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ABSTRACT
In Wireless Sensor Networks, several algorithms are used to
perform different functionality, e.g. routing or clock syn-
chronization. Each algorithm is intended for specific net-
work characteristics and user requirements. But the acutal
characteristics and requirements may change during system
runtime. TinyCubus and particularly its Tiny Data Manag-
ment Framework use adaptation to solve this problem.

In this paper, we first explain the centralized adaptation
process. Then, we examine how this can be done localized
in the network. Since coordination between local adaptation
decisions is found to be necessary, metrics for this coordina-
tion and their dependencies are shown.

1. INTRODUCTION
Sensor Networks are used today in several domains to mon-
itor real-world phenomena, e.g. in logistics, health care,
biological studies or smart offices. Due to their small di-
mensions and their autonomous operation, sensor nodes can
be installed in places where traditional monitoring is com-
plicated or even impossible. Since the research is still young
we expect further application areas in the future.

Despite the variety in domains, most applications share a
common set of basic algorithms, e.g. routing, clustering or
time synchronisation. However, each particular algorithm
is suitable for a set of environments, e.g. mobile or static,
where it exhibits best performance. When developing an
application, it is a cumbersome task for the programmer to
select the algorithms for a specific environment.

Moreover, the conditions of many systems change over time.
Consider a logistics application where goods may be stored
for several days but are moved to different places using var-
ious means of transportation. A single algorithm is unlikely
to work in all settings. Therefore, the performance of the
sensor network changes significantly over time. The user of
the sensor network might change her requirements during
runtime as well. For example, he could decide that a high
delivery ratio is now more important than low latency. This
has to change the behavior of the algorithms as well.

To cope with the changing environment and changing user
requirements, we presented the TinyCubus system [1]. Its
Tiny Data Management Framework (TDMF) is able to se-
lect appropriate algorithms or parameterizations for an al-
gorithm based on network conditions, user requirements and
algorithm characteristics.

In larger networks, a centralized adaptation has a high over-
head since the network conditions have to be collected at a
single node. Moreover, larger networks are likely to be di-
verse so that different parameterizations for different groups
of nodes result in a better behavior than a global setting.
Since adjacent groups influence each other, the separate
adaptation results of the groups have to be coordinated.

In this paper, we start with a centralized adaptation ap-
proach and show how the adaptation can be localized in
the network. Then, we examine how the local adaptation
decisions can be coordinated to achieve better network per-
formance.

The rest of the paper is organised as follows: In Section 2,
the adaptation process of TDMF is shown. The locality
of the adaptation is examined in Section 3. Section 4 then
deals with the coordination of group adaptation results. The
paper concludes with Section 5.

2. ADAPTATION PROCESS

2.1 Simulation
The basic assumption of TDMF is that the accuracy of sim-
ulation is sufficient to derive properties for real-world sensor
networks. Each algorithm can thus be evaluated for differ-
ent settings with respect to several performance parameters
P . Some parameters, like power consumption, are general
for all algorithms, others, like the delivery ratio for routing
algorithms, are specific for one particular class. These per-
formance parameters are the output of the simulation and
are, therefore, measured. The simulation process can be
controled by several input parameters that are divided into
groups as well: Some parameters N influence the whole net-
work, e.g. node density or mobility; some parameters A only
the algorithms, e.g. the maximal number of retransmissions
of a routing algorithm.

The user of TDMF has to decide which input parameter
space is relevant for him. For example, in a network that
remains static it is of no use to simulate mobile nodes. De-
pending on the available computing power for simulation,
the granularity of the input parameters N and A is chosen.
Especially for continuous parameters like network density,
reasonable increments have to be set. In a second step, the
parts of the first simulation step where the output parame-
ters exhibit a high rate of change can be simulated in more
detail.

Input parameters and measured output parameters describe
the behavior of an algorithm and are, therefore, called its



Figure 1: Scenario 1

meta-data. In TDMF, each algorithm module is annotated
with this meta-data.

2.2 User preferences
The user of a sensor network has requirements that the ap-
plication has to fulfil. They can be expressed as an inequa-
tion using the elements of P . For example, the user could
specify that the estimated lifetime of the sensor network
should be at least 1 year and the delivery ratio should be at
least 80%.

Two interesting cases can happen: In the first case, more
than one algorithm or more than one parameterization of
an algorithm fits these requirements. In the second case,
none is found. TDMF provides a way for resolving both. If
more than one fits, the use can specify an optimization pa-
rameter and a direction. For example, the lifetime should be
optimized in such a way that the network lives the longest.
On the other hand, if no algorithm is found, the user lists
the requirements which can be relaxed, e.g. the delivery
ratio from 80% to 50%.

2.3 Adaptation process
Input and output parameters change in adaptation com-
pared to the simulation. The network parameters N cannot
be influenced by the user or the system but are given by the
environment and must be measured. The performance pa-
rameters P are given by the user as described above. Thus,
the adaptation systems selects the algorithms whose meta-
data match N and the conditions over P and performs nec-
essary optimization or relaxation to chose exactly one algo-
rithm. Then, this algorithm is installed and parameterized
with parameters A if needed.

2.4 Example
To test and evaluate the adaptation system, we used the
Avrora simulator [3]. 44 nodes are arranged in a grid as
shown in Figure 1 with 10m distance in horizontal and ver-
tical direction. The base station is located in the lower left
corner.

Each node sends a data packet every 10 seconds to this base
station. A routing algorithm implementing the GEM met-
ric [2] is used. Two parameters A can be adapted in this
algorithm: the transmission power and the maximal num-
ber of retransmissions per packet. In simulation, 9 different
transmission power levels and 5 different retransmission lim-
its, thus 45 different combinations in total, are evaluated.
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Figure 2: Parameter space for scenario 1

The performance parameters P the delivery ratio and the
energy needed are measured. Figure 2 shows the delivery
ratio for all 45 simulations.

A very simple adaptation goal could be to maximize the de-
livery ratio. The adaptation process would select the param-
eterization “transmission power = 255” and “retransmission
limit = 3” which leads to a delivery ratio of 88% on average.

3. DECENTRALIZED ADAPTATION

3.1 Purely Local Adaptation
In the previous global and centralized adaptation approach,
messages have to be sent through the network to collect
the network parameters and to propagate the adaptation
decision. Since the adaptation is often used to maximize
the network lifetime, this adaptation message overhead has
to be minimized. If the adaptation decision can be made
purely local, there would be no message overhead.

We used the simulation results of the previous example and
evaluated each of the 45 simulations per node, resulting in a
single parameter curve for each node. Then, the adaptation
process is executed as explained before on each node locally,
resulting in different and independent parameter values for
each node.

According to the simulation basis, the worst delivery ratio
of a node should be 80%. But in fact, the average ratio
for the whole adapted network was 60%, with 29% for the
worst single node. The reason for this is that the simulation
basis was created using the same parameterization for the
complete network, but TDMF uses these values to adapt
each node separately. Interferences between nodes were not
taken into account.

To cover the interferences, all possible combinations would
have to be simulated. This is not possible since it would lead
to 4544 (or approximately 5.51·1072) combinations in the ex-
ample. Additionally, the adaptation process need to be done
centralized again to assign a suitable parameter combination
to all the nodes which contradicts the local approach.



3.2 Group Adaptation
A balance between global and local adaptation is the intro-
duction of groups. Inside a group, the same parameteriza-
tion is used. The behavior of a group is, therefore, expected
to be more stable and to resemble the basic simulations that
used the same parameters for the whole network. The dis-
advantage of this approach is that network parameters have
to be collected and the adaptation decision has to be an-
nounced, but both happens in a smaller area than in the
global case.

The example network is divided horizontally and vertically
in the middle, thus forming 4 groups. The 45 basic simula-
tions are evaluated per group, thus forming a new adapta-
tion basis for the group adaptation. The adaptation process
uses these per-group results to find optimal settings for each
group.

An overall delivery ratio of 89% should be achieved accord-
ing to the simulation basis. The resulting ratio of 71% is
lower than expected, but the gap is lower than in the purely
local adaptation.

3.3 Coordinated Groups
Most of the packet losses in the group adaptation example
occur at group transitions. In the example, the transmission
power of the group with the base station was set to 180,
while all other groups use a transmission power of 255. The
simulation shows that the packet loss is much higher at the
two nodes connecting two groups if the transmission power
differs between these groups.

Therefore, to achieve better delivery ratios the parameters of
the groups have to be coordinated. Each adaptation process
selects not only the best parameter setting for each group
but the best k settings. We have chosen k = 3. A coor-
dination metric calculates the distance of the transmission
power settings for all possible combinations of the settings.
Finally, the combination of parameters with the least dis-
tance is selected.

The coordination introduced in this approach revives a cen-
tralized step that was eliminated when moving from the
global to the local view. The difference is that only a few
parameters have to be joined at a single place and not all
the network conditions from all the nodes.

Simulation shows that using a combination with the highest
distance value has a low delivery ratio of 69% while the
lowest distance values lead to high delivery ratios of 87%,
which is very close to the predicted 89%. This dependency
is also expressed by a Pearson’s correlation coefficient of
−0.78. This coefficient measures the mutual dependency of
two variables and ranges from −1 to 1. A value of −1 or 1
show that there is a linear relationship, a value of 0 indicates
that a linear model is inappropriate.

4. GENERAL METRICS
Not all scenarios allow to find a simple coordination metric.
Moreover, a coordination metric suitable for one scenario
might be useless in another. We, therefore, introduce a sec-
ond scenario with a larger network and change the grouping
and parts of the algorithm.

Figure 3: Scenario 2 with circular groups

4.1 Topology
In Scenario 2, 100 nodes are placed on a regular grid with
10m distance in either direction forming a square of 10x10
nodes. 4 groups of 25 nodes each are formed by divid-
ing the network horizontally and vertically in the middle.
The base station is still in the lower left corner. Again, the
adaptation basis is determined by simulating all 45 combi-
nations of transmission power and retransmission limit for
the whole network and by evaluating these simulations per
group. Then, the adaptation process selects the best 3 pa-
rameter settings for each group.

When applying the distance function of the first scenario
as coordination metric to this scenario, “wrong” parameter
combinations for the groups are selected. A correlation co-
efficient between distance metric and delivery ratio for all
81 combinations of 0.21 shows that the metric is less signif-
icant in this scenario, but indeed more distant transmission
power levels are better than close ones. This contradicts the
finding from the first scenario.

4.2 Different Grouping
The analysis of the previous experiment showed a problem
in the center of the network where four different groups are
adjacent. Such a constellation should be avoided by a clever
grouping. Therefore, we examined another method with
groups based on the distance from the base station. Figure 3
shows such a grouping with equidistant radii.

The 45 basic simulations of Scenario 2 were reevaluated us-
ing this new grouping and, again, the best 3 parameter set-
tings for each group were determined. The simulation of all
81 combinations and the calculation of the correlation coef-
ficient between delivery ratio and the distance metric show
that, with a coefficient of −0.50, this grouping reacts sim-
ilarly to differences in the transmission power as the first
scenario.

4.3 Different Routing Metric
The groupwise adaptation of an algorithm is based on the
assumption that the algorithm works inside a group inde-
pendently from the surrounding groups. The previous ex-
amples show that this is not the case. Especially intelligent
routing metrics react very sensitive to changing traffic due
to changed neighboring groups. Thus, these metrics may
counteract the adaptation goal.



Therefore, a scenario using static routing trees was set up.
The trees were built before simulation by taking into account
the radio model characteristics and by trying to balance the
number of child nodes in each tree node. That way, a group
shows similar behavior also with different adjacent groups.

After simulating the 81 combinations of the best 3 settings
for each group based on 45 new basic simulations, the corre-
lation coefficients were calculated. With quadratic groups,
the correlation is −0.33, but 0.44 when using circular groups.
Compared to the simulations that used the GEM routing
metric, the static trees react diametrically opposed to dif-
ferences in the transmission power.

4.4 Coordination Metrics
As the previous sections have shown, the simple distance
metric developed for the example scenario of Section 2 does
not work in all cases of the enlarged second scenario. There-
fore, a different metric for this scenario has to be found.
Since constructive approaches were not successful, possible
metrics were tested systematically.

A metric is an addition of single components that are based
on the algorithm parameters A. In the given scenario, the
tranmission power or retransmission limit of a single group
or the “distance” of the transmission power or the retrans-
mission limit between two groups are used. A component is
built using a parameter mapped to the interval [0, 1]. The
value resulting from the mapping is fed into the metric.
Each component can also be used as 1−value in the metric.

Having 4 groups, this leads to 40 different single components
that could be part of a metric. Of course, some combinations
make no sense to be used at the same time, e.g. value and
1− value. Moreover, a metric consisting of too many single
components is likely to be useful for a specific setting only.
Therefore, we limited the search to 6 single components.

To evaluate each metric, 9 different settings were used: 5
using the GEM metric and 4 using static trees. The settings
with GEM metric are further divided into 3 using quadratic
groups and 2 using circular groups, the settings with static
trees are divided into 2 settings of each grouping. The single
settings differ again in further adaptation restrictions like
energy.

For each metric and each setting, Spearman’s rank correla-
tion coefficient between the metric and the average delivery
ratio of the network was calculated. The rank correlation co-
efficient does not assume a linear relationship between the
variables and is, therefore, more suitable, for the abstract
metric. The metrics were finally sorted by the average cor-
relation coefficient, thus selecting metrics that pedict well
the quality of a parameter combination.

As Figure 4 shows, a good metric covering all 9 settings
could be found, exhibiting an average correlation coefficient
of 0.30, but ranging up to 0.65 for a single setting. When
calculating the best metrics for a subset of the settings that
only used (1) static trees, (2) GEM routing metric, (3)
quadratic groups or (4) circular groups, even better metrics
could be found. As expected, the static trees behave better
under adaptation than the algorithm using the GEM rout-
ing metric, even using the best coordination metric found.
Also, circular groups can be better predicted than quadratic
groups due to the “center problem” of the latter.
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Figure 4: Correlation coefficients of best metric

5. CONCLUSION AND FUTURE WORK
Pure local adaptation of neighoring groups of nodes or even
adaptation of single nodes in a sensor network can deterio-
rate network performance. Coordination of local adaptation
decisions can improve the overall adaptation result although
this implies additional overhead. The quality of the coordi-
nation is heavily dependent on the coordination metric. We
have shown that such a metric can be found and that it can
be improved further when restricting the domain.

As next steps, we will examine the metrics found in more
detail to explain why each single component is part of a met-
ric. Using this knowledge, it might be possible to develop a
constructive method to build a metric.

When simulating the algorithms, no network or application
characteristics have been changed. In the future, different
traffic loads and node densities have to be included in the
simulation space to cover the characteristics of the algorithm
more completely.
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