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Abstract. The management costs of software systems are becoming the
dominating cost factor in running IT infrastructures. The main driving
force behind this development is the ever-increasing system complexity
which is becoming the limiting factor for further development. The fact
that human administrators get more and more overstrained by manage-
ment tasks has led to the idea of systems that manage themselves, i.e.,
self-managing systems. Another concept that is closely related to self-
management is self-organization. Self-organizing software systems often
build on bio- and nature-inspired approaches. However, most publica-
tions on self-managing or self-organizing systems miss a clear definition of
these terms. Even worse, although self-management and self-organization
aim at similar goals, their relation still has not been defined properly.
In this paper, we approach these problems by introducing a classifica-
tion of systems that models self-organizing systems as a subclass of self-
managing systems. The classification builds upon a definition of adap-
tive systems and introduces self-manageable, self-managing, and self-
organizing systems. Our proposal serves as a starting point for further
discussions, eventually leading to a better understanding of the terms
self-organization and self-management and their interrelationship.

1 Introduction

Software systems are getting increasingly complex, and their complexity is about
to become the limiting factor for further developments. This situation is also
termed “complexity crisis” [1] in reference to the software crisis that set in about
40 years ago. In the recent past, self-managing and self-organizing systems have
been recognized as being the silver bullet for overcoming this crisis. Thus, it
is not surprising that the terms self-management and self-organization are cur-
rently found in the titles of many computer science publications. However, most
publications only give informal definitions of these terms which provide little
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more than a very basic intuitive understanding. As a direct consequence, it is
hard to unambiguously decide whether or not a given system is self-organizing
or self-managing. Moreover, there is no scientific work that describes the relation
between self-managing and self-organizing systems.

In previous work [2,3], we have established a definition of self-organizing soft-
ware systems. This definition builds upon the definition of adaptive systems as
introduced by Zadeh [4]. We have introduced a methodology which allows to
clearly and verifiably state whether and why a given system is self-organizing
or not. In this paper, we provide a definition of self-managing systems that also
relies on Zadeh’s concept of adaptivity. In addition, we discuss how adaptive,
self-managing, and self-organizing systems relate to each other. Our proposal
serves as a starting point for further discussions, eventually leading to a bet-
ter understanding of the terms self-organization and self-management and their
interrelationship.

The remainder of this paper is structured as follows: Section 2 introduces
our system model. Adaptive systems are discussed in Sect. 3. Building upon the
definition of adaptive systems, we introduce self-manageable and self-managing
systems in Sect. 4. Section 5 presents the definition of self-organizing systems
from [3] in the context of the presented approach. Section 6 discusses the relation
between the different system sets and presents a containment hierarchy of these
sets. In Sect. 7, our classification is applied to a number of example systems.
Finally, Sect. 8 concludes the paper.

2 System Model

In this section, we define our system model which is based on a behavioral system
model by Willems [5].

Definition 1 (System). A system S is a tuple S = (I,O, B) with input in-
terface I, output interface O, and behavior B.

The input interface I defines the inputs of the system, while the output
interface O defines the outputs of the system. An input function i(t) : T →

dom(I) is a time-dependent vector-valued function, where dom(I) is the range
of values of I. Usually, T is assumed be equal to R

+

0 (in case of a continuous
time) or Z

+
0 (in case of a discrete time). So we do for the rest of this paper.

Let I be the set of all input functions. In the following, we assume without loss
of generality that a system has no useless inputs. A useless input is an input
which does not influence the output. An output function o(t) : T → dom(O)
is also a time-dependent vector-valued function, where dom(O) is the range of
values of O. Let O be the set of all output functions.

The behavior of a system is a total relation B : I → O which assigns to
each i ∈ I at least one o ∈ O. Thus, if a system is fed with a specific input
function i, it will output one of the output functions o for which (i, o) ∈ B. We
also say that (i, o) is a possible behavior of a system if (i, o) ∈ B. A system is
non-deterministic iff there is at least one i for which (i, o) ∈ B for more than



one o. Otherwise, the system is deterministic. In the latter case, B degrades to
a total function, and we can write o = B(i) instead of (i, o) ∈ B. For the sake of
simplicity, we restrict the discussion to deterministic systems in the following.
However, a similar argumentation is also possible for non-deterministic systems.

The above definition of a system’s behavior does not exclude that the output
of a system anticipates the input of the system. For example, a behavior may
assign to an input function i(t) = f(t) an output function o(t) = f(t + 10), i.e.,
o(t) = i(t + 10). However, in our scenario this is an important constraint that
we formalize in the following definition. For this purpose, we denote the series
of values of a time-dependent function f for all t′ ≤ t as f|t and define that
f|t = f ′

|t ⇔ ∀t′ ≤ t : f(t′) = f ′(t′).

Definition 2 (Nonanticipating Behavior). A behavior B is non-anticipating
iff

∀(t ∈ T, i ∈ I, i′ ∈ I) : i|t = i′|t ⇒ B(i)|t = B(i′)|t.

The above definition states that if two input functions are identical up to
some t, then their corresponding output functions are also identical up to this t.
Thus, the output for time t can only depend on the input for times t′ ≤ t. In
our definition of self-manageable systems, we will use the concept of a nonantic-
ipating behavior (or function) to restrict the set of possible control functions.

3 Adaptive Systems

Intuitively, we expect an adaptive system to perform acceptably well for various
input functions. But how can the fact that a system “performs acceptably well”
be stated formally? Following the definition of adaptivity given by Zadeh [4], we
formally test whether a system behaves acceptably well for an input function i by
using a performance function p (which evaluates the “performance” of the system
when it is subjected to i) and an acceptance criterion W (which checks whether
the exhibited “performance” is acceptable). A performance function p : I×O →

(T → R
n) takes an input function and an output function as parameters and

returns a time-dependent vector-valued function with real-valued components.
An acceptance criterion W is a set of time-dependent functions f with f : T →

Rn. Now, we can define what it means for a system to be adaptive:

Definition 3 (Adaptive System). A system S = (I,O, B) is adaptive wrt.
a set I ⊆ I, a performance function p, and an acceptance criterion W iff
∀(i ∈ I) : o = B(i) ⇒ p(i, o) ∈ W.

Informally, the above definition requires that the system performs acceptably
well for the behavior exhibited by the system when it is subjected to one of
the specified input functions. The definition is, thus, in line with our informal
definition stated above. Note that the definition is formulated in terms of the
external behavior (i.e., B) visible at the system’s interfaces rather than the
internal behavior of the system. Thus, it treats a system as a black box; it is not



important how the system internally achieves the desired adaptivity. Under this
definition, all systems are adaptive with respect to some I, p, and W . It is, thus,
not important whether a system is adaptive but with respect to which I, p, and
W it is adaptive. To simplify the discussion we omit p and W in the following,
and we simply say that a system is adaptive with respect to I.

4 Self-Managing Systems

As stated in the previous section, an input function is vector-valued. In practice,
some of the components of i(t) represent environmental changes and distur-
bances, called regular inputs, while others represent external input applied to
the system by a controller, called control inputs1. Intuitively, we expect from a
self-managing system that it receives only regular input but no control input.
This raises the question which inputs are to be called regular inputs and which
are to be called control inputs. We answer this question analogous to Lendaris [6]:
Which inputs are to be called regular inputs and which are to be called control
inputs is determined by the performance function p because p evaluates certain
inputs and the outputs of the system to derive its results. By definition, these
inputs are the regular inputs, while all others are control inputs. Let R be the
set of all regular inputs and let C be the set of all control inputs. Then, I = R∪C

holds for the system’s input interface. A function r(t) : T → dom(R) is called
regular input function, where dom(R) is the range of values of R. A function
c(t) : T → dom(C) is called control input function, where dom(C) is the range of
values of C. For a given i(t), let iR(t) and iC(t) be the partial input functions that
are derived by restricting i to those components which are regular inputs and
those that are control inputs, respectively. For given r(t) and c(t), let r(t) ◦ c(t)
be those i(t) that arises by properly combining the components of r(t) and those
of c(t) into a new vector.

According to its definition, an adaptive system is allowed to receive both,
regular input and control input. In practice, those systems are of special interest
whose control inputs can be computed solely from the system’s past and current
regular inputs and its past and current outputs. This leads us to the definition
of self-manageable systems:

Definition 4 (Self-Manageable System). A system S = (I,O, B) with I =
R ∪ C is self-manageable wrt. I iff (1) it is adaptive wrt. I and (2) there exits
a computable, nonanticipating behavior C : (T → dom(R) × dom(O)) → (T →

dom(C)) such that: ∀(i ∈ I).(∃i′ ∈ I) : i′ = iR ◦ C(iR, B(i′)).

We restrict the definition to nonanticipating control functions since a function
anticipating future values of arbitrary input functions does not exist in practice.

A self-manageable system S can be extended to a system S′ which consists
of the original system S and a component with behavior C acting as a controller

1 Note that, for the purpose of this discussion, the environmental changes may also
include purposeful input generated by humans, e.g., by the users of a software system.
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Fig. 1. Observer/controller pattern.

that computes the control input needed by S to be adaptive from the regular
input and the output of S. This resembles the well-known observer/controller
pattern (Fig. 1). The resulting system S′ is adaptive and has no control input.
Intuitively, such a system is self-managing. This leads us to the definition of
self-managing systems:

Definition 5 (Self-Managing System). A system S is self-managing wrt. a
set of input functions I iff it is adaptive wrt. I and C = ∅.

The above definition of self-managing systems is in line with our informal def-
inition stated at the beginning of this section. We are aware that the separation
of input into regular and control input needs further work.

5 Self-Organizing Systems

Intuitively, we expect from a self-organizing system that it adapts to its en-
vironment without outside control (i.e., that it is self-managing), and as the
term “organization” implies that it establishes and maintains a certain kind of
structure (cf. discussion in [3]). Moreover, we often associate robustness and
scalability with self-organizing systems. As defined in the previous section, a
black-box approach is sufficient to determine whether a system is self-managing
or not. Detecting structure, however, is not possible within a black-box approach.
Hence, we drop the black-box view and identify the components that constitute
a system.

Definition 6 (Component). A system S consists of a (potentially empty) set
of interacting components C, where each component c ∈ C is a system itself,
according to Def. 1.

The system’s components are organized in a certain way determining the
structure of the system. They interact to provide the system’s primary func-
tionality, but their interactions may also change the structure of the system. In



general, structures can be very diverse and occur in many dimensions. They may
be spatial, temporal, spatiotemporal, or functional in nature and, thus, demand
for a relatively abstract definition to cover their variety.

Definition 7 (Structure). Structure is the property of a system S by which
it constrains the degrees of freedom of its components C.

Often, structure can be described by a relation (or by a family of relations
in more complex scenarios). For example, consider a packet-switched commu-
nication network which should setup and maintain a dedicated routing path
between two terminal nodes to allow the terminals to communicate. In this case,
the system’s components are the network nodes and its structure is given by
the established path which can be described by a binary relation containing all
links (i.e., pairs of nodes) belonging to this path. A node is not free to forward a
packet it receives on any of its outgoing links. Instead, it is restricted to forward
it on that link leading to the next node on the path to the receiving terminal.

A common way to detect structuring is to apply the concept of informa-
tion entropy introduced by Shannon [7]. This is done by inspecting the system’s
state space: When a system constrains the degrees of freedom of its compo-
nents, it restricts its states to reside in a subset of the available state space. As
a consequence, the entropy (uncertainty about the current state) of the system
decreases indicating that the system gains structure. However, whether the en-
tropy increases, decreases, or stays the same when observing a system depends
largely on how the state space is defined [8].

A self-organizing system changes its structure in order to ensure its adaptiv-
ity. Using the concept of entropy, the evolution of a system’s structuredness can
be observed over time and it can be concluded that a system changes its struc-
ture if the degree of structuredness changes. However, the converse is not always
true because a system can change its structure without affecting the degree of
its structuredness. This leads to the following definition:

Definition 8 (Structure-adaptive System). A system S is structure-adap-
tive, iff (1) it is adaptive and (2) it adapts by dynamically changing its structure.

The above definition combines Zadeh’s notion of adaptivity with the system’s
structure stating that the system is adaptive because it dynamically changes its
structure. Hence, to prove that a system is structure-adaptive it has to be shown
that the system was not adaptive if it would not dynamically change its structure.
Continuing our example from above, the communication system may change the
path connecting the two terminals if a node that is part of the path fails. In this
case, the system changes its structure to establish a new path that reconnects
the two terminals. Clearly, this change is necessary to ensure that the terminals
can communicate again.

Besides being structure-adaptive, self-organizing systems exhibit a further
characteristic that distinguishes them from self-managing systems making them
robust and scalable: decentralized control. If a system is controlled centrally,
then it has a central point of failure. Accordingly, one way of proving that a
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Fig. 2. Hierarchy of self-X properties.

system works in a decentralized fashion, is to show that it has no central point
of failure [3]. Now, we are ready to define self-organizing systems:

Definition 9 (Self-Organizing System). A system is self-organizing iff it is
(i) self-managing, (ii) structure-adaptive, and (iii) employs decentralized control.

The above definition of self-organizing systems suits our intuitive definition
stated at the beginning of this section. It is also in line with our definition of
self-organizing system previously given in [3]. We are aware that the definition
of a decentralized control must be enhanced.

6 System Class Containment Relationship

Considering the various kinds of systems that have been defined in the previous
sections (adaptive, self-manageable, self-managing, and self-organizing systems)
it is apparent that there is a relation between them. Let us denote the set of
adaptive systems with respect to a certain input space and performance function
as Cada, the set of all self-manageable systems as Csma, the set of self-managing
systems as Csmg, and the set of all self-organizing systems as Csog (each of them
with respect to the same input functions, performance function, and acceptabil-
ity criterion). Then, the following subset relationship holds (Fig. 2):

Cada ⊇ Csma ⊇ Csmg ⊇ Csog

In the following section, we show that this hierarchical relation eases the classi-
fication of given systems.



7 Example Classification

In this section, we consider a set of exemplary systems S1, . . . , S4 performing
the same task. We want to examine to which class of our hierarchy each system
belongs. Assume that S1, . . . , S4 are networks that shall provide an overlay
path between a specific input node Ni and a specific output node No. For this
purpose, each node in the network can establish overlay links to nodes that are
direct neighbors in the network. The graph of all potential links is called underlay
graph. Each underlay link has a certain delay, and no node can support more
than two overlay links at any time, except for Ni and No which only support one
overlay link. Thus, if a new overlay link is established by a node that already
has overlay links to two other nodes, one of these links has to be removed. The
nodes of the network are impacted by failures. If a node is subject to a failure,
it stops communicating. Moreover, nodes that have failed may be repaired. A
repaired node starts communicating again. We define that S1, . . . , S4 perform
acceptably well, if there is no infinitely long service interruption (i.e., no overlay
path between Ni and No) as long as the minimum failure inter-arrival time is
above a given threshold Tl and as long as the underlay graph is not partitioned.
Clearly, the occurrence of failures is a matter the system has to adapt to in order
to perform acceptably well. Figure 3 depicts an underlay graph with overlay links.

Underlay network link Regular node

Overlay network link Input/output node

Ni No

Fig. 3. Example underlay graph with overlay links.

The description given above applies to each of the systems S1, . . . , S4. Now,
we want to discuss the differences between these systems:

S1: The system has a number of control inputs which control, which pairs of
nodes establish an overlay link. For the delay dc of the control inputs, the
following holds: dc ≫ Tl.

S2: The system differs from S1 by a smaller delay of the control inputs. More
precisely, the following holds: dc ≪ Tl.



S3: In contrast to S1 and S2, the system has an additional component that
collects the failure states of all nodes, calculates a valid path, and sends
appropriate control inputs to the nodes. It has no external control inputs.

S4: The system distributes the task of building a path between Ni and No among
the nodes. To achieve this, an algorithm similar to the RIP protocol for
routing [9] is used. We assume that the time needed by the distributed
algorithm to fulfill its task is much shorter than Tl.

We now examine to which of our system classes each system belongs. First, we
consider the subspace of the input that consists of the failure events. Since the
performance function, which is identical for all systems, depends on the minimum
failure inter-arrival time, the failure input is the regular input. We do not have to
care about failure input sequences that partition the underlay graph or in which
the time between failures is smaller than Tl, because our performance function
allows any behavior in this case. The way all systems may adapt to failures is
by altering overlay links. Clearly, by building an overlay path in the underlying
graph, a structure is constituted. In addition to the failure input, the systems
S1 and S2 have additional input, that has an impact on the behavior, but is
not evaluated by the performance function. Thus, this input is control input.

For any failure input that does not partition the underlay graph, an appro-
priate control input may take care that a connection is always reestablished after
a failure has occurred. Thus, both systems are adaptive with respect to the input
space I consisting of the failures input and the proper control input. Hence, S1

and S2 belong to Cada.

For system S1, the control inputs have a delay that is larger than the mini-
mum failure inter-arrival time Tl. Hence, it is possible that a failure input pattern
occurs that (1) disables one of the nodes that belongs to an existing overlay path
and that (2) in the following always disables one of the nodes that are selected
by the control inputs for re-establishing the path before the delay has passed.
This would render the system into one that does not perform acceptably well
since an overlay path between Ni and No will never be re-established. The only
way to avoid this for sure is to indeed anticipate the failure signal. That means,
the control signal cannot be computed from the past of the failure signal. Thus,
S1 does not belong to Csma.

The situation is different for S2. If we assume that the computation of a new
overlay path between Ni and No does take less time than Tl − dc, a controller
can take care that in case of a failure a new connection is established before the
next failure occurs. Thus, S2 belongs to Csma. However, since S2 needs control
input to perform acceptably well, it does not belong to Csmg.

Since S3 and S4 do not need any control input to perform the same task as
S1 and S2 acceptably well, they both belong to Csmg (and, thus, also to Csma

and Cada). We have already stated that all considered systems adapt by changing
their structure. However, S3 can be decomposed into two parts in such a way
that removing one part lets lose the system’s ability to adapt. That means, that
it has a central controller and, thus, does not belong to Csog. S4 has no central



controller (cf. [3, Section 7.1]) and, thus, belongs to Csog. Figure 4 shows the
resulting classification of the example systems.

Fig. 4. Classification of example systems

8 Conclusions

In this paper, we presented a containment hierarchy which allows to catego-
rize systems according to whether or not they are adaptive, self-manageable,
self-managing, and self-organizing. We used Zadeh’s [4] notion of adaptivity
as a starting point and consecutively added further requirements to yield the
other, more restrictive sets. Here, we applied the idea of Lendaris [6] to divide
the input of the system into control input and regular input. This led us to
self-manageable systems (whose control input can additionally be computed by
a controller leading to the observer/controller pattern), self-managing systems
(which additionally do not have any control input), and self-organizing systems
(which additionally are structure-adaptive and employ decentralized control) for
which we proposed formal definitions. We also showed that our classification is
sensible by giving variants of an example system that fit into the different sets.

We hope that our proposal stimulates the further discussion about self-
managing and self-organizing systems. For the discussion, we see the following
open issues: Is the separation of the input into regular and control input always
possible? What could be a precise definition of decentralized control? Despite of
that, we believe that our approach is already of practical use. Moreover, we think
that a similar clarification is also necessary for the other so-called self-X prop-
erties such as self-healing, self-configuring, self-optimizing, and self-protecting.
This would path the way to a more scientific discussion of these terms.
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