Self-Organizing Infrastructures for Ambient Services

Klaus Herrmann

University of Stuttgart
Institute of Parallel and Distributed Systems (IPVS)
Universititstr. 38, 70569 Stuttgart
klaus.herrmann @acm.org

Abstract The vision of Ambient Intelligence (Aml) as a new paradigm for sup-
porting the mobile user in his daily activities is currently entering the focus of Eu-
ropean research efforts. A high degree of autonomy on the part of the supporting
software system is inherent to this vision of omnipresent and continuously run-
ning services. However, adequate concepts for creating respective infrastructures
that may operate autonomously and in a self-organized fashion are still largely
unexplored. We propose the Ad hoc Service Grid (ASG) as a dedicated Aml in-
frastructure that may be deployed in an ad hoc fashion at arbitrary medium-sized
locations (shopping malls, construction sites, trade fairs, etc.). In this paper, we
give an overview over our results thus far. We focus on the problems of service
placement, discovery and lookup, and data consistency within an ASG environ-
ment and show how we have solved these problems with new self-organizing and
adaptive algorithms. These vital functions are the basis for the realization of ASG
systems and represent an essential contribution to Aml research in general.

1 Introduction

In recent years, the vision of Ambient Intelligence (Aml) [2] has produced considerable
research efforts. The main idea of Aml is that mobile users may wirelessly access ser-
vices (anywhere and anytime) that support them in their daily activities without putting
any administrative burden on them. One essential building block of Aml are infrastruc-
tures that allow local access to local, facility-specific services. To enable services that
enhance the user’s interaction with his current environment, the physical surrounding
of the user must be enriched with computing resources that enable service provisioning.
One example scenario is a shopping mall that offers ambient services to customers, en-
abling them to navigate through the mall, find certain products quickly, and optimize the
contents of their shopping cart, for example, according to the overall price or quality.
In this paper, we describe the Ad hoc Service Grid (ASG) infrastructure [5] that
enables facility-specific ambient service provisioning at medium-sized locations (e.g.,
shopping malls, construction sites, trade fares, etc.). Our goal is to provide a service in-
frastructure that is easy to setup, flexibly scalable, and requires minimal administrative
effort. The easy setup and the flexibility at the networking layer is achieved by adopt-
ing Mobile Ad hoc Networking (MANET) technology. To minimize the administration
overhead, we propose a software layer that we call the ASG Serviceware. This software
has the task of providing basic support for running services within an ASG in a self-
organized fashion. That is, all aspects of executing services and adapting to changing

user demands shall be managed autonomously by the software. We will describe the
core functions, algorithms, and protocols of the ASG Serviceware and show how they
operate and interact in order to render the overall ASG self-organizing.

The rest of the paper is structured as follows. In Section 2, we discuss related work.
The ASG model is introduced in Section 3 before we give an overview over the al-
gorithms and protocols used to render its operation self-organizing in Section 4. In
Section 5, we present our conclusions and give an outlook on future work.

2 Related Work

There are two major research strands in the area of Aml infrastructures at the moment.
The first one deals with appropriate middleware systems. The research in the middle-
ware area has been active for many years and is always quick in conquering new do-
mains. Thus, a plethora of systems has been and continues to be proposed here. Cabri
et al. propose the LAICA system as an agent-based middleware for AmlI [1] and claim
that agents “can naturally deal with dynamism, heterogeneity and unpredictability”.
Apart from that, no mechanisms are introduced that may substantiate this claim. The
same is true for the SALSA system presented by Rodriguez et al. [11] for healthcare
applications. Vallée et al. [14] seek to combine multi-agent techniques with semantic
web services to create a system the can adapt to the user’s current context in a context-
aware service composition process. O’Hare et al. advocate the use of “agile agents” as
a design principle for Aml [10]. These mobile agents are based on the Beliefs Desires
Intentions (BDI) model that is well-known in intelligent agent research. However, no
real motivation is given as to why this particular technology should be ideal for Aml.

The second strand originates from the area of Service-Oriented Architectures (SOA)
and copes with the problems of finding, matching, and composing services in an Aml
environment. Some variations of tools from the Web Services domain are being de-
ployed for this purpose. Omnisphere is an architecture that supports the discovery of
service components and the composition of higher-level services [12]. Typed data flows
are used for service composition, and a matching mechanism is proposed that employs
user preferences, devices capabilities, and the user’s context to select the set of service
components. Hellenschmidt et al. propose the SodaPop system that allows the com-
position of higher-level services from the components available on individual user de-
vices [3]. They claim that their system enables devices to self-organize in order to col-
lectively provide a service, but they do not substantiate this claim. Issarny et al. suggest
to use a declarative language for specifying Aml systems [9]. The Web Service Ambi-
ent Intelligence WSAMI language allows the specification of composed services on the
basis of Web Services technologies.

3 The Ad hoc Service Grid Model

3.1 Motivation

There are two obvious alternatives available for providing facility-specific, ambient ser-
vices to mobile users. The first one is to use cellular phone networks as they are used

in a classical location-based service scenario. However, in this scenario, the available
bandwidth is limited and any communication is expensive. The second alternative is
the coverage with normal 802.11 (WLAN) access points which serve as a wireless ex-
tension of some wired infrastructure while services are being provided by some high-
end server. This approach provides high bandwidths, and the communication is free of
charge. However, it produces high costs for setting up the wired infrastructure. More-
over, it offers only limited flexibility and scalability since the wired infrastructure is
fixed and cannot be easily changed.

We conclude that neither of the two technologies is particularly well-suited for the
provisioning of facility-specific services. Therefore, we propose an alternative model
that we explain in the following.

3.2 The Model

The ASG is based on the concept of Service Cubes (also called Cubes or nodes here-
after). A Service Cube is a PC-class computer that provides ad hoc networking capa-
bilities and computing power. It has no peripheral devices (display or input devices),
relies on a permanent power supply, and is equipped with a wireless network interface.
In order to cover a given location with Ambient Services, a number of these Service
Cubes is distributed over the location such that they can spontaneously set up a wireless
network connecting all Cubes. Thanks to the concept of self-contained Service Cubes,
an ASG network has a highly modular structure: New modules (Cubes) can be added
and existing ones can be removed or repositioned to re-shape the network in an ad hoc
fashion. This provides a flexible way of scaling an ASG to an appropriate size and al-
lows for a quick and easy setup. No extensive planning and no construction work is
necessary to cover a location in this way. It also enables different business models for
providing an ASG since Service Cubes may be rented, collectively bought by different
participants, or monolithically provided by some operator. Clients that wish to use ASG
services may become a part of the ad hoc network by connecting to any of the Cubes
with their mobile device. We assume the existence of some technology that allows for
a seamless hand-over such that clients may move freely through the ASG network and
always be connected to at least one Cube.

3.3 The Drop-and-Deploy Vision

The ultimate goal that we pursue with the ASG may best be characterized as Drop-
and-Deploy: Anyone who decides to deploy an ASG simply has to distribute (drop) a
certain number of Service Cubes at the respective location, switch them on, and inject
the desired services at an arbitrary Cube. The structuring of the required software in-
frastructure, the binding of clients to services, and the adaptation to changing conditions
is completely taken over by the ASG software. The road towards this goal holds some
major challenges from diverse fields of computer science. In our work, we concentrate
on a set of fundamental algorithms and protocols that are required in order to realize
this vision of a self-organizing ASG infrastructure.

4 Algorithms and Protocols for a Self-Organizing ASG

Setting up a communication network is only the first step towards the operation of
an ASG. In order to provide services within an ASG network, a software platform is
required that can deal with the dynamics in the system. This Serviceware has to support
the Drop-and-Deploy idea inherent to the ASG. In our work, we concentrate on three
central aspects of such a Serviceware:

1. Self-organizing service distribution: Having a single replica of each service at
some fixed Service Cube in an ASG may be sufficient to provide this service in a
very basic way. However, if the ASG and the group of clients has a certain size,
this solution is suboptimal. Temporary partitions in the network decrease the avail-
ability of the service. Requests have to be routed through the entire network, which
wastes bandwidth, and increases response times. Therefore, it is vital to replicate
services and to position them at specific Service Cubes such that most clients are
served by a near-by replica. Moreover, this placement must not be static. It must be
able to adapt if the client request patterns or the network topology change.

2. Service discovery and lookup: If services replicate and reposition dynamically,
finding and using them becomes a challenge. Therefore, the idea of dynamic service
placement directly implies the necessity for an adequate lookup service (LS) that
is able to cope with this form of dynamics. This LS has to be distributed, too,
and it has to apply some update strategy with an acceptably low overhead, such
that updating the location information of repositioned replicas does not jam the
network.

3. Data consistency among stateful ASG services: Most useful services that may
be deployed in an ASG are stateful. That is, they store mutable data that may be
read and written in a distributed way by clients. Therefore, an adequate consistency
protocol is required that keeps the replicas of a service consistent with each other.
This protocol, too, has to honor the specific conditions and the dynamics in an ASG.

In the following, we will examine each of these problems and our respective solu-
tions in turn.

4.1 Distributed Service Placement

We have developed an adaptive service placement algorithm [6] that is run by each
replica. This algorithm allows a replica to migrate from one node to another, to replicate
(clone itself and subsequently migrate both clones), or to dissolve (remove itself from
the system). The basic objective of this algorithm is to move replicas closer to the clients
that use them. Additionally, the lookup service (cf. Section 4.2) enforces that a client
always uses the service that is closest to it. These two principles define a feedback
process: As a replica moves closer to its clients, it attracts even more clients from the
respective area. This, in turn, increases the area’s attractiveness for the replica which
causes it to move closer, and so on. As the replica moves into the group of requesting
clients, a negative feedback sets in and lets the replica converge to a stable position.
The placement algorithm itself is fully decentralized and requires no external con-
trol. It constantly inspects the incoming message flows and periodically takes a local

adaptation decision. This is possible without any additional communication between the
replicas since they are coupled indirectly through the message flows they receive. This
mechanism creates a stable, coordinated global placement that is adaptive to changes in
the environment. The algorithm consists of three rules for the different adaptations:

1. Idle Rule: A replica dissolves (is removed) if it received less then « requests in a
time interval m.

2. Replication Rule: A replica replicates to neighbor nodes v and w, if it receives a
significant flow via u that consists of requests with an average path length of more
than p hops. w is either set to the dominant node among the remaining neighbors,
or the second replica stays at its current node. p is called the replication radius.

3. Migration Rule: A replica migrates to a neighbor node w, if the message flow that
is coming in via u is stably dominant (larger than the sum of all remaining flows).

(b)

Figure 1. Exploiting dominating flows for incremental cost optimization.

The core adaptation algorithm invokes these rules in the order in which they are
listed above and exits as soon as one rule triggers an adaptation. The idle rule simply
garbage-collects unused replicas and enforces a constant refreshment. This avoids that
the system gets permanently stuck in some suboptimal configuration. The replication
rule applies a pressure on the system such that replications happen until each replica
covers at most a network area of radius p. This creates an overall number of replicas that
depends on p and on the diameter of the network, and effectively leads to the division
of the network into cells. The migration rule forces replicas to move to locations where
the magnitudes of the incoming message flows are in balance. Figure 1 shows how
the overall message flow (numbers at the edges) is reduced by migrating towards a
dominant flow. This global behavior is not directly coded into the rules. It emerges as a
number of replicas apply the rules and interact indirectly with one another.

4.2 Service Discovery and Lookup

The instances of the ASG lookup service (LS) [7] are distributed over an ASG network.
An ASG network is clustered, and each ordinary node has at least one cluster head in
its direct neighborhood. Cluster heads are used to run base services (like the LS) in the
ASG. Each LS instance holds location information for all active service replicas. Due
to the distributed nature, updates have to be propagated among the LS instances. Since

replica migrations may be executed frequently, and since the transmission bandwidth in
the wireless network is the most important resource in the ASG, we refrain from using
flooding updates. Instead, we employ a lazy propagation strategy.

service
migration

% .°
client °,
. .
location

....... request path
------- forwarding path
= = = reply path —--% LS update

Figure 2. Request-driven update process.

Figure 2 depicts the update process. Only those messages are flooded that announce
the creation or the removal of a replica. All other updates (when a replica migrates)
are piggybacked by normal service reply messages. Nodes inspect each message that
they relay. If a node finds a piggybacked LS update, it informs its cluster head who
applies the update to its service table. In this way, updates are propagated lazily in those
regions that are involved in the sending or the relaying of requests. All other regions
remain outdated. However, this does not void the validity of the lookup information
due to a second mechanism that cooperates with this lookup process: Every time a
replica migrates, it leaves a forward pointer at its old location. If a request arrives at
this location, it is forwarded, possibly over several former locations of the replica, until
it arrives at its current node. The replica sends a reply together with an LS update back
to the client. This mechanism ensures that even outdated lookup information is still
sufficient to deliver a request correctly. The lazy updating mechanism requires minimal
message overhead since updates are only made if needed, and only one dedicated update
message is sent to each LS instance along the reply paths.

4.3 Data Consistency

Due to the possible dynamics in an ASG, preserving the consistency in a group of
replicas requires an optimistic approach. Replicas may be temporarily separated due to
network partitions, or they may be spontaneously created or removed. In order to cope
with these circumstances, we have extended the well-known Bayou anti-entropy pro-
tocol [13]. The new Bounded Divergence Group Anti-Entropy Protocol (BD-GAP) can
run reconciliation processes among an arbitrary group of replicas, ensuring eventual
consistency. Each replica may autonomously start a reconciliation process and syn-
chronize with the fellow replicas currently known to it. It gets this information from the
lookup service. Conflicts due to concurrent initiations of reconciliations are resolved
automatically. The protocol chooses the order in which to exchange updates with other

replicas such that the amount of data that has to be exchanged is minimized. Further-
more, it limits the degree to which data stores diverge in such a way that complete state
transfers, as they are necessary in Bayou, are completely avoided.

The BD-GAP introduces a stronger coupling than the original anti-entropy proto-
col by exploiting the nature of the ASG. But still, it allows for enough decoupling to
preserve the increased availability introduced by the original protocol. It is adaptive to
the degree of dynamics in the system since it gradually reverts to the original pair-wise
protocol when the dynamics in the system increases. In situations with low dynamics,
it exploits the fact that most replicas are accessible in order to do reconciliations more
thoroughly which increases the overall consistency.

4.4 Additional Results

In addition to the results highlighted above, we have also designed and implemented
MESHMdI [4], a core middleware on top of which our algorithms and protocols are
implemented. MESHMdI is based on mobile agents and the tuple space paradigm to
allow for decoupled and asynchronous communication.

In order to show why and in which way the proposed solutions are self-organizing,
we created a novel model for Self-Organizing Software Systems (SOSS) [8]. The SOSS
model can be used to classify existing software systems in order to show whether they
are in the class of SOSS or not. Such a model did not exist before which has lead to a
growing confusion about the nature of existing systems. We envision that it will serve
as an ordering tool beyond the scope of our concrete work, and that the classification of
software systems will provide new insights into their general nature.

5 Conclusions and Future Work

In our work, we have made the first step towards a self-organizing infrastructure for
ambient services. The three mechanisms that we presented above lay the foundation for
this development by providing a self-contained set of functionalities that is required by
Aml environments in order to offer facility-specific services to mobile users. We have
shown how a self-organized service placement, a self-organized lookup system, and
an adequate consistency protocol can be modeled. Furthermore, we have implemented
these concepts on top of a set of simple middleware abstractions to proof their validity.
Our SOSS model allows us to argue precisely why and how the resulting system is
self-organizing.

In the future, more sophisticated systems can be built on these fundamental mecha-
nisms. For example, we have not touched the topics of security and privacy in an ASG
environment. These are both essential ingredients to commercially exploitable systems.
Moreover, the extension of the ASG with gateways to the Internet and the federation of
multiple ASG remain open issues that will be in the focus of our future work.

References

1. G. Cabri, L. Ferrari, L. Leonardi, and F. Zambonelli. The LAICA project: supporting ambi-
ent intelligence via agents and ad-hoc middleware. In Proceedings of the 14th IEEE Inter-

11.

12.

13.

14.

national Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise,
pages 39-44, June 2005.

. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgelman. Scenarios for

Ambient Intelligence in 2010. Technical Report, The IST Advisory Group (ISTAG), 2001.

. Michael Hellenschmidt. Distributed Implementation of a Self-Organizing Appliance Middle-

ware. In Gérard Bailly, editor, Proceedings of sOc-EUSAI 2005 (Smart Objects Conference),
pages 201-206, 2005.

. Klaus Herrmann. MESHMdI — A Middleware for Self-Organization in Ad hoc Networks. In

Proceedings of the 1st International Workshop on Mobile Distributed Computing (MDC’03),
May 2003.

. Klaus Herrmann. Self-Organizing Infrastructures for Ambient Services. PhD thesis, Berlin

University of Technology, July 2006. (publication pending).

. Klaus Herrmann, Kurt Geihs, and Gero Miihl. Ad hoc Service Grid — A Self-Organizing In-

frastructure for Mobile Commerce. In Proceedings of the IFIP TC8 Working Conference on
Mobile Information Systems (MOBIS 2004). IFIP — International Federation for Information
Processing, Springer-Verlag, September 2004.

. Klaus Herrmann, Gero Miihl, and Michael A. Jaeger. A Self-Organizing Lookup Service

for Dynamic Ambient Services. In 25th International Conference on Distributed Computing
Systems (ICDCS 2005), pages 707-716, Piscataway, NJ, USA, June 2005. IEEE Computer
Society Press.

. Klaus Herrmann, Matthias Werner, and Gero Miihl. A Methodology for Classifying Self-

Organizing Software Systems. In International Conference on Self-Organization and Au-
tonomous Systems in Computing and Communications (SOAS’2006), September 2006.

. Valérie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Francoise Sailhan, Rafik Chibout,

Nicole Lévy, and Angel Talamona. Developing Ambient Intelligence Systems: A Solution
based on Web Services. Automated Software Engineering, 12(1):101-137, 2005.

. Gregory M. P. O’Hare, Michael J. O’Grady, Rem W. Collier, Stephen Keegan, Donal

O’Kane, Richard Tynan, and David Marsh. Ambient Intelligence Through Agile Agents.
In Yang Cai, editor, Ambient Intelligence for Scientific Discovery, volume 3345 of Lecture
Notes in Computer Science, pages 286-310. Springer-Verlag, 2004.

Marcela Rodriguez, Jesus Favela, Alfredo Preciado, and Aurora Vizcaino. An Agent Mid-
dleware for Supporting Ambient Intelligence for Healthcare. In Second Workshop on Agents
Applied in Health Care (ECAI 2004), August 2004.

F. Rousseau, J. Oprescu, L.-S. Paun, and A. Duda. Omnisphere: A Personal Communica-
tion Environment. In Proceedings of the 36th Hawaii International Conference on System
Sciences (HICSS-36 2003), 2003.

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pages 172—
182, New York, NY, USA, 1995. ACM Press.

M. Vallée, F. Ramparany, and L. Vercouter. A Multi-Agent System for Dynamic Service
Composition in Ambient Intelligence Environments. In Advances in Pervasive Computing,
Adjunct Proceedings of the Third International Conference on Pervasive Computing (Perva-
sive 2005), May 2005.

