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Abstract

The concept of self-organization is rapidly gaining im-
portance in the area of distributed computing systems.
However, we still lack the necessary means for engineer-
ing such system in a standardized way since their common
properties are rather abstract, and the mechanisms from
which self-organization emerges are too diverse. Therefore,
it has become common practice to engineer computing sys-
tems by taking inspirations from well-known case studies
of biological systems. However, the concepts found in such
systems are in many cases only partially transferable to the
domain of distributed computing systems since biological
systems are subject to vastly different constraints compared
to those in a computing system. Our contributions in this
paper are the following: (1) We present a case study of a
self-organizing software system that originates from the do-
main of distributed computing systems. Therefore, its con-
cepts can be exploited in other distributed computing sys-
tems much more directly. (i1) We give a detailed analysis of
the emergent properties of the system and the mechanisms
by which they arise. (iii) We generalize the mechanisms by
which self-organization emerges in this system and present
a catalog of design questions that may help engineers in
creating arbitrary self-organizing systems.

1 Introduction

In recent years, the research area revolving around self-
organization and emergence in computer science has grown
up from a niche discipline to a major topic. This is espe-
cially true in the area of distributed systems where the fol-
lowing factors contribute to this development:

1. Emerging technologies like wireless sensor networks
[1] and mobile ad hoc networks [12] result in highly
dynamic distributed systems that do not provide any
clear-cut management interfaces. Such systems tend

to collate spontaneously such that no single adminis-
trative authority can assume responsibility for their or-
ganization or management.

2. Large-scale distributed information systems like Con-
tent Delivery Networks [34], Peer-to-Peer systems [2],
and Publish/Subscribe infrastructures [9] escape clas-
sical management attempts due to their sheer size. Dy-
namic usage patterns of clients lead to the inherent
need for timely adaptation. However, centralized man-
agement is prohibitive as this would reduce scalability
drastically.

3. The growing dynamics of a large variety of dis-
tributed computing systems raises the need for more
autonomous systems that may adapt to changing work-
ing conditions with minimal manual intervention. In
an industrial context, this leads to a reduction of man-
agement costs and to a more timely adaptation of the
respective systems.

Case studies of self-organizing systems outside the com-
puter science domain (e.g. from biology) show that a self-
organizing system commonly consists of a group of rela-
tively simple entities (e.g. ants, bees, or fish) that interact to
achieve complex adaptive group behavior. From a techni-
cal viewpoint, lower-level components that are simple and
homogeneous are easy to manufacture and maintain. More-
over, the redundancy inherent to such a system implies ro-
bustness as well as scalability. But how can the lower-level
components of a system and their interactions be designed
to produce the desired behavior of the overall technical sys-
tem? Despite several years of intense research, the field of
self-organizing software systems is still in its infancy, and
we lack the necessary general means for developing self-
organizing software systems in a reliable and dependable
way.

Studies of individual biological systems have enabled
technical solutions for specific problems. The most success-
ful mechanism that has been transferred in this way is that



of trail-laying ants which has been employed, in a number
of technical applications [4, 3, 27, 23, 6, 5, 20, 29]

From such case studies, we may understand how specific
natural systems work. However, transferring these mech-
anisms to distributed computing systems proves difficult.
Biological systems solve very specific problems and their
components are situated and interact in the physical world
using air temperature, light signals, chemicals, etc. The dif-
ference in abstractions between the biological world and the
domain of computing systems is rather large. Therefore,
many biological case studies have only limited value for the
engineering of concrete software systems.

In this paper, we present the first case study of a self-
organizing software system that is not based on biological
models. This system, called Ad hoc Service Grid (ASG)
[14, 15, 16], originates from the domain of distributed com-
puting systems and is situated in the area of Ambient In-
telligence. It provides mechanisms for the self-organized
replication and placement of services in such an environ-
ment. Our emphasis in this study lies on the analysis of the
emergent effects perceivable in the ASG. We show how a
small set of local rules, executed by service replicas, results
in cost-efficient and adaptive global replica placement pat-
terns. It turns out that these simple rules lead to qualitatively
different interaction schemes at a higher level of abstrac-
tion. Based on the description of the low-level algorithm,
we will derive and investigate the mechanisms that lead to
these higher-level emergent effects. Furthermore, we gen-
eralize the mechanisms that contribute to the emergence in
our system, and we propose a catalog of general design
questions that can help engineers in dividing the complex
problem of creating a self-organizing software system into
different aspects.

The rest of this paper is structured as follows: In the next
section, we discuss some related work. In Section 3, we in-
troduce the ASG model, including a discussion of the algo-
rithm for self-organized replica placement. Subsequently,
we analyze the high-level behavior that can be observed in
the overall system. In Section 4, we investigate the relation
between the lower-level actions taken by replicas and the
emergent higher-level behavior of the overall system. We
reveal hidden interactions between replicas and give a de-
tailed discussion of the mechanisms that take effect in the
emergence of the higher-level behavior. In Section 5, we
generalize these qualitatively new concepts and present the
resulting catalog of design questions. We present our con-
clusions in Section 6.

2 Related Work

The case studies that are at the basis of self-organizing
software systems research are conducted by biologists,
physicists, and mathematicians. They reveal the mech-

anisms by which certain natural systems achieve self-
organized behavior. This includes, for example, pattern for-
mation in ant colonies [30], swarm flocking behavior [33],
thermo regulation in honey bee nests [22], the synchronized
flashing of fireflies [31], and the aggregation behavior of
slime molds [25], just to name a few. These studies investi-
gate the inherent feedback mechanisms and diverse commu-
nication patterns based on light emission, air temperature
fluctuation, pheromones, and the like, establishing abstract
models of the respective natural systems.

These models inspire computer scientists to apply sim-
ilar mechanisms, for example, to radio frequency alloca-
tion [32], computer security [10], network routing [4], doc-
ument clustering [28], and optimization problems [5]. Most
of these solutions remain rather isolated, representing ap-
proaches to very specific problems in computer science.

Attempts to categorize the plethora of nature-inspired
mechanisms and to make them accessible as a kind of self-
organization tool box have been made by Parunak [21] and,
more recently, by Mamei et al. [24]. They try to create a
taxonomy that allows an assessment of arbitrary computer
science problems such that the most fitting method may
be picked to solve them. This is a qualitatively new step
as it proposes a more general attempt to engineering self-
organizing software systems. Albeit, it is still a bottom-up
approach that relies on existing systems as example cases.

Top-down approaches are rare. For example, Gershen-
son proposes a general methodology for designing and con-
trolling self-organizing systems that introduces mechanisms
for “reducing friction” and “promoting synergy” between a
system’s elements [11]. Such concepts are valuable since
they further our general understanding of self-organization.
However, it is quite hard to translate them into more tangi-
ble ones related to a concrete problem. Wright et al. present
a measure of self-organization and propose to use this mea-
sure in order to let a genetic algorithm evolve a given sys-
tem towards self-organization [35]. However, the validity
of this modeling approach has only been shown for abstract
scenarios. Again, this approach provides additional insight,
but it is hard to apply it in practice.

The work presented in this paper is a part of the bottom-
up strand. However, the system we investigate originates
from the domain of computing systems. Therefore, the con-
cepts do not need to be transformed in any way and are
much more easily applicable to other computing systems.
Moreover, we do not simply present yet another design pat-
tern. Instead, we attempt to generalize a number of impor-
tant aspects found in the design of the presented system.
These aspects are meant to support a top-down engineering
methodology by separating the monolithic view into sub-
views that may greatly facilitate the engineering process.
Thus, our hope is to close the gap between bottom-up and
top-down approaches a little bit from both ends.



3 Ad hoc Service Grid

In recent years, the vision of Ambient Intelligence (Aml)
[7] has produced considerable research efforts. The main
idea of Aml is that mobile users may wirelessly access ser-
vices (anywhere and anytime) that support them in their
daily activities without putting any administrative burden on
them. One essential building block of Aml are infrastruc-
tures that allow local access to local, facility-specific ser-
vices. To enable services that enhance the user’s interaction
with his current environment, the Ad hoc Service Grid en-
riches the physical surrounding of the user (e.g. at shopping
malls, construction sites, and trade fares) with dedicated
computing resources that enable service provisioning. One
example scenario is a shopping mall that offers ambient ser-
vices to customers, enabling them to navigate through the
mall, find certain products quickly, and optimize the con-
tents of their shopping cart, for example, according to the
overall price or quality. Such services pertain to the local
environment of the user and are provided by the local ASG
resources that have been distributed over the shopping mall.

The Ad hoc Service Grid infrastructure [16] is easy to
setup, flexibly scalable, and requires minimal administra-
tive effort. The easy setup and the flexibility at the network-
ing layer is achieved by adopting Mobile Ad hoc Network-
ing (MANET) technology. To minimize the administration
overhead, we have created a software layer that we call ASG
Serviceware. This software has the task of providing ba-
sic support for running services within an ASG in a self-
organized fashion. That is, all aspects of executing services
and adapting to changing user demands shall be managed
autonomously by this software.

In the following sections, we briefly describe the rele-
vant aspects of the existing ASG system in preparation of
our analysis of its emergent properties. A very detailed de-
scription of the ASG including the full experimental setup
and many quantitative evaluations can be found in [15].

3.1 System Model

The ASG is based on the concept of Service Cubes (also
called Cubes or nodes hereafter). A Service Cube is a PC-
class computer dedicated to service provisioning that pro-
vides ad hoc networking capabilities and computing power.
It has no peripheral devices (display or input devices), re-
lies on a permanent power supply, and is equipped with a
wireless network interface. In order to cover a given lo-
cation with Ambient Services, a number of these Service
Cubes is distributed over the location such that they can
spontaneously set up a wireless multi-hop network connect-
ing all Cubes. Thanks to the concept of self-contained Ser-
vice Cubes, an ASG network has a highly modular struc-
ture: New modules (Cubes) can be added and existing ones

can be removed or repositioned to re-shape the network in
an ad hoc fashion. This provides a flexible way of scal-
ing an ASG to an appropriate size and allows for a quick
and easy setup. No extensive planning and no construction
work is necessary to cover a location in this way. Clients
that wish to use ASG services, enter the facility and auto-
matically become a part of the ad hoc network since their
mobile device connects to any of the Cubes in an ad hoc
fashion. We assume the existence of some technology that
allows for a seamless hand-over such that clients may move
freely through the ASG network and always stay connected
to at least one Cube.

3.2 Self-Organized Replica Placement

An ASG network may take an arbitrary shape and may
consist of different numbers of Cubes. Furthermore, the
network shape and the number of Cubes as well as the vol-
ume of clients, their location, and their demand may vary
over time. Temporary network partitions may occur reg-
ularly and have profound influence on service availability.
In addition to these dynamics, the transmission capacity of
the wireless medium is the most scarce resource in such
a system. In order to cope with the dynamics and to re-
lieve the network from unnecessary traffic, the ASG Ser-
viceware employs a mechanism for the dynamic replication
and placement of services inside an ASG network.

To implement this mechanism, we have developed a
purely decentralized service replication and placement al-
gorithm [16, 15]. A service may consist of one or more
replicas, and each of these replicas runs the algorithm lo-
cally in regular intervals to find a better position within the
ASG network. A group of replicas that repeatedly executes
the algorithm, distributes itself within an ASG network such
that the global communication costs are minimized.

In this case study, we analyze this emergence of global,
cost-efficient placement patterns from the local actions of
the individual replicas. Despite the fact that there is no
global process or knowledge in the system, and even though
replicas do not communicate in order to coordinate their
placement decisions, global coordination is achieved. The
whole system of replicas converges to a stable, low-cost
placement that covers the entire network. Moreover, if sig-
nificant changes occur due to the afore-mentioned dynam-
ics, the distributed algorithm adapts the global placement
accordingly to re-establish a cost-efficient placement.

However, as we will see in the following description of
the algorithm, the lower-level actions taken by replicas do
not directly imply this higher-level behavior of the overall
system. How does an adaptive global placement emerge?
What are the hidden mechanisms that lead to these patterns?



3.3 Distributed Placement Algorithm

The placement algorithm allows a replica to migrate
from one node to another, to replicate (clone itself and sub-
sequently migrate both clones), or to dissolve (remove itself
from the system). The immediate goals of every individual
replica are to:

1. Maintain a balance between the flows of requests com-
ing in via the set of neighbor nodes. This is achieved
using migrations.

2. Avoid that requests have to travel large distances be-
tween their sender (client) and the receiving service
replica. This is done by creating new replicas.

3. Avoid idle replicas. This is done by dissolving idle
replicas.

(@) (b)

Figure 1. Using the replication radius to re-
duce the distance spanned by requests.

Let us assume that the ASG network is a graph G =
(N, E) and that a replica r; is running on node v € N. v
has a set of neighbor nodes NV, that contains all nodes in
N that are direct neighbors of v. All requests received by
r1 are routed to v via some node in NN,. A series of re-
quests coming in via a neighbor is also called a message
flow. Such a message flow is called dominant iff its volume
(number of messages per time unit) is greater than the ac-
cumulated volume of all remaining message flows entering
v. A flow is called significant if there is no single incom-
ing flow with a greater volume. We also call the respective
neighbor nodes dominant or significant respectively. Each
instance of the algorithm constantly inspects the volumes of
the incoming message flows of its replica and periodically
takes a local adaptation decision based on this observation.
The algorithm has three rules for the possible adaptations:

1. Idle Rule: A replica dissolves (is removed) if it re-
ceives less then o requests in a time interval m.

2. Replication Rule: A replica replicates to neighbor
nodes v and w, if it receives a significant message flow
via u that consists of requests with an average path
length of more than p hops. An example is depicted
in Figure 1(a) where v is node 3, w is node 4, and
p = 1. w is either set to the dominant node among
the remaining neighbors (node 1 in Figure 1(a)), or the
second replica stays at its current node if such a dom-
inant node does not exist. p is called the replication
radius.

3. Migration Rule: A replica migrates to a neighbor
node u, if the message flow that is coming in via u
is dominant. Figure 2(a) shows an example where 7;
is running on node 3, and node 4 is the dominant node.

The placement algorithm invokes these rules in the or-
der in which they are listed above. In each run, the first
rule whose condition triggers is executed, and the remain-
ing ones are skipped. When a new service is installed on an
ASQG, it starts with a single, initial replica that is put on an
arbitrary node.

(W)

Figure 2. Exploiting dominating flows for in-
cremental cost optimization.

Of course, the success of the above adaptations is heav-
ily depending on the clients’ choice of replicas. Our basic
assumption is that clients always choose the replica that is
closest to them in terms of network hops. This is enforced
by the distributed ASG lookup service [17]. The instances
of this service are distributed in the ASG network such that
each client has at least one instance in its one-hop neighbor-
hood. A query to this instance yields the service replica that
is closest to the client’s current position.

3.4 Higher-Level Behavior

Our main goal is to use as little wireless bandwidth as
possible since this is regarded as being the most critical re-
source in the ASG. Therefore, we evaluate the ASG system
based on the communication costs. These costs are defined
as the number of message transmissions per time unit that
is necessary to serve all client requests. If a client sends a



request to a service that is n network hops away, this results
in n transmissions of the request message.

The first global observation that can be made when the
system is running is that the overall communication costs
are successively reduced. Figure 3 shows how the overall
costs produced in the system per simulation tick decreases
over time to less than 50% of the initial value. The algo-
rithm is run every 10.000 ticks, and with each run, there is
a notable drop in costs. Additionally, every 50.000 ticks,
the client request patterns are changed. This is done by re-
computing the probabilities with which a client that is con-
nected to a node w sends a request for the service. Due to
the continuous attempt to maintain a good placement, the
initial increase in cost that is caused by such perturbations
1s countered, and the cost reduction continues.

Cost

0 50000 100000 15000C
Simulation Tick

(a) Initial phase
Figure 3. Communication cost optimization.

Figure 4 depicts an example of an ASG network that
runs a service (nodes that host replicas are black). The fig-
ure shows how the replicas spread out to cover the network.
Changes in client request patterns are indicated by marks in
the upper left corner of the snapshots. Note how the repli-
cas adapt quickly (within 3 iterations of the placement al-
gorithm) to changes and retain a stable placement until the
next perturbation occurs. After the third perturbation, sta-
bility is maintained until perturbation number eight is ap-
plied to the system.

4 Emergence of a Global Replica Placement

The quick reduction of the costs and the adaptiveness
displayed by the higher-level behavior of our system are,
of course, the result of the actions collectively taken by the
replicas. However, the transition from the replicas’ actions
at the lower level to the global behavior at the higher level
(Figure 5) is not obvious at first glance. How are replicas
connected to each other? How do they interact to achieve

t=410000

t=160000

Figure 4. Placement snapshots.

global coordination? After all, the actions taken by repli-
cas appear to be rather self-centered and isolated from each
other. Why do migrations towards dominant neighbors and
replications towards long request paths actually generate a
stable, cost-efficient, adaptive, global replica placement?

To fully understand how this transition occurs, we have
to consider concepts that are rather different from those
used to describe the placement algorithm and that fill the
gap between the two levels depicted in Figure 5. In this
section, we will investigate what happens behind the scenes
through the interactions taking place in the system. We will
show that feedback plays a vital role in the emergence of
the global behavior and how a certain form of competition
among replicas controls their global distribution.

Higher Level

(cost-efficient, adaptive, global replica placement)

Transition by Emergence!?

Lower Level
(migration, replication, dissolval, message flows,
dominant nodes, path lengths, etc.)

Figure 5. Emergence: The big picture.



4.1 Migration — Basic Feedback Process

It is intuitively clear that the algorithm’s migration rule
pushes a replica towards the bulk of clients that send re-
quests to it. In combination with the fact that the ASG
lookup service always tries to assign the closest replica to
any client, this creates a feedback loop. This whole feed-
back process has three phases that are depicted in Figure 6:
Let us assume that a given ASG network (denoted by the
oval) is served by two replicas 1 and ro. Initially, r; is in a
state of imbalance since it receives client requests (indicated
by the arrows) from a single direction (Figure 6(a)). The mi-
gration rule will force r; to migrate towards this direction.
By this movement, r; suddenly becomes the closest replica
for a set of clients that sent their requests to 72 before (Fig-
ure 6(b)). Thus, by moving towards its clients, r; attracts
more clients which, in turn, pulls ; even more towards the
direction of client requests. This is a positive feedback ef-
fect which takes place in the attraction phase and drives
the system towards a new configuration quickly. After a
while, r; enters the region where its clients are positioned
and the requests start coming in via more than one neigh-
bor node. This decreases the attraction until the dominant
message flow depletes and the motion of 1 stops. This de-
pletion phase (Figure 6(b)) introduces a negative feedback
process that has a strong stabilizing effect as it slows down
r1 quickly. In Figure 6(c), the system has reached an equi-
librium state where no distinct force is applied to either of
the replicas. Moreover, the average length of the request
paths, and therefore the costs, are minimal when our ex-
ample system is in this state. In the fluctuation phase, the
system stays in this state until notable changes or fluctua-
tions occur in the request patterns of clients that lead to an
imbalance again and restart the adaptation process.

(a) Attraction phase

(b) Depletion phase

(c) Fluctuation phase
Figure 6. The three feedback phases.
Figure 6 clearly shows how replicas are coupled and in-

teract indirectly via message flows. Each message flow is
consumed by some replica, and each time a flow is redi-

rected to a different replica (due to changes in the distance
to clients), another replica potentially enters a state of im-
balance since it looses this very message flow. In our exam-
ple, 5 is thrown out of its equilibrium state as r; attracts
a portion of its clients 6(a). Therefore, 72 is also forced to
migrate in order to regain its equilibrium (Figure 6(c)).

In general, the migration rule applies a force to the sys-
tem that leads to an automatic adaptation each time a devi-
ation from the equilibrium state occurs.

4.2 Replication and Removal — Adapting
to the Network

The replication rule applies a different kind of force to
the system of replicas: The replication radius p leads to the
creation of replicas until each replica covers a portion of the
network with a radius of about p. Therefore, this rule leads
to an adaptation of the number of running replicas to the
size of the network. If the network grows and clients start
sending requests from the new regions, the system automat-
ically creates new replicas to cover them. This ensures that
client requests travel at most p hops on average, which, in
turn, controls the overall communication costs.

The idle rule is the counterpart of the replication rule
in the overall mechanism for the control of the number of
running replicas. If the number of clients diminishes, then
less requests are issued throughout the network. Therefore,
less replicas have to be maintained in order to serve these
requests. Some replicas, for which the number of requests
falls below the threshold of «, will then be automatically
removed, and their clients start using other replicas. Due to
the indirect coupling between the replicas, this may lead to
migrations among the remaining replicas in order to com-
pensate the possible imbalance caused by this change. The
idle rule may also be viewed as a sort of garbage collection
as it constantly removes unused replicas.

4.3 Adaptive Cell Structuring

Due to the the fact that clients always use the closest
replica, the collective adaptation process of all replicas cre-
ates a global pattern consisting of the cells of a Voronoi de-
composition. In each cell, a replica serves all requests be-
ing issued inside the cell. The replica placement algorithm
replicates and migrates the set of replicas such that a stable
configuration of Voronoi cells is created.

Figure 7 depicts how the cell structure changes if the
replica configuration is changed. For this simplified ex-
ample, we assume that the plane is densely populated with
nodes and that client requests are issued uniformly from all
nodes. Figure 7(a) shows a stable Voronoi cell pattern with
three replicas: Each replica is placed at about the center of
its cell and, thus, the forces applied by client requests are
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Figure 7. Adaptation of the cell structure.

about the same in all directions. Let us assume that, due to
some disturbance in the request patterns, a new replica ry4 is
created between 1 and ro. The resulting Voronoi diagram
is shown in Figure 7(b). This disturbance changes the cells
of r1 and 75 such that they are close to the borders of their
cells. Since the requests coming from the upper part of the
plane are now redirected to r4, they start receiving an unbal-
anced flow of requests. According to the migration rule, r;
and 9 are forced to move to a position where the flows are
in balance again. The resulting four-cell setup is depicted
in Figure 7(c). Thus, a reconfiguration on a global scale is
caused by a local disturbance without any direct communi-
cation taking place between the replicas.

4.4 Adaptation Cycle and Attractors

As we have seen in the qualitative analysis of the hidden
effects of our simple replica placement algorithm, it intro-
duces an adaptation cycle. It implicitly defines the notion
of a stable state as follows:

Definition 1 (Stability Condition) The state of the overall
replica system is stable iff

1. the incoming message flows of all replicas are bal-
anced (i.e. there is no dominant node),

2. no replica serves requests that average a path length
of more than p hops, and

3. each replica receives a sufficient amount of requests
per time unit.

In such a state, non of the adaptation rules is triggered
and, thus, the current replica placement is retained.

Equilibrium

/ (stable state) \

Adaptation Perturbation
(counteraction (change in the
by the system) environment)

Disequilibrium
(unstable state)

Figure 8. Adaptation cycle.

Perturbations due to changes in client behavior or net-
work topology can push the system into an unstable state
in which the stability condition is violated. This automat-
ically leads to adaptations through the respective rules of
the distributed placement algorithm until a new stable state
is reached (cf. Figure 8). This resembles a classical con-
trol loop that counters every deviation from the prescribed
set point. However, in our case, the set point is no particular
placement or any geometrical characteristics thereof, as one
may expect. Instead, the set point is stability. In complex
systems terminology, this set point is also called an attrac-
tor [26]: Let v be a replica placement and let 3 a state of the
environment that the replica system has to adapt to (client
request pattern, network topology etc.). Among the set .S of
all possible system states (v, (3), there is a subset Sgzqp C S
that satisfies the stability conditions:

Sstab = {(, B) € S| « fulfills Def. 1 under 5}

Through the adaptation cycle, the replica system is con-
stantly attracted to some placement o such that (a?, 37) €
Sstap for the current environment state 37. If, through some
sort of dynamic change, the environment enters a different
state 3* such that (o, 3%) ¢ Sssap, then this instability
automatically triggers an adaptation and pushes the replica
system into a new state o such that (a!, %) € Sysqp holds
again until the next environmental change.

But how is stability related to our original goal of re-
ducing the communication cost in the overall system? For
each individual replica, a stable state implies that the lo-
cal costs cannot be immediately reduced by an adaptation.
As indicated in Figure 2, a migration towards a dominant
node has a potential for reducing the local costs since the
sum of request flows received from the remaining nodes
(Frest) may have to travel one hop further while the hop
count of the dominant flow (Fg,,,) is reduced by one. Due
to the definition of dominance, we have F,.cst < Fgom, and
the number of transmissions per time unit required to trans-
port the client requests to the migrated replica is reduced
by Faom — Frest > 0. In a stable state, a replica does not
have this immediate possibility of reducing the local costs.
Thus, the costs are the lowest that are currently achievable
by the replica. There may well be possible migrations that
eventually lead to a reduction. However, the replica may
only speculate about them. Therefore, the stable state rep-
resents a local cost minimum for this particular replica. The
communication cost in the overall system is the sum of all
local costs. Thus, the overall costs are at a local minimum
if all replicas are in a stable state. In other words, the sys-
tem is constantly forced into some cost-efficient attractor.
This attractor state may not represent the overall global cost
minimum, but this is the best we can achieve with a purely
distributed heuristic approach in a dynamic environment.



5 Generalization of the Results

In the preceding qualitative analysis of our simple replica
placement system, we have shown that its complex high-
level behavior is a consequence of the interactions among
the individual replicas. Replicas are coupled and interact
indirectly through the message flows that are an attribute of
their environment (network topology and client behavior).
This interaction is much more complex than is indicated by
the rather simple placement algorithm. It can be explained
using concepts like feedback, adaptive cells, adaptation cy-
cles, and attractors that fill the semantic gap (depicted in
Figure 5) between the lower-level actions and the higher-
level behavior.

This case study has its own value in the same sense as
studies of biological systems do: It may inspire new tech-
nological solutions that solve related problems with similar
self-organization approaches. However, the concepts and
technologies employed here are much closer to those of sys-
tems that may potentially exploit them in different informa-
tion technology contexts.

Beyond being a blueprint, our system can be valuable
with respect to another important question: Can this study
give some indications as to how such a self-organizing sys-
tem may be purposefully engineered in general?

We cannot derive a complete engineering process. How-
ever, the self-organized replica placement system has some
characteristics and features that may be applicable in a more
general context. In the following, we analyze these gen-
eral features and pose some questions that should be an-
swered by engineers in order to create similar characteris-
tics in other systems. The aim is to divide the immensely
complex task of creating self-organization into a number of
interrelated subtasks that a software engineer may tackle in-
dividually. This reduces the required effort and may lead
to a faster decision about the applicable mechanisms, or
it may also lead to the early recognition of the fact that a
given problem does not lend itself for a self-organizing so-
lution at all. Moreover, the concepts that should be applied
in the design and the vocabulary that is necessary to argue
about them differ dramatically from those used in conven-
tional software engineering. The following catalog of de-
sign questions and the concrete example of the ASG system
should help in adjusting to this new language.

¢ Self-organization and adaptation: The self-
organization process described in this paper has the
inherent goal of adapting the system to changing exter-
nal conditions in order to preserve its cost-efficiency.
There may be other self-organization processes that do
not necessarily aim at adaptation. However, we think
that in the area of self-organizing software systems,
adaptation is always an inherent requirement.

— What is the subject of adaptation in the system?

e Adaptation and optimization: Adaptation may be

defined as a continuous optimization process. An
adaptive system recognizes any shift towards subopti-
mal states (usually caused by a changing environment)
and counters this shift by optimizing the system’s state
to fit the new environment. This form of optimization
is an online task. It has to be repeated constantly, and
it has to lead to some solution in a timely fashion in
order for the system to stay operational. In this sense,
it is beneficial to think of the nature of this adaptation
process at the beginning of any design phase.

— What is the optimization criterion?

— Which mechanisms can be applied in order to
adapt (optimize) the system?

— Is the optimization task very complex?

Optimization vs. acceptability: The nature of the
systems that we regard is such that an optimal solu-
tion will be achievable only in rare cases. This is due
to the fact that we deal with decentralized online opti-
mization. Realistically, the best we can hope for is an
acceptable solution. This may represent a problem for
some systems whose survival depends on their optimal
configuration.

— Is an acceptable solution good enough for a
given system?

Local and global optimization: One of the beneficial
features that is commonly assigned to self-organizing
systems is their decentralization [19, 18]: The actors in
a self-organizing system act locally, and their view is
restricted to their immediate neighborhood. In terms
of optimization, this imposes a constraint upon the
system: A acceptable (low-cost) global configuration
must be achievable through a combination of locally
acceptable solutions. Or, more generally, a mapping
of the local to the global acceptability criterion must
exist. In our system, every replica tries to reach an
equilibrium state with respect to the incoming message
flows. As we have shown in Section 4.4, the combina-
tion of local equilibriums maps to a low-cost global
state.

— Is there a mapping of the local to the global ac-
ceptability criterion in the given system?

Coupling (interaction) via the subject of work: A
key to the global coordination of any decentralized
adaptation process can be a local coupling of the ac-
tors via the very subject of the adaptation. In the ASG,
there is no global coordination involved. Replicas in-
directly coordinate their respective locations with their



local neighbors (closest fellow replicas) by influencing
each other’s message flows (cf. Sections 4.1 and 4.3).
At the same time, these message flows are subject to
the optimization task. This general principle is called
Stigmergy [13]. In the same way as termites coordi-
nate their nest-building actions via the structures they
build, replicas coordinate their placement activities via
the message flows that they try to balance. Discovering
and exploiting such a coupling can greatly simplify the
design of a concrete self-organization mechanism. It
should be noted, that some form of indirect interaction
exists in most cases, and it is important to understand
its character in any case.

— Is stigmergic coordination possible in the given
system?

— What is the subject of optimization, and are the
actors coupled by it?

Feedback process: The simple feedback process in
the system evolves from (i) replicas moving towards
the clients that send requests and (ii) the clients always
choosing the closest replica. This process involves
positive feedback that leads to a fast convergence to
a cost-efficient state as well as negative feedback that
stabilizes the system when such a state is approached.
This mechanism is the driving force behind the con-
cept of self-organized replica placement. Similar pro-
cesses are common in natural self-organizing systems.
Thus, it can be beneficial to look at a problem that re-
quires self-organization from the feedback perspective.

— Is there some feedback mechanism inherent to the
problem, or

— can one be designed for the given system?

Stable attractors: The system must have attrac-
tor states that are approached by virtue of the self-
organization algorithm. Moreover, these attractors
must be cost-efficient with respect to the cost function
of the system, and they must be stable in the sense that
the attractiveness of such a state must not disappear as
a consequence of the system entering it. This would re-
sult in a system that constantly approaches good states
without ever reaching one. Metaphorically speaking,
the resulting system should behave like a ball that is
constantly rolling down-slope towards low-cost states
by itself with respect to the acceptability criterion. The
answers to the following questions are not obvious in
most cases. Moreover, they heavily depend on the def-
inition of the system as well as on the criterion for op-
timality or acceptability.

— Does the given system have stable attractors?

— How can these be approached locally through the
adaptations of the actors within the system?

6 Conclusions

The current approach to engineering self-organizing
software systems is heavily relying on copying mechanisms
found in biological systems. While this can be fruitful, we
argue that computer science should start developing its own
core concepts for this task. In this paper, we have presented
the first case study of an original self-organizing distributed
software system that employs concepts originating from the
distributed system domain.

We have investigated the mechanisms and concepts that
lead to the emergence of a globally coordinated replica
placement from simple and local actions executed by in-
dividual service replicas. These concepts fill the gap that
exists between the lower-level actions of the components
in the system and the higher-level complex behavior of the
overall system. Like any existing case study, this one can
be used as a blueprint for the design of similar concepts
in comparable systems. Subsequently, we have general-
ized the concepts leading to the emergence in the ASG sys-
tem in an attempt to present more general guidelines for
engineering self-organizing software systems. Our catalog
of design questions helps in structuring the design process
and supports the engineer in dealing with the central prob-
lems involved with achieving self-organization. It serves as
a conceptual framework rather than a formal engineering
process. However, it divides the complex task of engineer-
ing a self-organizing software systems into subtasks that are
much more easily handleable. Moreover, it helps in decid-
ing if a given problem can be solved by a self-organizing
software system.
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