
Self-Organizing Broker Topologies
for Publish/Subscribe Systems

Michael A. Jaeger
∗

Helge Parzyjegla
†

Gero Mühl
‡

Communication and Operating Systems Group
(KBS), Berlin University of Technology

Einsteinufer 17, 10587 Berlin, Germany

{michael.jaeger,parzyjegla,g muehl}@acm.org

Klaus Herrmann
Institute of Parallel and Distributed Systems

(IPVS), Universität Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

klaus.herrmann@acm.org

ABSTRACT
Distributed publish/subscribe systems are usually deployed
on top of an overlay network that enables complex rout-
ing strategies implemented in the application layer. Up to
now, only little effort has been spent on the design of the
broker overlay network assuming that it is either static or
manually administered. As publish/subscribe systems are
increasingly targeted at dynamic environments where client
behavior and network characteristics vary over time, static
overlay networks lead to suboptimal performance. In this
paper, we present a self-organizing broker overlay infrastruc-
ture that adapts dynamically to achieve a better efficiency
on both, the application and the network layer. This is
obtained by taking network metrics as well as notification
traffic into account.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

General Terms
Algorithms, Management, Performance

Keywords
Publish/Subscribe, Adaptable Middleware, Self-Organization,
Overlay Networks

∗Funded by Deutsche Telekom Stiftung.
†Funded by Deutsche Forschungsgemeinschaft.
‡Funded by Deutsche Telekom.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07,March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

1. INTRODUCTION
In the interconnected business world of today, it is of

increasing importance to quickly sense and react to rele-
vant events. Event-driven architectures (EDA) have been
proposed to enable business in real-time by providing de-
coupled many-to-many messaging. Publish/subscribe (pub/
sub) middleware is a basic building block of EDA and has
been subject to research for many years now. A distributed
pub/sub system consists of a set of brokers that are con-
nected to establish an overlay network. These brokers co-
operate to provide the functionality of the notification ser-
vice to the clients. Clients connect to their particular local
broker and can act as producers, consumers, or both. Pro-
ducers publish notifications and consumers subscribe to no-
tifications they are interested in. Notifications are usually
delivered asynchronously to consumers that are not required
to know the publisher of the notification. This way, the
communication between publishers and subscribers can be
decoupled in space, time (if additional histories are used),
and flow [4]. In the following, we write that “a broker pub-
lishes (subscribes to) a notification”, when we actually mean
that a local client of the broker publishes or consumes the
notification.

Although pub/sub is targeted at dynamic environments,
the structure of the notification service has been assumed
to be static or manually managed in many systems so far.
However, in scenarios where client usage patterns vary and
the network may be subject to change, static topologies can-
not keep the system at the optimal working point. On the
other hand, manually managing such a system is at least
expensive if not impossible. In this paper, we analyze the
problem of finding an optimal topology under a given dis-
tribution of subscriptions and notifications and prove that
this problem is NP-hard. We then propose a distributed
on-line heuristic that automatically adapts the structure of
the broker overlay network to the communication costs of
the links, the processing costs of brokers, and the patterns
in the notification flows between brokers.

The paper is structured as follows: in Sect. 2, we discuss
related work and point out existing shortcomings. Next,
we formalize the basic optimization problem in Sect. 3 and
show why using a heuristic is a sound way to solve it. Our
algorithms are presented in Sect. 4. In Sect. 5, we evaluate
the performance of the proposed solution and compare it to

543

other heuristics. The results are discussed in Sect. 6. We
present our conclusions in Sect. 7.

2. RELATED WORK
The problem of adding adaptivity to the notification ser-

vice of a distributed pub/sub system to reduce managing
costs and increase system performance has been approached
in different ways in the past. This mainly concerns the cost
metrics considered. Here, we concentrate on acyclic broker
topologies as they are commonly used for pub/sub systems.

Maximum Associativity Trees.The approach closest to
ours has been published by Baldoni et al. [1, 2]. It explic-
itly concentrates on tuning the performance of the notifi-
cation service by exploiting structural similarities of brokers
and clustering them accordingly. The authors propose a dis-
tributed algorithm that considers the interest of each broker
and builds an associativity metric from the intersection of
these interests. Based on this metric, the algorithm tries
to connect brokers with a high mutual associativity value
to increase the overall associativity of the system. Thereby,
the algorithm aims at decreasing the latency of notifications
by reducing the average number of hops they travel.

The authors derive a broker’s zone of interest from the size
of the notification space covered by the broker’s local sub-
scriptions [2]. Assuming that notifications are distributed
uniformly, larger overlapping zones of interest result in a
greater number of identical notifications being consumed by
the brokers. However, this implicit assumption limits the
applicability of the algorithm. Therefore, the authors intro-
duce a history of local events to calculate the associativity
based on the intersection of the messages consumed by two
brokers [1]. Thus, the actual notification flows are consid-
ered. Unfortunately, the authors do not provide any details
on how to efficiently determine the new associativity metric.
To avoid extremely degenerated topologies a very limited
network awareness is added by simply introducing a manu-
ally chosen upper bound for the costs a new overlay link can
have. On this level of abstraction, it is not taken into ac-
count, that even brokers exhibiting a low associativity value
can be successfully deployed to decrease the network traffic
and, thus, increase the system performance.

Peer-to-Peer Routing Substrates.For the pub/sub middle-
ware Hermes [10], Pietzuch et al. use Pastry [11] as a peer-
to-peer (P2P) routing substrate for the overlay network.
This way, they benefit from the scalability, efficiency, and
redundancy properties provided by Pastry. Following this
approach is certainly a huge improvement to using a man-
ually administrated overlay network. Terpstra et al. [13]
follow a similar approach and employ Chord [12] for the
management of the overlay network in the Rebeca pub/
sub system. Building on a well-understood P2P substrate
for the management of the overlay network of a pub/sub sys-
tem is a sound approach to ease the administration of such
systems. However, P2P routing substrates like Pastry and
Chord are optimized for query routing and for the location
of objects in a P2P network. Neither do they care about
the content nor about the flow of notifications in the pub/
sub middleware. Thus, the degree of optimization gained by
these approaches is limited as the overlay network does not
adapt to what is happening on the upper layers.

3. PROBLEM STATEMENT
Our goal is to improve the performance of a pub/sub sys-

tem by adapting the structure of the broker overlay network.
To measure the performance, we consider communication
and processing costs which are counted per message as we
assume that messages do not vary too much in size. De-
pending on the optimization goal, the performance metrics
have to be chosen sensibly. Communication costs may cor-
respond to the number of hops in the underlying raw net-
work topology, to the message delay, to the bandwidth of
links, or to any other desired metric. Of course, they can
also be a combination of different metrics. The processing
costs may correspond to the average CPU time or memory
needed to process (relay or deliver) a message. It is im-
portant to note that a reasonable relation between link and
processing costs is required to gain the desired performance
improvement (e.g., put more weight on the communication
costs if they have greater influence on the latency to achieve
a low latency network). Besides the costs, we consider the
notification flows because the forwarding of notifications de-
termines the actual costs produced by the system. In static
environments, where client behavior and network structure
do not change over time, it is sufficient to construct the
broker overlay network only once in order to optimize the
performance of the whole system. In the following section,
we consider this static pub/sub overlay optimization prob-
lem and show that it is NP-hard, even if the notification
flows are known in advance. For large-scale settings, this
means that heuristics must be used to find an acceptable
solution for this problem. After proving the hardness of the
problem, we present two basic heuristics that consider either
network or application-level metrics, and give examples for
which they lead to suboptimal results. In our evaluation,
these heuristics will serve as benchmarks for our algorithm.
We conclude, that it is important to consider communication
costs, processing costs, and traffic patterns at the same time
to improve the overall performance of a pub/sub system. In
dynamic environments, the problem is even harder. To keep
the system within good working conditions, we additionally
have to adapt the system to unpredictable changes.

3.1 The Static Case
For the formalization of the problem, we start with a con-

nected network graph G = (V, E). This graph consists of the
brokers V and the potential overlay network links E . Usu-
ally, every broker v ∈ V can potentially connect to every
other broker in V. However, some edges might be omitted,
for example, due to administrative reasons. For every link
e ∈ E , we define the communication cost ce. Accordingly,
for every broker v ∈ V, we define the processing cost pv. The
communication cost arises if a notification is sent over a link,
while the processing cost arises if a notification is processed
by a broker. We want to distribute a set of notifications N

using a single spanning tree T of G where each notification
n ∈ N is published by a certain broker P (n) ∈ V and must
be delivered to a certain set of brokers S(n) ⊆ V. In the
following, we call T the broker overlay (network).

Figure 1 depicts an example of a broker overlay network in
a graph consisting of 8 brokers. Instead of using the whole
spanning tree for the distribution of n, only the minimal
connected subtree of T that contains P (n) and S(n) is used.
This subtree is called the delivery tree of n. For a given T

and n, let Dn
T = (Vn

T , En
T) be the respective delivery tree.

544

Figure 1: Example graph with an embedded broker
overlay.

Then, the cost for distributing n is given by

cost(n, T) :=
X

∀v∈Vn
T

pv +
X

∀e∈En
T

ce (1)

since n is sent over all links in En
T and is processed by all

brokers in Vn
T . The delivery tree of n ∈ N is defined by

the set of brokers that consists of the publisher and the
subscribers of n. We define this set as V (n) := {P (n)} ∪
S(n). Vn

T and V (n) can differ significantly. Assume that
in the example broker overlay depicted in Fig. 1, broker B2

publishes a notification n in which only B5 is interested. In
this case, Vn

T = {B2, B3, B4, B5} includes B3 and B4 even
though they are not interested in n as V (n) = {B2, B5}.

Obviously, the total cost of forwarding one specific notifi-
cation in the broker overlay strongly depends on its delivery
tree and, thus, on the spanning tree. The overall cost for
distributing all notifications in N using one spanning tree T

is given by

cost(N, T) :=
X

n∈N

cost(n, T). (2)

Since we want to use one spanning tree for distributing all
notifications, we choose the spanning tree that minimizes
cost(N, T). Now, we can formally define the static opti-
mization problem:

Definition 1. (Pub/Sub Overlay Optimization Problem
(PSOOP)) Given a graph G = (V, E), communication costs
ce for all e ∈ E , processing costs pv for all v ∈ V, a set of
notifications N , and a function V : N → 2V , determine the
spanning tree T of G that minimizes cost(N, T).

3.1.1 Complexity
In the following, we show that the decision problem that

corresponds to the PSOOP is NP-complete. Thus, we can
conclude that PSOOP is NP-hard and it is sensible to apply
heuristics to solve the problem.

Definition 2. (Pub/Sub Overlay Decision Problem
(PSODP)) Given a graph G = (V, E), communication costs
ce for all e ∈ E , processing costs pv for all v ∈ V, a set of no-
tifications N , a function V : N → 2V , and a bound Cmax ∈
N

+, is there a spanning tree T of G with cost(N, T) ≤ Cmax?

PSODP is a generalization of the optimum communication
spanning tree (OCST) problem [5] which deals with the effi-
cient construction of telecommunication networks intercon-
necting cities. In the OCST problem, each link e ∈ E of
the graph G = (V, E) is labeled with communication costs
we (e.g., with the length of the connecting wire), and the

(a) (b)

Figure 2: Minimum spanning tree example: B1 is
not interested in any of 10 notifications published
by B2 and consumed by B3.

communication requirements r({u, v}) between any two ver-
tices u, v ∈ V are known. The problem consists of finding
a spanning tree T for G with costs that lie below an upper
cost bound Cmax.

The OCST problem has been proven to be NP-complete in
1978 [7]. We can easily show that an instance of the OCST
decision problem can be transformed into an instance of the
PSODP problem using restriction: we set the processing
costs of the nodes to 0 and only consider the communication
costs. Thus, PSODP is NP-hard. PSODP is also in NP
because a deterministic Turing machine can verify a guessed
solution in polynomial time, i.e., compute the actual overall
costs of an overlay. Thus, PSODP is NP-complete.

Hence, in order to solve this problem efficiently, we need
to apply heuristics. Please note, that heuristics for approxi-
mating the OCST optimization problem in an efficient way
already exist. However, they all rely on global knowledge.

Before proceeding with the dynamic case, where costs may
change and notification traffic is not known in advance, we
present two heuristics that rely on simple greedy algorithms
and global knowledge. Both have their individual drawbacks
and do not consider processing costs. Decentralized versions
based on local knowledge will serve as a benchmark in the
evaluation section.

3.1.2 Example Overlay Network Heuristics
The main characteristic of Minimum Spanning Tree (MST)

broker topologies is that they prefer cheap links. It is easy
to see that an MST is generally not the best solution since
the costs do not only depend on the link costs, but also on
processing costs and the notification traffic. It may be sen-
sible, for example, to prefer a more expensive link instead of
a cheaper one, if a significant amount of messages on other
(even cheaper) links can be saved and, thus, amortize the
extra costs for the expensive link. Figure 2 illustrates this:
part (a) depicts the minimum spanning tree in which B2

and B3 share common traffic (10 notifications, depicted by
the solid line), while B1 is not interested in any notifica-
tion. The cost for forwarding 10 messages from B2 to B3 is
given by 10 · (p2 + c2,1 + p1 + c1,3 + p3) = 100. By directly
connecting B2 to B3, as depicted in part (b), the costs are
decreased to 10 · (p2 + c2,3 + p3) = 80.

The basic idea of the second heuristic is to connect bro-
kers with similar interests (measured by the number of iden-
tical notifications consumed or published). To achieve this,
the edges are labeled with a value that measures how much
interests the brokers share. We call the tree that maxi-

545

mizes the sum of the edge values Maximum Interest Tree
(MIT). The construction of an MIT is similar to an MST.
As communication costs are ignored, an MIT may use very
expensive links as long as they connect brokers with similar
interests. In part (b) of Figure 2, an MIT is depicted. Bro-
ker B2 is directly connected to B1 and B3 because B2 and B3

share 10 common notifications from which B2 and B1 share
9 (depicted by the dashed lines). The costs for the MIT in
part (b) is 10 · (p2 + c2,3 + p3) + 9 · (c1,2 + p1) = 107. The
cost of the tree in part (a) where B1 forwards notifications
coming from B2 to B3—and even one notification it is not
interested in—is lower: 10 · (p2 + c1,2 + p1 + c1,3 + p3) = 80.

3.2 The Dynamic Case
In the previous section, we formalized the problem of find-

ing an optimal broker overlay network in a static setting
where all parameters are known (the notifications, their re-
spective publishing/consuming brokers, as well as the pro-
cessing and communication costs of brokers and links, re-
spectively). However, in many scenarios this setting is not
realistic due to a number of reasons. The set of notifications
that brokers publish and subscribe to may vary over time.
This affects the number of notifications to be transferred and
the parts of the overlay network through which they flow.
The network topology may also change including processing
as well as communication costs.

The above changes can, to a great extent, affect not only
the operating costs at any point in time, but also the ac-
cumulated overall costs. In these cases, better results, (i.e.,
lower costs) can be achieved by adapting the overlay network
whenever a significant advantage may be gained. Since the
changes are in general not known in advance, we are fac-
ing a typical on-line problem. Thus, in order to adapt, we
have to rely on gathered data about the past for predicting
the future. We constantly gather data about notifications
published and consumed as well as about processing and
communication costs to derive potential adaptations that
lower the operating costs.

Since our solution is targeted at large-scale systems, an
algorithm based on global knowledge is not feasible. Con-
sequently, the next section presents a heuristic that adapts
the overlay network based on local knowledge only.

4. COST AND INTEREST HEURISTIC
In this section, we present our heuristic for dynamically

optimizing the broker overlay network of a publish/subscribe
system. The basic idea is to reduce the distance between
brokers that consume a lot of identical notifications, while
respecting communication and processing costs. Therefore,
a broker has to learn about its local environment.

To estimate the common traffic or interest of two brokers
(i.e., the notifications both consume or publish), we intro-
duce a cache in every broker. Using this cache, we are able
to track the notifications a broker delivers to or receives
from its local clients. By comparing their caches, brokers
can hence reason about the amount of common interest.
Therefore, each broker B periodically exchanges its cache
content as well as current processing and communication
costs with all brokers in a bounded neighborhood Nη(B),
which consists of the brokers that are at most η hops away
in the overlay network. Based on this information, a bro-
ker gathers and maintains up-to-date information about its
local environment.

In order to reduce the amount of exchanged data, we use
a Bloom filter [3] to represent the contents of a broker’s
cache (more precisely, the identifiers of cached notifications).
A Bloom filter is a space-efficient probabilistic data struc-
ture that also supports time-efficient membership queries for
stored items. Queries might return false positives, but the
probability for this can be reduced by increasing the size of
the Bloom filter. Thus, there is an inherent trade-off be-
tween space and accuracy. Using Bloom filters, it is not
possible to deterministically specify the identities of notifi-
cations shared by different brokers. Only their number may
be estimated. But this is sufficient for our purposes.

When a broker Bi receives the Bloom filter of another
broker Bj , it starts the evaluation phase. In this phase, Bi

tries to figure out wether it is beneficial for it to connect di-
rectly to Bj . This is the case, if Bi and Bj have a significant
common interest, such that the total cost of forwarding and
processing notifications is decreased after reconfiguration.
If Bi comes to the conclusion that it is sensible to connect
directly to Bj , it has to coordinate its request for reconfi-
guration with the other brokers affected by this reconfigu-
ration. This so-called consensus phase is important due to
the limited knowledge of the individual brokers. It might
happen, for example, that Bi decides for a reconfiguration
that is beneficial for itself but raises unacceptable costs for
the other brokers. In this phase, Bi asks the directly affected
brokers about their estimation of the upcoming costs after
the reconfiguration and about which link is to be removed in
favor of the new link between Bi and Bj to keep the topology
acyclic. If the reconfiguration still seems sensible after the
consensus phase and a link to remove has been identified,
the reconfiguration phase starts. In this phase, the actual
reconfiguration is executed by exchanging the two links in
the broker topology, while avoiding notification losses and
maintaining message ordering.

In the following, we explain the evaluation and consensus
phase in detail. The reconfiguration phase is not covered,
since the deployed algorithms have already been published
in [9]. Finally, we show how our heuristic can be integrated
into an arbitrary publish/subscribe system.

4.1 Evaluation Phase
Based on the information gathered about their local envi-

ronments, brokers evaluate alternative overlay connections
to nodes in their neighborhood. The brokers use a heuristic
to determine, whether it is beneficial to establish a direct
link instead of routing notifications indirectly via intermedi-
ate brokers. The heuristic builds upon a basic case involving
three brokers, that we describe in the following.

The setup of the basic case is composed of the brokers Bi,
Bj , and Bk as shown in Fig. 3. Let T1 be the spanning tree
(as indicated by the solid lines), that represents the current
network topology, where Bi and Bj are connected indirectly
via Bk. Let T2 be a possible alternative tree (indicated by
the dashed lines) containing a link that directly connects
them. Furthermore, we assume that Bi receives a Bloom
filter representing Bj ’s cache entries, whereon Bi starts the
evaluation phase. We define I(S) as the number of identical
notifications all brokers in a set S consume. Using a Bloom
filter, Bi can determine I({Bi, Bj}) probabilistically. In the
following, we denote Bi’s approximation as Ii,j and use the
same notation for analogous estimations.

Given Ii,j , Bi has to evaluate whether it is sensible to di-

546

Figure 3: Basic case with three brokers.

rectly connect to Bj . This is the case when the estimated
costBi

(T2) of the alternative tree T2 is lower than costBi
(T1)

caused by the current topology. From Bi’s point of view, the
cost of a tree is calculated as the sum of the communication
and processing costs that are caused by routing the notifi-
cations it is interested in. For the current topology it is

costBi
(T1) = Ii,k · (pi + ci,k + pk) + Ii,j · (pi + ci,k + pk

+ ck,j + pj) − Ii,k,j · (pi + ci,k + pk). (3)

In Eq. 3, the first term on the right side describes the costs
that are caused by the notifications Bi and Bk are both in-
terested in. This includes the communication costs of their
link and the processing costs at both brokers. The second
term represents the cost of the common traffic between Bi

and Bj . As the notifications are routed via Bk, the process-
ing costs at Bk as well as the costs of the links connecting
Bi with Bk and Bk with Bj are added. With the last term
we subtract the costs for forwarding notifications from Bi to
Bj via Bk in which all brokers are interested in (otherwise,
they would be counted twice). Similarly, we calculate the
cost of the alternative topology in Eq. 4:

costBi
(T2) = Ii,k ·(pi+ci,k+pk)+Ii,j ·(pi+ci,j+pj)−Ii,k,j ·pi.

(4)
Since a direct connection is only beneficial if it reduces

Bi’s costs, we compare the costs caused by the trees of the
alternative and current topology (T2 and T1, resp.). Given
that Bi and Bj share common traffic (i.e., Ii,j > 0), we come
to a decision criteria Bi can use to evaluate the link:

ci,j <
Ii,j − Ii,k,j

Ii,j

· (ci,k + pk) + ck,j . (5)

The link’s communication costs are compared to the costs
for routing a notification via an intermediate broker reduced
by a fraction proportional to the amount of traffic the inter-
mediate broker is also interested in. Hence, the right side
of Eq. 5 can also be interpreted as the communication costs
of an indirect connection. If Bi and Bj do not share any
interest (i.e., Ii,j = 0), the evaluation phase is aborted.

The number of identical notifications Ii,j and Ii,k in Eq. 5
are approximated by Bi using Bloom filters. However, Ii,k,j

is estimated by Ii,k,j = min(φ, Ii,j , Ii,k), where φ is the aver-
age number of notifications, in which Bi and any other pair
of brokers in Nη(Bi) are interested. φ is given by:

φ =

“

P

Bj∈Nη(Bi)
Ii,j

”

− Ii

|Nη(Bi)| − 1
. (6)

As it is impossible that all three brokers are interested in
more notifications than any pair of them, the mean φ calcu-
lated for the whole neighborhood is bounded by Ii,j and Ii,k

using the minimum of the three.

Up to now, we only considered the basic case, which is
limited to one intermediate broker. However, in general,
other brokers might be more than one hop away in the over-
lay topology. To evaluate, whether a direct link to such a
broker is beneficial, we use the right side of Eq. 5 to define
the costs Ci,j of an indirect connection recursively, based on
the path Bi, . . . , Bk, Bj as

Ci,j =

8

>

<

>

:

0 i = j,

ci,j Bi ∈ N1(Bj),
Ii,j−Ii,k,j

Ii,j
· (Ci,k + pk) + ck,j otherwise.

(7)

Thereby, estimating the cost of an indirect connection of
length n is reduced to calculating the cost of a path of length
n−1 until we reach the basic case with one intermediate bro-
ker. Additionally, we also obtain a general decision criteria:
a broker Bi prefers a direct link to another broker Bj (that is
more than one hop away), if the direct communication costs
are less than the calculated indirect costs, i.e., ci,j < Ci,j .

4.2 Consensus Phase
In the previous section, we described how a single broker

evaluates whether it is sensible to establish a direct link to
another broker in its neighborhood. This decision is based
on its own local cost-benefit analysis. However, this local
decision may lead to an overall increase in costs. To avoid
this, the broker seeks a consensus with the other brokers
lying on the cycle that would be created by adding the pro-
posed link. We call this reconfiguration cycle R = (VR, ER).
Since one edge of the cycle must be removed again to keep
the topology acyclic, all brokers on R are directly affected
by a subsequent reconfiguration. Choosing only this subset
of brokers limits the overhead for finding a consensus.

After broker B decided to directly connect to another bro-
ker proposing the new link en, it asks every broker on the
reconfiguration cycle to estimate the cost of the topology
that would result from removing a single edge from R. We
define the cost of the reconfiguration cycle R from the per-
spective of one broker Bi when removing edge e as follows

costR(e,Bi) =
X

Bj∈VR

Ii,j · Ci,j , (8)

where the cost Ci,j is calculated on R without e. Accord-
ingly, the aggregated cost of the topology is

costR(e) =
X

Bi∈VR

costR(e, Bi). (9)

Having calculated costR(e) for all edges on R, we deter-
mine the edge er that shall be removed such that

costR(er) = min
e∈ER

{costR(e)}. (10)

Since er is chosen as the edge, whose removal leads to a
topology causing the least cost, we gain the maximum ben-
efit for the affected brokers when replacing er by the pro-
posed new link en. However, if both links are identical (i.e.,
en = er), the consensus phase is aborted as it then seems to
be unfavorable to add en to the topology at all.

4.3 Integration
In this section, we describe the integration of the heuristic

presented in the previous sections into the publish/subscribe
model. This covers the dissemination of the Bloom filters as
well as the protocol for the consensus phase.

547

4.3.1 Broadcast Messages
Every broker B regularly broadcasts the Bloom filter of

its cache in the time interval ∆t to the brokers in its neigh-
borhood Nη(B). Therefore, B sends a broadcast message to
all its direct neighbors, it shares a link with. The broadcast
contains a time-to-live (TTL) counter initialized with η and
the Bloom filter representing B’s cache entries added in the
last interval. Additionally, it stores the path including the
brokers and links the message has already passed together
with the processing and communication costs, respectively.

When a broker receives a broadcast message, it first de-
termines its common interest with the sender by comparing
its cache contents to the Bloom filter stored in the mes-
sage. Then, it updates the message by appending itself, the
link the broadcast was received on, and the corresponding
processing and communication costs to the message’s path.
The broadcast’s TTL is decreased by one, and if it does not
equal 0 the broker forwards the message to its neighbors.
Finally, the broker starts the evaluation phase (as described
in Sect. 4.1) to determine whether a direct connection to the
broadcast’s origin is sensible.

With every broadcast message a broker receives, it learns
about its environment (i.e., the processing and communi-
cation costs as well as the common interest). Information
about brokers in the neighborhood of a broker B may be-
come obsolete when reconfigurations changed the topology
in a way such that these brokers do not belong to the neigh-
borhood anymore. Therefore, stale information is removed
by a second-chance garbage collection algorithm based on
the broadcast interval ∆t.

In the beginning or as a result of a reconfiguration, the
information about the neighborhood may not be sufficient
for Bi to calculate Ci,j for every node Bj it receives a broad-
cast message from. In this case, Bi cannot decide whether
a reconfiguration is sensible and, thus, has to wait until it
has gathered enough information about its neighborhood.
Meanwhile, broadcast messages are still forwarded regularly,
but subsequent evaluation or consensus phases are aborted.

4.3.2 Request Messages
While broadcast messages serve to gain knowledge about

the local environment and are, thus, a prerequisite for the
evaluation phase, request messages coordinate the consensus
phase to finally decide whether the introduction of a new
link is beneficial and which link has to be removed in turn.
When broker Bi decides to add a new link connecting it with
broker Bj , its decision is based on the last broadcast message
it has received from Bj . Thus, the reconfiguration cycle R

consists of the path the broadcast message was forwarded
along and the new link that directly connects Bi and Bj .

Broker Bi starts the consensus phase by sending a re-
quest message to Bj along the reverse path of the broadcast
message. The request message consists of a cost vector con-
taining an element for every link in R. After receiving the
request message, each broker on R adds its own costs for ev-
ery link on R it has calculated according to Eq. 8. Then, the
request is forwarded to the next neighbor broker on R until
it reaches Bj . After adding its calculated costs Bj examines
the resulting cost vector to determine the most expensive
edge, whose removal leads to the best solution for all bro-
kers on R. If this is the proposed new link between Bi and
Bj , Bj discards the reconfiguration. Otherwise, Bj starts
the reconfiguration phase.

5. EVALUATION
We evaluated the proposed heuristic by conducting simu-

lation experiments. For creating physical network topologies
we used the transit-stub model which produces Internet-like
topologies. We used Brite [8] to create 25 different topolo-
gies with 100 domains and over 10, 000 nodes for the exper-
iments. In all simulations, we placed 100 brokers randomly
on the network. There are 50 different types of notifications,
each produced by one publisher and subscribed to by sub-
scribers connected to 9 different brokers. The distribution
of clients to brokers was chosen probabilistically according
to a load-value that was chosen randomly for each broker.
The cache size of each broker is set to 8, 192 entries and
broadcast messages are sent every 250 simulation ticks. The
size of the Bloom filters is 100, 000 bits, and 5 different hash
functions are used to create them.

We implemented our heuristic, which we call the Cost and
Interest heuristic (CI heuristic) in the following, and chose
decentralized versions of the MST and the MIT heuristic
(called ℓMST and ℓMIT) described in Sect. 3.1 for com-
parison. Like the CI heuristic, they both rely on broadcast
and request messages. While ℓMST only considers network
costs, ℓMIT concentrates solely on the notification traffic
and is, thus, similar to the approach by Baldoni et al. [1]. We
conducted several experiments to compare the three heuris-
tics. The goal of the experiments is to evaluate the following
properties of the CI heuristic: its ability to adapt to changes
in the system; the performance of the CI heuristic compared
to ℓMST and ℓMIT; the relation between the costs caused
by the heuristic and the savings gained by reconfigurations;
and the effect on the performance of the different heuristics
when changing the weights of the link and processing costs.

In the experiments, we varied different parameters with
the default values given in parenthesis. The costs for the
overlay links were normalized to values between cmin (=
0.0) and cmax (= 10.0) according to the underlying physical
topology. The processing costs were also randomly chosen
between pmin (= 0.0) and pmax (= 10.0) as well as the proba-
bility that a new client connects to a certain broker. The size
of the neighborhood (in hops) is defined by η (= 4). Random
values were chosen using a uniform distribution. Please note
that doing this marks a very conservative setting, where the
CI heuristic has less opportunities to optimize the costs.

In the following, we describe several experiments and dis-
cuss the results. Vertical bars in the plots show the 95%
confidence interval. As a benchmark for the heuristics we
used a static randomly generated overlay network.

5.1 Adaptivity
The algorithm’s goal is to adapt the broker overlay topol-

ogy according to dynamic changes in the network. We start
with changes that affect the communication and processing
costs as well as changes in the load values of the individ-
ual brokers. We want to measure, if the algorithm (i) is
able to optimize the broker overlay to lower the total cost
of forwarding and processing notifications and (ii) reacts to
dynamic changes in the system.

To keep the cost for the heuristic reasonably low, we limit
the neighborhood to η = 4 hops. The publication rate
and the duration of the subscriptions is exponentially dis-
tributed with rate parameter 0.2 and 0.0004, respectively.
This means that, on average, every 5 ticks a new notification
is published by a publisher and every 2, 500 ticks a subscriber

548

1

1.5

2

2.5

3

3.5

0 10000 20000 30000 40000 50000 60000 70000

C
os

t i
n

10
6

Time t

CI heuristic
ℓMIT heuristic

ℓMST heuristic
Static Network

Figure 4: Accumulated costs with and without the
different heuristics (95% confidence intervals were
below 6% on average).

is removed from the system and replaced by a new subscriber
at a randomly chosen broker. With 9 subscribers per job we
get a relation of approximately 50 notifications per issued
subscription. We start with the static broker network and
apply the heuristics. At time t1 = 25, 000 and t2 = 50, 000
we completely change the cost of links and brokers, respec-
tively. Every 1, 000 ticks we measure the communication
and processing costs caused by forwarding notifications and
by additional messages the heuristics produce.

In Fig. 4, one can see that all heuristics are able to quickly
reduce the costs. When the topology is changed at t1 and
t2, an increase in the costs is measured since the overlay
network is optimized for the prior setting. After a short
time, the heuristics manage to improve the overlay topology
again. All heuristics manage to adapt the broker overlay
and, thus, reduce the costs significantly compared to the
static network. Changes in the system increase the costs,
but the heuristics react very fast. The CI heuristic performs
better than the other heuristics. However, the advantage
gained depends on the distribution of cost and load values.
In a following experiment, we analyze how the variation of
cost value weights affects the effectiveness of the heuristic.

5.2 Cost of the Heuristic
In this experiment, we measure the cost when applying

the CI heuristic and the cost of the static network. To learn
about the extra load imposed by the heuristic, we also mea-
sure the costs induced by its application. We increase the
size of the neighborhood by changing the value of η to see
the trade-off between the improvement and the costs spent
for gaining knowledge about a bigger neighborhood.

Figure 5 shows the accumulated costs after 25, 000 sim-
ulation ticks for the static network and the network that
has been adapted by the CI heuristic. The biggest cost ad-
vantage is gained for η = 4, which is used in the following
experiments. For bigger values of η the performance gain
decreases. Apparently, although the brokers gain knowl-
edge about a bigger neighborhood, the costs spent for the
heuristic cannot be outweighed by potentially better recon-
figuration decisions. Among other reasons, this relates to
less meaningful estimations of common interest of brokers
with a growing number of brokers on the reconfiguration
cycle. Thus, knowledge about bigger neighborhoods does

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12 14

T
ot

al
 C

os
t i

n
10

9

Size of Neighborhood η

Static Network
Adapted Network

Heuristic
Reconfigurations

Figure 5: Costs of the static and the adapted net-
work in comparison to the costs induced by the
CI heuristic.

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e

of
 Im

pr
ov

em
en

t

Value of α

CI Heuristic
ℓMIT Heuristic

ℓMST Heuristic

Figure 6: Improvement when increasing processing
cost weight α.

not necessarily lead to better results for the CI heuristic.
As expected, the cost produced by sending broadcast mes-

sages grows when increasing the neighborhood size as the
number of hops for each broadcast message is increased
with η. The cost for executing the reconfigurations is neg-
ligibly small with less than 3% of the cost of the adapted
network—even though longer reconfiguration paths are pos-
sible for bigger values of η. This is due to the fact, that
less reconfigurations seem to be beneficial because of poor
estimations of common interests.

5.3 Effect of Cost Distribution
In contrast to the ℓMST and the ℓMIT heuristic the CI heu-

ristic considers the common interest, communication costs,
and additionally the processing costs. In this experiment, we
test the effect of different cost weights for the communication
and processing costs on the performance of the heuristics.
Therefore, we set cmax(α) = (1− α) · Γ and pmax(α) = α · Γ
for Γ = 20.0 instead of cmax = pmax = 10.0 as done in the
previous experiments. By varying α from 0 to 1 and mea-
suring the cost improvement, we can observe how the overall
costs develop as the processing costs increase and the com-
munication costs decrease. The results plotted in Fig. 6
show that the ℓMST heuristic performs worse with growing

549

α, which reflects the fact that it does only take commu-
nication costs into account. The ℓMIT heuristic only con-
centrates on common interest and performs reasonably well
when the communication costs are outweighing the process-
ing costs. This does not change when the processing costs
become more relevant since the clients are distributed uni-
formly such that processing and communication costs keep
balance. The CI heuristic performs equally or better than
the other heuristics for all α as it considers both costs.

6. DISCUSSION AND FUTURE WORK
Our evaluation shows that self-organizing broker overlay

networks for publish/subscribe systems can increase their
applicability in dynamic environments. We simulated three
different heuristics and analyzed their behavior in different
scenarios. Our CI heuristic shows the best performance, ex-
hibiting robustness against parameter variations. This ad-
vantage results from considering link and processing costs as
well as notification flows between brokers. The experiment
in Sect. 5.1 shows that all heuristics were able to cope with
drastic changes in the system.

We are currently working on more appropriate dynamics
models, in order to analyze the behavior of the CI heuristic
in scenarios where changes are less abrupt. Another inter-
esting issue is the relation between the frequency of change
and the effectiveness of the heuristic. There may be a degree
of dynamics, at which the cost of constant reconfigurations
exceeds the savings.

We used Bloom filters to determine the common interest
of brokers. This way, we kept the size of the broadcast
messages small. It is still an open question, as to which size
and how many hash functions should be used for the Bloom
filter in which scenario. It is part of future work to find ways
to dynamically adapt both parameters in the system.

The experiments regarding the costs of the CI heuristic
show that an increase of the neighborhood does not nec-
essarily lead to better results regarding the effectiveness of
the algorithm. Among other reasons, this is caused by the
inherently inaccurate estimation Ii,j,k of the common inter-
est of brokers discussed in Sect. 4.1. Finding a better way
to approximate this value (e.g., by using the conjunction of
Bloom filters), may lead to better results.

7. CONCLUSIONS
Adaptive broker overlay networks are an important pre-

requisite for the application of pub/sub middleware in large-
scale dynamic environments. The self-organizing broker to-
pology presented in this paper is an important contribution
to better suit pub/sub to new application domains that ex-
hibit dynamics in user behavior and network characteris-
tics. It quickly adapts to changes in the environment and
reduces the costs significantly. The additional costs imposed
by the heuristic are negligibly small with a reasonable neigh-
borhood size. Furthermore, it exhibits a large flexibility in
supporting different optimization goals.

We proved that finding an optimal configuration for the
broker overlay is NP-hard—even in a static setting. Build-
ing a heuristic to solve this problem is, thus, a sensible ap-
proach. The heuristic presented does rely neither on man-
ual intervention nor on global knowledge. Additionally, it is
independent of the applied routing algorithm. The simula-
tions conducted show that our approach is superior to other

heuristics—even though the setting is rather conservative as
we did not make any further assumption regarding the dis-
tribution of clients (e.g., locality) which would enable our
heuristic to lower the costs even more.

8. REFERENCES
[1] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.

A self-organizing crash-resilient topology management
system for content-based publish/subscribe. In
A. Carzaniga and P. Fenkam, editors, 3rd
International Workshop on Distributed Event-Based
Systems (DEBS’04), Edinburgh, Scotland, UK, May
2004. IEEE.

[2] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito.
Subscription-driven self-organization in content-based
publish/subscribe. Technical report, DIS, Mar. 2004.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[5] T. Hu. Optimum communication spanning trees.
SIAM Journal on Computing, 3(3):188–195, 1974.

[6] H.-A. Jacobsen, editor. 2nd Intl. Workshop on
Distributed Event-Based Systems (DEBS’03), San
Diego, CA, USA, June 2003. ACM Press.

[7] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan.
The complexity of the network design problem.
Networks, 8:279–285, 1978.

[8] A. Medina, A. Lakhina, I. Matta, and J. Byers.
BRITE: An approach to universal topology
generation. In International Workshop on Modeling,
Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS ’01),
Cincinnati, Ohio, Aug. 2001.

[9] H. Parzyjegla, G. Mühl, and M. A. Jaeger.
Reconfiguring publish/subscribe overlay topologies. In
5th Intl. Workshop on Distributed Event-based
Systems (DEBS’06), page 29, Lisbon, Portugal, July
2006. IEEE Press.

[10] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay
broker networks in an event-based middleware. In
Jacobsen [6].

[11] A. Rowstron and P. Druschel. Pastry: scalable,
decentraized object location and routing for
large-scale peer-to-peer systems. In R. Guerraoui,
editor, 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), volume
2218 of LNCS, pages 329–350, Heidelberg, Germany,
2001. Springer-Verlag.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In 2001
Conference on Applications, technologies,
architectures, and protocols for computer
communications (SIGCOMM ’01), pages 149–160,
New York, NY, USA, 2001. ACM Press.

[13] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and
A. P. Buchmann. A peer-to-peer approach to
content-based publish/subscribe. In Jacobsen [6].

550

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

