach is one of the
fundamentals of Model Driven Architecture (MDA) [4]. MDA is
a standard from the Object Management Group (OMG), and is in
contrast to the MIC approach more specific concerning the
modeling language. The Unified Modeling Language (UML) [5]
is the standard modeling language for MDA, but this does not
eliminate other languages for MDA. Methodically, MDA
specifies a top-down process model with three steps. The result of
each step is a set of models in a specific abstraction. MDA
distinguishes between platform independent models (PIM's),
platform specific models (PSM's) and code. At present, many
vendors support MDA with their tools, or plan to support MDA
in the near future. Follow-up OMG standards of MDA are for
example the Query/View/Transformation (QVT) specification [6],
which is important to describe model transformations between the
MDA abstraction layers in a unique way. A second example is the
new Architecture-Driven Modernization (ADM) approach [7],
which is driven by nearly the same motivation as our RADES
approach.
In the beginning of our research we thought that MDA is exactly
the standard we need for a clean software engineering process for
system integration. After doing some research, it became clear
that we need an additional abstraction layer to meet all our
requirements. This fits seamless into the Model Driven
Engineering (MDE) approach, which was outlined by Stuart Kent,
as stated in [8]. We can say that MDE is a superset of MDA.
Consequently, in comparing the concepts behind these two terms,
MDA can be seen as an instantiation of MDE. For example, as
MDA postulates three abstraction layers (PIM, PSM, Code),
MDE postulates in a more common manner multiple abstraction
layers. In MDE, each abstraction layer is generally spoken a
refinement of its predecessor, which is a layer with higher
abstraction [9].
Both, MDA and MDE, have one big problem. The methods how
to model a good MDA or MDE model in a specific abstraction
layer are not precisely specified. There are scientists who try to
give answers for that problem by providing a MDE megamodel
[10], which is a model of MDE concepts that is meant to be a
starting point for a sound and complete MDE theory. For our
approach, we restricted the application domain on system
integration, similar to the MIC approach [3]. With this restriction,
we think that we are able to develop a sufficient precise modeling
specification. Similar to [11], we use libraries in each abstraction
layer to avoid that developers must build all model components
from scratch, and to make succeeding model transformations
more powerful.
There are other approaches that focus on the topic of EAI and
MDA. In [12] for example, the authors present a five model

approach to realize a Model-Driven Architecture for EAI. Each
model represents a different aspect of the EAI problem.
Nonetheless, it lacks of a clear definition how the models relate to
each other, as well as of a prototypical implementation.
In the next section, we give answers why we think that our four-
layer modeling process is necessary for developing solutions for
system integration, which meets our requirements in Section 2.

4. THE RADES APPROACH

RADES (Reference Architecture for the Development and
Support of EAI Solutions) is a research project founded in
cooperation with DaimlerChrysler Research & Technology. The
project's goal is the development of a reference architecture to
implement, document and maintain integration scenarios. The
reference architecture includes concepts for both development
methods and tools.
One part of this approach is the usage of a central repository,
which contains all necessary information about applications and
systems being part of an integration landscape. A well-defined
development process is supposed to guarantee the consistency of
all development data, including documentation, models, source
code, and binaries (see Figure 1). Each stage in the whole
lifecycle postulates on the one hand results in a specific syntax
and semantic, but allows developers on the other hand a flexible
organization of the tasks inside of each lifecycle stage.

4.1. RADES Development Stages
Similar to MDA, we first defined three development stages for the
RADES development process (PIM, PSM and Code). During our
work, we decided to extend the development process to four
stages by introduction the concept of a product model (PM). In
the next sections, we discuss the reason for this decision.

4.1.1. Business process and workflow modeling
One task, which is often disregarded, is the design of the business
process, that defines the underlying workflow of an integration
scenario between applications and systems. This task is, from our
point of view, one of the most important ones to finish an
integration project successfully. After mapping the business
processes to one or more workflows, developers are enabled to
make a decision about the integration strategy. They are able to
decide which integration technology is appropriate for
interconnections between previously not connected applications
or systems. In some cases, they may desire to extend an existing
interconnection between systems with the so far used EAI
technology. In other cases, they may decide to replace such an
existing integration technology with another one.

Figure 1: RADES Process Model

Therefore, the RADES approach defines the modeling of
platform-independent workflows in the first development stage.
Developers have to model applications, systems and resources, as
well as their logical dependencies to each other. In this stage, it is
sufficient to model only components whose functions and data are
required for workflow execution from the application perspective.
The collection of these models is called the platform-independent
model (PIM), and it reflects an overview over the integration
landscape.

4.1.2. Detailing workflows
In the next development stage, developers have to refine the
platform-independent model to a platform-specific model. A
platform-specific model is a description of the integrated systems
within the targeted integration architecture without determining
on a specific integration middleware technology or product. An
example for a possible integration architecture is a “hub and
spoke”-architecture, which is most commonly used, or a bus
architecture . By choosing an integration architecture, developers
limit on the one hand possible integration products to a certain
product family, but does not commit to a specific product on the
other hand.
To get an initial platform-specific model, we use model
transformations. The generator software, which is used for
transformations, gets its input from the PIM and from a specific
transformation profile. The transformation profile describes the
integration architecture of the targeted integration middleware
product. After the transformation, developers detail the models to
get a complete product-independent description of the integration
landscape. For example, to get a precise description of activities
during workflow execution, developers have to detail the
sequence and activity diagrams from the PIM.

4.1.3. Detailing the product model
The third development step starts similar to the second step. First
of all, developers have to transform the PSM to the product model
(PM). As before, the input for the transformation engine are both
the PSM models and a transformation profile describing the
targeted integration product, for example IBM WebSphere
Business Integration Message Broker. Subsequently, developers
have to refine the generated PM so that the PM is well prepared
for the code generation engine.

4.1.4. Configuration and runtime
The last step in our development process is code generation for
the targeted integration platform. For that purpose, developers
need an appropriate code generation engine, which is enabled to
compile the PM to executable configuration data or runtime code
for the targeted integration product. Due to the fact that the PM is
a very detailed description of the integration product's metadata,
the code generation is a simple mapping task in general. However,
the reason for the necessity of the PM development stage before is
simple. The PM describes all necessary interfaces, messages and
flows of a specific integration product very detailed – but it does
not describe a concrete configuration of this product. Therefore,
this must be done by code configuration in this development
stage.

4.1.5. Deployment
This development stage is not part of the RADES development
approach. Usually, developers use tools for deployment which are
bundled with the integration product. Nevertheless, it is possible
that deployment fails. In this situation, it is necessary to go one or
more development steps backwards to solve the problem on a

higher abstraction layer. After that the succeeding development
steps have to be done again.

4.2. Modeling
Modeling techniques become very important in the context of
model-driven engineering. To get a better understanding of how
we address this issue, we explain our modeling technique by
giving an example. This example shows a very simple PIM
model, which we transform to a PSM model by applying an
appropriate architecture profile.
As a basic principle, the RADES approach does not commit to a
certain modeling language or modeling tool. However, it is
required that all models can be transformed into a unified model
interchange language to process the models with different tools.
For our research and prototype development, we use UML for
modeling, and the XML Metadata Interchange (XMI) format [13]
for model interchange.
For RADES, we defined a modeling syntax and semantic subset
based on the “UML for Enterprise Application Integration”
profile from the OMG [14]. The advantage of this definition is the
strong semantic explanatory power. This subset provides two
typical modeling approaches for UML, collaboration modeling
and activity modeling.
Collaboration modeling expresses how applications and systems
interact through the exchange of messages. An example is the
modeling of dependencies between application and systems, or
the modeling of message flows. Developers model collaborations
with class diagrams and collaboration or sequence diagrams.
Activity modeling expresses business processes between
applications and systems on each abstraction layer. This can be
done by modeling control and message flows in consideration of
execution order and temporal aspects.
Although the notation is still work in progress, we give a simple
example for collaboration modeling in the PIM and PSM layer.
The class diagram modeled in Figure 2 expresses that
Application_1 is dependent on Application_2. The corresponding
collaboration diagram in Figure 3 expresses that Application_1
sends messages to Application_2. The semantic of the arrow used
here means that the communication between Application_1 and
Application_2 is synchronous.

While there is no further modeling necessary in this example to
get a rudimentary PSM collaboration model, it is required to
make a decision about the integration architecture. In this
example, we decide to choose a hub-and-spoke architecture.
As we describe later in Section 4.3, we want to transform the PIM
model from Figure 2 and Figure 3 to a rudimentary PSM model.
Therefore, it is necessary to create a transformation profile, which
contains the necessary information of how a hub-and-spoke
architecture is organized. The class diagram of such a profile is
shown exemplified in Figure 4. For our example, we need the
components marked with the numbers  (Call-Adapter), 
(Router),  (Request/Reply-Adapter) and  (EAIBroker,

Figure 2: Simple PIM class
diagram that depicts a

dependency of Application_1 on
Application_2

Figure 3: PIM
Collaboration diagram

depicting that
Application_1 can send

messages to Application_2

Figure 4: Hub-And-Spoke transformation profile for generating a PSM model

Figure 5: Collaboration Diagram of Figure 4

realized as CompoundOperator), together with their associated
input and output terminals. See [14], Chapter 8 for a detailed
description of the components.
Figure 5 depicts in which way these components are connected to
each other, and in which order messages can be sent to the input
and output terminals. Note that the EAIBroker () from Figure 4
is not part of the collaboration diagram, because it is modeled as a
composition of the components ,  and .
The model transformation engine analyzes the PIM model (Figure
2 and 3) and the generation profile (Figure 4 and 5), and after that
it transforms the PIM to a rudimentary PSM model (Figure 6).
Note that the numbered components in Figure 6 correspond to the
same components in Figure 4 and 5.
The collaboration diagram of Figure 6 is similar to Figure 5,
therefore we do not illustrate it here.

4.3. Transformation
Model transformation is one of the key features for MDE. In the
last years, many people tried to find appropriate mechanisms to
describe and execute model transformation. One of the results is
the ATLAS transformation language (ATL) [15] as an example
for a textual transformation language with descriptive and
imperative language elements, as well as the UMLX
transformation language [16] as an example for a graphical
transformation language. Both approaches incorporated into the
QVT specification of the OMG, which defines both a textual and
a graphical notation for model transformation.

Since the first adopted specification of QVT became available not
until November 2005, we developed and implemented a slightly
different transformation mechanism in our prototype.
For our future work, we plan to integrate some of the existing or
upcoming QVT implementations in this prototype. Nevertheless,
in our actual work we are still using our notation and
implementation, because neither ATL nor UMLX are appropriate
to meet our needs with respect to the current available
implementations.
To transform a model for further manual refinements (see Section
4.1) from one abstraction layer to another, we need information
about the next abstraction layer. We create this information by
modeling transformation profiles. These transformation profiles
can not be compared with transformation rules as known from
QVT. Our transformation profiles are more similar with patterns,
from which the transformation engine derives the transformation
rule by applying pattern matching and heuristic algorithms on the
source model and transformation profile model.
Each transformation requires such a transformation profile with a
specific notation. The transformation engine reads both the source
model and the transformation profile to transform the source
model into a target model. This target model is the foundation for
further refinements done by a developer, and after that input for a
subsequent transformation. Figure 7 shows a schematic example
for these consecutive transformation and refinement steps. For a
better readability, we both did not illustrate the manual
refinements here and did not draw the models in UML-notation.
In contrast to our example given in section 4.2, this example
illustrates the scenario shown in Figure 2 and Figure 3 with

Figure 6: Class diagram (PSM) of Figure 2 and Figure 3

asynchronous communication, as well as the entire development
process from PIM to code generation. Step  depicts a platform
independent model, which models a communication between
application A and B. The application A always initiates
communications with B and communicates in an asynchronous
manner. Step  is a description of the integration architecture,
which shall be used to implement the communication channel
between the applications A and B. Step  is a transformation
process: the model transformation engine transforms the model
from  in consideration of the transformation profile in  to a
new platform specific model (PSM), as depicted in step . If
necessary, a developer completes this model for further
transformation. After that, the model transformation engine
transforms the model () from  by means of the product
transformation profile in  to a product model . If necessary, a
developer completes this model to a comprehensive model-based
description of the integration landscape. In step , the model
transformation engine transforms the model from  to product-
specific configuration or code, according to the runtime profile 
of the targeted integration product.

4.4. Prototype implementation
Our current work focuses on the implementation of a prototype
for model transformations, based on the Eclipse framework [17].
With this prototype, we want to provide a proof of concept for
both our process model as well as our modeling approach.
We have chosen Eclipse for several reasons. First of all, it is
relative simple to write plug-in modules which extend the Eclipse
framework. Second, with the EMF framework [18] and the EMF-
based UML2 implementation [19], the Eclipse project provides a
solid infrastructure for model processing. Our transformation
plug-in modules, which will implement the transformation from
PIM to PSM, PSM to PM, and PM to Code, build on top of these
libraries.
The principle of a transformation module implementing our
methodology from 4.3 is quite simple. First of all, the plug-in gets
an object-oriented representation of the UML models stored in
XMI files by calling EMF and UML2 functions and builds
internal graphs.
After the plug-in has built the graphs for the UML transformation
profile and the input models, it uses filter classes to analyze the
graphs, and applies transformation rules specified in builder
classes. These filter and builder classes must be provided together
with the chosen transformation profile. The filter classes search
for patterns specified in the filter rules. The builder classes

replace associations and generalizations in the input models
through components given in the transformation profile. After
transformation, the plug-in writes the packages to an XMI file, by
using the EMF and UML2 interface.
Currently, we successfully implemented a plug-in module for the
transformation of PIM to PSM models. For testing purposes, we
used a rudimentary Hub-and-Spoke UML profile. The
implementation of a transformation profile, which enables the
transformation from PSM to PM models, using a transformation
profile for IBM WebSphere MQ Integrator, is ongoing. Our
prototype will be the platform for the implementation of further
research results, for example algorithms implementing reverse
engineering approaches or concepts for the generation of human
readable documentation.

4.5. Evaluation
We discuss in this section in which way the RADES approach
supports the scenarios introduced in Section 2.2.
The first scenario we described was the management of
documentation. RADES supports it in two ways. First, RADES
uses a repository for the centralized storage of models and
additional documentation. In some cases, such a repository
already exists for some documents, so working with RADES will
complement the existing documentation. In other cases, such a
repository must be set up first. Second, the usage of a unified
model interchange language enables a better tool-based metadata
preparation for documentation without limiting the choice of
usable modeling tools.
Our second scenario, the new development of an integration
solution, is supported by the RADES process model. This process
model defines a thread throughout the development process, and
offers various views over the integration solution by providing
different abstraction layers.
These abstraction layers provide starting points for the third and
fourth scenario, depending on whether changes should be
reflected to workflows, architecture, or the product model.
It is well known that the collection of meta data and the ensuring
of data quality is a very time intensive and difficult task.
Therefore, it is obvious that the reusability of existing meta data is
a feature which on the on hand shortens the development time,
and on the other hand improves data quality significant.
According to the RADES approach, it is a logical consequence
that the more developers have modeled integration scenarios with
the RADES approach, the greater is the benefit of reusing models
from application systems involved in already existing integration
landscapes. Although this is not the focus in this paper, it is
obvious that the existence of a powerful repository for the storage
of all relevant documents and data is highly important. On the one
hand an appropriate repository has to offer several options to link
documents and data together, whether they are of the same
content type or not. One the other hand, it is important to have
efficient access to the repository's content, for example by
providing different views and a powerful search engine. And
finally, regarding large organizations, scalability, consistency, and
availability must be guaranteed.
The introduction of the additional abstraction layer, the product
model, is not a radical change to the MDA philosophy. In
contrast, by applying MDA to practice, there are problem
domains – like Enterprise Application Integration – which require
a more sophisticated view onto the problem solution. This is one
of the reasons why people introduced MDE, and thus one of the
reasons for us to introduce this additional abstraction layer in

Figure 7: Schematic example illustrating model
transformations with RADES

RADES. In the EAI context, we are convinced that a clean MDA
approach is more difficult to apply than our RADES approach.
Although first results from our research prototype demonstrate
that model-driven development can strictly be applied to EAI,
there are still some research topics which are unsolved to date.
First of all, it is not a trivial task to define clear rules for the
decision if a model is complete and valid regarding the
abstraction layer being modeled. For example, there are many
degrees of freedom for modeling a platform independent model
for EAI. Therefore, we want to provide a robust definition
covering these degrees. We are convinced that the experiences
from our prototype help us to formulate such a definition.
Another problem which is not yet satisfactorily solved is reverse
engineering. Developers do not want to develop strictly top-down.
There are situations where developers prefer to proceed bottom-
up, for example to solve a critical problem quickly. A model-
driven development approach like RADES has to consider this by
providing consistency checks, which have to deliver information
whether changes on a lower abstraction level affects the models
on a higher abstraction level or not. An eligible goal is something
like a “back transformation”, which means that for example a PM
can be transformed backwards to a PSM, if changes to the PM
affect the PSM model. According to our experiences with reverse
engineering tools, we think that current tools are still limited and
do not cover these demands completely.
A third research area is the role of human readable
documentation. According to experience, UML models are not
self-explanatory in many cases. It is therefore necessary that
people write additional human-readable documentation to explain
the models they developed. Without mechanisms, which
guarantee that the human readable documentation is still
consistent with the model it describes, the human-readable
documentation may become worthless after performing changes
to the related UML model. Regarding the RADES approach, we
would like to have a solution enabling a documentation
technique, which keeps human-readable documentation
synchronous with the related UML model. The Human-Usable
Textual Notation (HUTN) standard [20] may help here, but we
did not evaluate it so far to confirm this.

5. CONCLUSION
Agility and flexibility is an important factor for enterprise
application integration. This factor is underestimated and
undervalued by many experts. The ongoing evolution of new IT
concepts and technologies and their usage in enterprises leads to
instable configurations of system landscapes. Developers can
handle these instable configurations pretty good if they choose
not to change the integration product. But if they choose to
replace an integration product with a system from a different
software producer, they can not just reuse the meta-information
implemented in the existing systems.
The RADES approach offers a way to eliminate this drawback.
We avoid an early commitment on specific integration products
through high-level modeling in the beginning, and provide
precise, reusable models of the integration landscape through
several refinement steps. It is obvious that our approach does not
make the initial implementation of an integration scenario less
complex.

However, the return of investment comes with reuse, maintenance
and request for standardized documentation. This is the high
benefit of RADES. Practical experiences in our daily work make
these benefits very important, and we think that they are worth to
invest some more efforts in the first implementation.
Further work will focus especially on model transformation
techniques and reverse engineering problems, because this is an
essential feature for developers to adopt approaches like RADES.

6. REFERENCES
[1] Doan, AnHai; Noy, Natalya F.; Halevy, Alon Y..

Introduction to the special issue on semantic integration,
ACM SIGMOD RECORD, ACM Press, vol. 33 (4), 2004.

[2] Halevy, Alon Y. et al., Enterprise information
integration: successes, challenges and controversies,
ACM SIGMOD: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, 2005.

[3] Sztipanovits, Janos; Karsai, Gabor. Model Integrated
Computing, Computer, IEEE, vol. 30 (4), 1997.

[4] Soley, Richard et al.. Model Driven Architecture, 2000.
[5] OMG. Unified Modeling Language. www.uml.org.
[6] OMG. MOF QVT final adopted specification, 2005.
[7] OMG. Architecture-Driven Modernization (ADM) Task

Force. http://adm.omg.org/.
[8] Alanen, Marcus; Lilius, Johan; Porres, Ivan; Truscan,

Dragos. Model Driven Engineering: A Position Paper,
MOMPES 2004.

[9] Fondement, Frédéric; Silaghi, Raul. Defining Model
Driven Engineering Processes, WiSME 2004.

[10] Favre, Jean-Marie. Towards a Basic Theory to Model
Model Driven Engineering, WiSME 2004.

[11] Witthawaskul, Weerasak; Johnson, Ralph. An Object
Oriented Model Transformer Framework based on
Stereotypes, WiSME 2004.

[12] Al Mosawi, Adra; Zhao, Liping; Macaulay, Linda, A
Model Driven Architecture for Enterprise Application
Integration, HICSS: Proceedings of the 39th Hawaii
International Conference on System Sciences, 2006.

[13] OMG. MOF 2.0/XMI Mapping Specification, v2.1, 2005.
[14] OMG. UML Profile and Interchange Models for

Enterprise Application Integration (EAI) Specification,
v1.0, 2004.

[15] Jouault, Frédéric; Kurtev, Ivan, Transforming Models
with ATL, MoDELS 2005: Proceedings of the Model
Transformations in Practice Workshop, 2005.

[16] Willink, E.D.. UMLX: A graphical transformation
language for MDA, GMT Consortium 2003.

[17] Eclipse Foundation. Eclipse Open-Source Community.
http://www.eclipse.org/.

[18] Eclipse Foundation. Eclipse Modeling Framework
(EMF). http://www.eclipse.org/emf/.

[19] Eclipse Foundation. EMF-based UML 2.0 Metamodel
Implementation. http://www.eclipse.org/uml2/.

[20] OMG. Human-Usable Textual Notation, v1.0, 2004.

	1.Introduction
	2.Problem Statement
	2.1.The Main Problems of Integration Projects
	2.2.Scenarios for Application Integration

	3.Related Work
	3.1.Commercial Approaches
	3.2.Scientific Work

	4.The RADES Approach
	4.1.RADES Development Stages
	4.1.1.Business process and workflow modeling
	4.1.2.Detailing workflows
	4.1.3.Detailing the product model
	4.1.4.Configuration and runtime
	4.1.5.Deployment

	4.2.Modeling
	4.3.Transformation
	4.4.Prototype implementation
	4.5.Evaluation

	5.Conclusion
	6.References

