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Abstract

Performance analysis is a necessary step during the
development of distributed applications and commu-
nication protocols. Network emulation testbeds pro-
vide synthetic, configurable environments for compar-
ative performance measurements of real implementa-
tions. However, realistic scenarios require more com-
municating nodes than usual testbeds are able to pro-
vide. In order to enable scalable network emulation,
various concepts for the virtualization of nodes have
been proposed. The overhead of virtualization strongly
impacts the total size of a scenario, that can be emu-
lated on a given testbed. However, the overhead of dif-
ferent virtualization approaches in the context of net-
work emulation has not been compared directly so far.
In this paper, we present a comparison of different vir-
tual machine implementations (Xen, User Mode Linux)
and our own virtual routing approach (NET). We dis-
cuss qualitative evaluation criteria and present a quan-
titative evaluation showing the efficiency of each ap-
proach in a traditional wired infrastructure-based and
in a wireless ad hoc network emulation scenario. Our
results give insights on which virtualization approach is
best suited for which kind of network emulation.

1. Introduction

When implementing distributed applications and

communication protocols it is essential to analyze the

impact of various network environments on their per-

formance. The required measurements usually compare

the performance of one implementation in different net-

work environments or of different implementations in

the same network environment. Setting up a real live

testing environment is difficult due to administrative or

economical limitations. In real live measurements, it is

also hard to obtain repeatable results especially in sce-

narios with mobile nodes and wireless communication.

Therefore, there is strong demand for synthetic network

environments that can be parametrized in order to re-

produce the properties of an existing or yet to be built

network.

Network emulation allows unmodified real imple-

mentations to be subjected to a synthetic network envi-

ronment. For that purpose, a piece of software called

network emulation tool reproduces specified network

properties while communicating over flexible network-

ing hardware possibly having different properties. A fa-

cility consisting of a combination of flexible networking

hardware and suitable emulation tools is called network
emulation testbed. Distributed applications or commu-

nication protocols that are subject to performance mea-

surements in a network emulation testbed are called

software under test.

Various research projects have published different

approaches to network emulation testbeds [1, 7, 14, 15,

16, 17]. They have recognized the need for emulating

scenarios with a large number of nodes. Evaluations

in mobile computing scenarios, e.g. of an ad hoc rout-

ing protocol implementation, typically require scenar-

ios with hundreds of nodes. Evaluations in traditional

infrastructure-based scenarios require the modeling of

the communicating end systems and all intermediate

systems to obtain realistic measurement results. In or-

der to support the scalable emulation of scenarios with

more nodes than the number of computers in a testbed,

different projects have proposed to execute multiple in-

stances of the software under test on a single testbed

computer by means of node virtualization.

Hosting too many instances on the same computer

leads to resource contention, which influences perfor-

mance evaluation results and hence is to be prevented.
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The overhead of virtualization has a strong impact on

the possible degree of virtualization and hence the total

scenario size. However, the overhead of different node

virtualization approaches in the context of scalable net-

work emulation has not been compared directly so far.

In this paper, we compare the virtual machine imple-

mentations Xen [2] and User Mode Linux [3] as well as

our own virtual routing approach NET [14]. For each

candidate, we discuss qualitative evaluation criteria. In

order to allow a quantitative comparison with respect to

scalability, we evaluate the efficiency of each approach

in both a traditional wired infrastructure-based and in

a wireless ad hoc network emulation scenario. Our re-

sults give insights on which virtualization approach is

best suited for which kind of network emulation.

The remainder of this paper is structured as follows.

In Section 2, we introduce the architecture of our net-

work emulation testbed, which provides the basis for

our comparison of virtualization approaches. In Sec-

tion 3, we state evaluation criteria for node virtualiza-

tion. We give an overview of the candidate virtualiza-

tion approaches and evaluate the qualitative criteria in

Section 4. In Section 5, we present measurement results

showing the efficiency of each approach for two im-

portant kinds of scenarios: emulation of infrastructure-

based networks and wireless ad hoc networks. In Sec-

tion 6, we summarize the results from the previous two

evaluation sections. We discuss related work in Sec-

tion 7. Finally, we conclude the paper with a brief sum-

mary.

2. Network emulation

The Network Emulation Testbed (NET) [14] devel-

oped at the University of Stuttgart provides the basis

for our evaluation of node virtualization approaches.

It consists of 64 PCs connected by a monolithic, pro-

grammable gigabit switch, and a separate administra-

tion network for setup and control (Fig. 1). Using IEEE

802.1Q VLAN (virtual LAN) technology, the gigabit

switch is able to create an arbitrary connection topol-

ogy between the computers. Each point-to-point link

or shared media network segment in an emulation sce-

nario, such as a WLAN (wireless LAN) channel, is

mapped to a uniquely tagged VLAN.

We call a testbed computer a pnode (physical node).

On a pnode, several tagged VLANs represent several

virtual network interfaces, each of which is assigned

a separate instance of our emulation tool called NET-

shaper. Each NETshaper instance emulates the speci-

fied network properties. It enables the configuration of

arbitrary bandwidth limitations, delays, and frame error

loss ratios. NETshaper provides the service level ab-
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Figure 1. Network emulation testbed.

straction of an unreliable datagram service to the soft-

ware under test. This is the lowest possible emula-

tion abstraction feasible to be implemented in software.

NETshaper is implemented as a virtual network device

driver, and thus completely transparent to protocol im-

plementations on the network layer. As a result, the net-

work and transport layer of the protocol stack as well as

the application layer can be considered as software un-

der test. Each node in a specified network emulation

scenario corresponds to an instance of the software un-

der test which we call a vnode (virtual node).

In order to control the distributed network emulation

tools during an experiment, we pursue a hybrid archi-

tecture including a central scenario controller. The con-

troller dynamically updates the parameters of the emu-

lation tools. For mobile ad hoc network emulation, this

includes changing connection quality and thus frame er-

ror rates between communicating nodes. The connec-

tion quality is automatically derived from the simulated

node mobility and the application of different possible

radio propagation models.

Without node virtualization one pnode is required for

each vnode. Therefore, the size of the emulated sce-

narios would be limited to 64 vnodes in NET. In the

following, we first define evaluation criteria for node

virtualization and then evaluate candidate virtualization

approaches.

3. Evaluation criteria for node virtualiza-
tion

In general, node virtualization provides a way to

schedule access of a number of consumers to otherwise

exclusively used hardware resources. With respect to

network emulation, each consumer is a vnode, i.e. an

instance of the software under test. In this section, we

define three evaluation criteria for node virtualization in

the context of network emulation.

Node virtualization should be transparent to the soft-

ware under test, to allow the execution of unmodified



code of an implementation. Heterogeneous scenarios

involve different implementations of the software un-

der test which require different execution environments,

such as a TCP implementation in Linux and another one

in Windows. Since more execution environments than

pnodes may be necessary, node virtualization should be

flexible to support different execution environments on

the same pnode. The main reason for the introduction

of node virtualization to network emulation is scalabil-

ity with respect to the maximum size of emulation sce-

narios. As already mentioned before, the overhead of

node virtualization strongly impacts the possible degree

of virtualization per pnode and hence the size of an em-

ulation scenario. Thus, node virtualization should be

efficient to maximize the scenario size in terms of vn-

odes for a given number of pnodes.

The criteria transparency and flexibility can only be

discussed on a qualitative basis whereas efficiency can

be evaluated quantitatively by means of experiments.

Therefore, we split the evaluation discussion over the

following two sections. We treat the qualitative criteria

first, then the quantitative criterion.

4. Evaluation of qualitative criteria

We classify the node virtualization approaches into

two main categories: virtual machines and virtual rout-

ing.

4.1. Virtual machines

A straightforward way to introduce node virtualiza-

tion to network emulation is using a virtual machine

(VM) approach. Instead of running an operating system

(OS) directly on the hardware, a virtual machine mon-

itor (VMM) schedules access of multiple guest operat-

ing systems to exclusive hardware resources (Fig. 2).

From the different solutions for integrating an emula-

tion tool into such an architecture, we choose to in-

sert our unmodified existing emulation tool on top of

network interface drivers inside each guest OS. This

allows to focus on the comparison of the virtualiza-

tion approaches by keeping the surrounding environ-

ment fixed. For communication with other vnodes on

the same and other pnodes, a software switch forwards

frames correspondingly.

We restrict our selection of evaluation candidates to

open source implementations, that are easily available

and work well with our existing NET environment, i.e.

Linux as OS and NETshaper implemented as a Linux

kernel module. Consequently, we consider Xen and

User Mode Linux.
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Figure 2. Virtual machine approach.

Xen [2] provides an unhosted VMM, that runs di-

rectly on the hardware without any host OS. It of-

fers two different ways of virtualizing the hardware re-

sources. On modern processors with hardware virtual-

ization support, Xen supports the execution of unmod-

ified guest OSs. However, the necessary exact emu-

lation of hardware devices implies significant virtual-

ization overhead. Therefore, we focus on the second

option called para-virtualization, where the virtual in-

struction set architecture and virtual device interfaces

are designed for low virtualization overhead. This re-

quires an adaptation of the hardware abstraction layer

and device drivers of the guest OS. However, there is no

need to modify the software under test inside the guest

OS which makes Xen a transparent node virtualization

approach. Since each provided VM can execute an ar-

bitrary guest OS, it fulfills the criterion of flexibility.

User Mode Linux (UML) [3] is a hosted VMM,

where the guest OS is of the same type as the host OS

(though the versions may differ) which restricts flexibil-
ity. UML is a port of Linux to its own system call inter-

face, and requires a special UML hardware abstraction

layer in form of a Linux architecture backend. How-

ever, those modifications do not concern the software

under test which makes UML a transparent approach.

4.2. Virtual routing

The VM approaches described in the previous sub-

section virtualize more than is actually needed for net-

work emulation. It would be sufficient to provide vir-

tual execution environments for just the software under

test, i.e. for exactly those layers above the emulation

tool. This can be accomplished with virtual routing [11]

(Fig. 3). Consequently, a vnode consists of the follow-

ing entities: a set of processes on the application layer,

a set of sockets on the transport layer, a routing table on



the network layer, and a set of network devices on the

data link layer. In contrast to virtual machines, there is

no need for separate virtual network devices and their

drivers anymore. Additionally, there are no redundant

context switches and copy operations.
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Figure 3. Virtual routing approach.

Virtual routing has limited flexibility since there is

only one host OS, which is at the same time the execu-

tion environment for the vnodes. The integration of vir-

tual routing into the protocol stack of an existing OS re-

quires modifications to the network and transport layer.

Hence, virtual routing has limited transparency for the

software under test.

5. Evaluation of quantitative criterion

In the following, we evaluate the efficiency of each

of the previously discussed three virtualization ap-

proaches by experiment. All measurements are per-

formed on identical pnodes in our testbed equipped with

an Intel Pentium 4 2.4 GHz processor, 512 MB RAM,

and a Gigabit Ethernet adapter in a 32 bit, 33 MHz PCI

bus. For more details on our experiment configurations,

we refer to [14]. Here, we use the Linux distribution Fe-

dora Core 4 (FC4) with the following software version

combinations: Linux 2.6.11-1.1369 FC4 with Xen-2-

20050522 (both from FC4); UML backend of Linux

2.6.16-bs2 on Linux 2.6.11 patched with SKAS3-v8.2

[5] to enable performance optimizations similar to [10].

In our experiments, we focus on the network and trans-

port layer protocol implementations. We consider two

types of network: a wired network and a wireless ad hoc

network which apply different routing protocols.

5.1. Wired network emulation

The network topology of the emulated wired sce-

nario consists of a linear chain with a varying number

of router vnodes using static routing. The point-to-point

links connecting the routers are full duplex and have

an emulated limited bandwidth of 100 MBit/s in each

direction. We obtain reference measurements once by

executing each vnode on its own pnode. For each vir-

tualization approach, we conduct the same experiment

and execute all vnodes on a single pnode except for the

last vnode, which resides on a separate pnode without

virtualization (Fig. 4). Note that the protocol stack of

each vnode is involved while a message is passed from

source to sink.
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Figure 4. Wired infrastructure emulation
scenario, virtualized case.

On network layer, we measure maximum ICMP

round trip time (RTT) delays between vnode 1 and vn-

ode n+1. In Fig. 5, the reference values without virtual-

ization show linear increase with an increasing number

of hops in the routing chain. Both VM implementations

cause delays that are larger than without virtualization.

Due to time slices for the scheduling of guests by the

VMM and the necessary virtualization context switches

each router introduces additional delay which cannot be

compensated. The delay with Xen even increases un-

realistically starting with 6 vnodes. Virtual routing of

NET causes a lower delay than without virtualization.

This is because the software switch has lower commu-

nication delay than the hardware emulation switch and

there are no redundant virtualization context switches.

Of course, the emulation tool could compensate for that,

if a particular scenario requires inter-node delays to be

exactly the same. We did not increase the degree of

virtualization beyond 8 vnodes for the VM approaches,

since main memory would become a bottleneck. Also

their maximum degree lies below 8 vnodes for higher

network loads as shown in the next paragraph.

On transport layer, we measure the throughput of one

TCP flow over the router chain (Fig. 6). The source

is located on vnode 1 and the sink on vnode n + 1
(flow 1). In a subsequent experiment we interchange

the source and sink locations (flow 2). Again we mea-

sure the throughput of one TCP flow. The earliest un-

desirable deviations from the reference case happen at
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a number of 3 vnodes for UML, 5 vnodes for Xen, and

13 vnodes for NET. For all candidates the deviations are

due to contention of the CPU resource only. When the

TCP source is on vnode n + 1 for flow 2, it does not

have to compete for resources with other vnodes on the

same pnode and is able to achieve a realistic throughput

with more vnodes than flow 1 in the opposite direction.

UML and NET are affected by this asymmetry, where

the remaining resources on pnode 1 suffice TCP receive

processing for 3 vnodes with UML or 50 vnodes with

NET (the latter is not shown in Fig. 6). We assume that

the scheduling of the Xen VMM and its CPU resource

isolation between guests prevents such a behavior.
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5.2. Wireless ad hoc network emulation

In the wireless scenario, we arrange the vnodes to

also build a linear topology to make the results of our

experiments comparable. The scenario is shown in

Fig. 7, where neighbors can communicate directly over

a wireless communication link. This is accomplished by

a frame loss ratio for ingress traffic of zero for frames

from reachable neighbors, and one for all others. Al-

though our emulation system fully supports dynamic

node mobility for comprehensive mobile ad hoc net-

work scenarios, we use stationary nodes here for the

sake of comparison with the wired scenario. The wire-

less links between vnodes are full duplex and have a

limited bandwidth of 11 MBit/s. Here, we do not emu-

late the effects of a MAC layer, i.e. there are no frame

collisions. We use an implementation of the Ad-hoc

On-Demand Distance Vector Routing protocol called

AODV-UU [12] in version 0.8 for dynamic routing on

each vnode. Similar to the wired network scenario, we

perform measurements once without virtualization and

for each virtualization approach separately. The mea-

surements are conducted analogous to the wired sce-

nario.
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Figure 7. Wireless ad hoc network emula-
tion scenario, virtualized case.

Fig. 8 shows the typical behavior of maximum ICMP

RTT delays for AODV with different hop counts. Start-

ing with one hop, we observe expanding ring search in

combination with binary exponential backoff for out-

going route requests. Beyond the default time to live

threshold, route requests work without expanding ring

search leading to delays with linear increase starting at

10 hops, i.e. 11 vnodes. Virtual routing of NET matches

the reference values without virtualization closely up to

10 vnodes. Starting with 11 vnodes, the load implied

by the AODV routing daemon on each vnode causes

increasingly larger delays with each additional vnode.

UML has a relatively high cost for context switches

and hence for each packet transmission. Each addi-

tional hop causes an increase in the RTT delay com-



pared to the reference values. The delay with Xen is

lower than with UML but still larger than the reference

values. As in the wired scenario the delays with the VM

approaches are too large and cannot be compensated.
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Measurement results for the transport layer are de-

picted in Fig. 9 and Fig. 10. TCP throughput starts

deviating from the reference values without virtualiza-

tion at 2 vnodes for UML, 7 vnodes for Xen, and 30

vnodes for NET. The emulated bandwidth and thus the

network load is lower compared to the wired scenario.

However, each AODV routing daemon overhears all IP

packets from its two respective neighbors. This causes

many guest OS context switches in order to pass re-

ceived packets from the kernel to the daemon running

in user space. Those context switches also involve the
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VMM and are thus expensive for the VM approaches.

Therefore, they only support about the same number of

vnodes per pnode as in the wired scenario. Virtual rout-

ing of NET however is not affected as strongly by the

additional context switches and is able to take advan-

tage of the comparatively low emulated bandwidth.

6. Discussion

CPU is the limiting factor for scalability, i.e. the

maximum scenario size, with all virtualization ap-

proaches in the evaluation scenarios from the previous

section. UML’s high context switch costs allow hardly

more than one vnode per pnode. Hence, UML is not

suitable for scalable network emulation in realtime – not

even with applied optimizations similar to [10]. This

confirms results reported in [8] stating that such a virtu-

alization approach is more suitable for qualitative analy-

sis than for performance measurements. Xen supports 4

to 6 vnodes per pnode on our testbed hardware depend-

ing on the scenario. On the one hand, Xen is transparent

and flexible allowing the performance evaluation of ar-

bitrary mixes of software under test such as TCP imple-

mentations of Linux, BSD, and Windows. On the other

hand, Xen suffers from virtualization context switches

that are disadvantageous if software under test on the

application layer is involved. Virtual routing of NET

shows to be the most efficient alternative and should

be the choice if scalability is the main concern of net-

work emulation. The reduced context switch costs of

virtual routing are especially advantageous in emulation

scenarios, where software under test on the application

layer generates significant traffic.



7. Related work

In this paper, we are mainly interested in the influ-

ence of different node virtualization approaches on the

scalability of network emulation in general. We discuss

other individual scalable network emulation approaches

in this section.

Ns-e [4] is an emulation extension of the well-known

network simulator ns-2. The scalability is limited by the

amount of traffic, that can be processed by the central-

ized simulator. For a typical mobile ad hoc network

(MANET) experiment, a total scenario size of about 50

nodes is possible [9].

ModelNet [15] is a parallel network emulator for

point-to-point link based scenarios without support for

the emulation of wireless communication. It is not

entirely transparent for the software under test since

it interposes socket calls. MobiNet [13] is an exten-

sion for wireless communication but due its central-

ized architecture, it constitutes a bottleneck as with ns-

e. While the authors report successful emulation of

100 MANETs with 2 nodes each, this result can hardly

be compared to a realistic MANET scenario with 200

nodes.

vBET [8] is designed to emulate a network scenario

on a single computer by using UML for virtualizing

nodes. While this centralized architecture would con-

stitute a bottleneck, multiple computers can be com-

bined to a scalable distributed testbed. The overall per-

formance is reported to be more suitable for qualita-

tive analysis than for performance measurements. Our

results confirm that, since UML hardly supports more

than one vnode per pnode in our scenarios even with

applied optimizations for hosted VMs similar to [10].

Empower [17] allows the emulation of multiple rout-

ing instances on one computer. Each connection to the

emulated network is mapped to a physical link of an ex-

isting hardware network interface. The scalability, i.e.

the number of vnodes per pnode is limited by the num-

ber of physical network interfaces per pnode.

Imunes [16] virtualizes the entire protocol stack in

the kernel. The required extensive modifications limit

the transparency for the software under test. In combi-

nation with the network emulation tool dummynet, link-

based scenarios can be emulated in a scalable way. The

authors report TCP throughput of 420 MBytes/s over

15 routing hops on a single machine with a slightly

faster processor than used in our evaluation. Though

scaling significantly better than a VMware based virtu-

alization implementation, the throughput was measured

in a best case without any introduction of emulated net-

work properties such as bandwidth limitation and is thus

hardly comparable to our results.

Netbed [7] is an emulation testbed, that supports

scalable network emulation by using virtual routing.

The testbed supports the emulation of scenarios with

wired links. While it is possible to link real wireless

nodes to an emulated scenario, there is no support for

the reproducible emulation of wireless networks.

V-eM [1] supports scalable network emulation by

integrating the emulation tool NISTnet into the Xen

VMM. It forces traffic between vnodes on the same pn-

ode to pass externally through physical network inter-

faces and thus scalability is severely limited for wire-

less scenarios with shared media. The authors report

successful emulation of a scenario with 10 routers con-

nected by 100 MBit/s links. Unfortunately these results

are not comparable to ours, since they used two proces-

sors each of which is faster than our hardware.

8. Summary

Network emulation testbeds provide a synthetic,

configurable network environment for comparative per-

formance measurements of distributed applications and

communication protocols. The number of communi-

cating nodes in meaningful evaluation scenarios (hun-

dreds) is often larger than the number of available com-

puters in a testbed (tens). In order to enable scalable

network emulation for such large scenarios, various

node virtualization approaches have been proposed in

the literature.

In this paper, we compared different virtual machine

implementations (Xen, User Mode Linux) as well as our

own virtual routing approach (NET). Based on a discus-

sion of qualitative evaluation criteria and on quantitative

evaluation results, we provided insight into which kinds

of network emulation are best suited for the different

node virtualization approaches. Xen is more suitable

for scenarios with arbitrary mixes of software under test

such as TCP implementations of Linux, BSD, and Win-

dows. Virtual routing of NET is advantageous if scala-

bility is the main concern and if software under test on

the application layer generates significant traffic.

We have shown that a performance analyst faces a

trade-off between scalability on the one side and trans-

parency or flexibility on the other side. Those limita-

tions could be mitigated by virtual machine monitors,

that provide software under test with virtual time to en-

able non-realtime network emulation [6]. Thus, experi-

ment execution time may be traded for scalability, trans-

parency, and flexibility in the future.
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