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Abstract

Data consistency protocols are vital ingredients of mo-
bile data management systems. Notable research efforts
have been spent to find adequate consistency models for al-
lowing mobile and nomadic users to share mutable data.
Recently, mobile Ambient Service infrastructures that pose
somewhat different requirements have entered the focus of
attention. Ambient services are not as loosely coupled as
the afore-mentioned systems, but they still need flexible con-
sistency protocols that may adapt to the current dynamics
in the system. We propose an extension to the well-known
anti-entropy protocol that makes use of the nature of Am-
bient Service environments to allow for a flexible consis-
tency management among arbitrary groups of mobile ser-
vice replicas. We will show that our protocol can exploit the
concept of group updates to increase its efficiency in terms
of bandwidth usage. Furthermore, we prove that it avoids
costly state transfers by means of a simple rule that limits
the divergence within the overall set of replicas. Finally,
we introduce two parameters for adjusting the level of con-
sistency in system, and we present experimental results that
show the effectiveness and the efficiency of the protocol.

1 Introduction

Data consistency is a fundamental requirement in any
mobile data management application. Systems like Bayou
[13] and Coda [11] have been devised for supporting mobile
and nomadic users in their efforts to share data with each
other. These systems provide optimistic replication strate-
gies and protocols to keep distributed mobile data stores
(file systems and databases) consistent. The underlying sys-
tem model is based on a very loose coupling between the
participants. Mobile users basically operate in isolation and
have irregular pairwise encounters during which they rec-

oncile their data. Or they switch between an offline mode
and an online mode such that any synchronization happens
when they are online. The respective consistency models
and protocols are optimized for this type of highly decou-
pled operation.

However, in recent years the idea of Ambient Intelli-
gence AmI [2] raised new research questions that do not
fit into the systems models presented above. One possible
implementation of an AmI environment assumes that the
physical surrounding of the user is enriched with comput-
ing resources that enable service provisioning. As the user
enters a physical location, he is able to use these services
to enhance his interaction with the location. One example
scenario is a shopping mall that offers Ambient Services
to customers, enabling them to navigate through the mall,
find certain products quickly, and optimize the contents of
their shopping cart according to the overall price or qual-
ity. For this purpose, we have developed the so-called Ad
hoc Service Grid (ASG) infrastructure [5] that is based on
multi-purpose computers (so-called Service Cubes) being
distributed in such a way that they can set up an ad hoc
network and cover the respective facility (e.g. the shopping
mall). Mobile users can access this network via their mobile
devices and use its resources. Service Cubes represent mod-
ular building blocks providing both networking and com-
puting resources. The overall ASG can quickly be scaled to
the desired size by adding, removing, or re-positioning indi-
vidual Service Cubes. The basic concept that we are trying
to realize with the ASG may best be characterized as Drop
and Deploy: Apart from the physical setup of the infrastruc-
ture (the distribution of Service Cubes), all other aspects of
operating the system shall be organized by the ASG soft-
ware without requiring excessive manual intervention. One
particular challenge in this respect is that of service distri-
bution: Services are injected into the ASG at an arbitrary
Service Cube and shall replicate and position themselves
such that the overall network load on the ASG and the client



response times are reduced. Replication is an important as-
pect of the ASG since it increases availability (even if the
network is partitioned), distributes processing load, and re-
duces network load since client requests can be served by a
near-by service replica instead of being routed through the
whole network. However, replication also raises the prob-
lem of data consistency among the replicas of a stateful ser-
vice. Strong consistency models imply a strong coupling
between replicas due to the mechanisms (e.g. locking) that
are necessary for implementing them. This is not desirable
in a dynamic environment like the ASG. However, some
degree of consistency is required in most applications.

In this paper, we propose an extension to the well-known
anti-entropy consistency protocol introduced by Bayou [9].
This extension exploits the relaxed conditions in the ASG
(compared to the Bayou scenario) to achieve eventual con-
sistency among an arbitrary group of replicated, state-
ful Ambient Services. The Group Anti-Entropy Protocol
(GAP) exhibits a natural adaptivity to the dynamics in an
ASG system: When the dynamics in the system are low, the
complete group of replicas can synchronize their data stores
quickly and efficiently to realize a high level of consistency.
When the dynamics are high (services replicate and migrate
quickly), the same protocol exploits its inherent epidemic
nature to achieve synchronization through a series of recon-
ciliation processes within smaller sub-groups of replicas.

The paper is structured as follows: In Section 2, we
discuss related work. Section 3 investigates the concepts
for optimistic replication introduced by the Bayou mobile
database system. In Section 4, we present the GAP that
builds on these concepts and extends them to support Am-
bient Service environments. We analyze the results of our
experimental investigations in Section 5 before we give our
conclusions and an outlook on future work in Section 6.

2 Related Work

Optimistic replication mechanisms [10] have been re-
searched intensively in the past. The approaches most rel-
evant for our research are those dealing with nomadic and
mobile users accessing shared data. Mobile databases like
Bayou [13] and object replication systems like Deno [7] use
the anti-entropy approach to achieve eventual consistency
through pairwise updates. In these systems, updates of ob-
jects or database records are submitted locally and spread in
an epidemic way. Bayou uses a primary copy approach to
create a global order among write operations whereas Deno
uses a voting mechanism to avoid having a primary and in-
crease availability. Another domain where optimistic repli-
cation has been applied in numerous ways are mobile file
systems like Coda [11] and Rumor [3]. While Coda uses
a hoarding mechanism to cache files on mobile comput-
ers, Rumor replicates entire volumes and reconciles them

on a pairwise basis. Even though mobile databases and mo-
bile file systems have very similar goals, their assumptions
about connectivity are different. Bayou assumes that mo-
bile nodes are only able to connect temporarily and that the
reconciliation processes during these connections may even
be interrupted prematurely. Coda and Rumor, on the other
hand, assume that disconnections are only temporary. Our
approach lies somewhere in the middle: Distributed ser-
vices may be able to connect to each other for extended pe-
riods of time while, at other times, extended disconnections
occur due to topology changes in the underlying network.
Therefore, we take a database approach that is tailored to
this requirement through an extension of the basic Bayou
approach exploiting the somewhat relaxed conditions.

Most approaches to the dynamic placement of services
within a network [8, 1] do not consider data replication and
consistency as a major problem. Moreover, these systems
are not targeted at mobile networks.

3 Optimistic Replication – The Bayou Model

Bayou [13, 9] is a database system for weakly connected
mobile users. Each user has a replica of the database on his
mobile device, and he may execute write operations (also
called Writes hereafter) on this replica, even while he is not
able to connect to other replicas in order to synchronize.
These Writes are tentatively applied to the data store, and
they are stored in a write log. If two replicas meet, they
mutually exchange their Writes and apply them to their re-
spective data stores. For this purpose, tentative Writes are
rolled back (their effects on the data store are being un-
done), newly received Writes are merged into the existing
write log according to their timestamps, and the operations
in the new write log are then applied to the data store again.
In this way, new Writes are propagated via a series of pair-
wise reconciliation processes, such that they spread through
the system similar to the way in which an epidemic spreads.
It can be shown that if no new Writes are created for some
time and if no permanent partitions occur, then all databases
will eventually have the same Writes in the same order in
their logs. Consequently, the resulting data stores are also
consistent. This model is called eventual consistency.

In order to eventually create the same Write order, each
Write is given a timestamp consisting of a logical clock
value (Lamport clocks) and the unique ID of the replica on
which it was originally created. For example, the Write with
timestamp 7.3 was received by the replica with ID 3 at (log-
ical) time 7. Each replica ri maintains a version vector ri.v
that stores the timestamp of the most recent Write that ri

holds from rj at index j (ri.v(j)). Each time two replicas
meet, the sending replica (S) fetches the receiving replica’s
(R’s) version vector. By comparing R’s version vector with
its own, S can find all Writes that R still needs. It sends



these Writes to R, and subsequently the two replicas switch
roles such that R can send its Writes to S. This algorithm
is called anti-entropy since it constantly decreases the dis-
order among the different data stores.

Indefinite write log growth is avoided by electing a pri-
mary replica that has the exclusive right to commit Writes
when it receives them. When a Write is committed, it is
given a globally unique Commit Sequence Number (CSN)
that becomes part of the timestamp. Committed Writes
(also called stable Writes) are also propagated using anti-
entropy. However, they are applied permanently to any data
store. Thus, a committed Write can never be rolled back
and can be removed from the write log.

4 Group Anti-Entropy

Compared to the original Bayou model, the ASG envi-
ronment allows us to relax some of the constraints for a con-
sistency protocol. Service replicas may contact each other
much more frequently. Each replica has the possibility to
contact at least a subset of its current fellow replicas most
of the time. Services may be disconnected by temporary
network partitions, and the dynamics inherent to the cre-
ation and the removal of replicas may result in a specific
replica having incomplete information about its current fel-
lows. Thus, instead of having to deal with a set of isolated
nodes that have irregular, pairwise encounters, we can as-
sume that the contact between the replicas is much tighter.

The Group Anti-Entropy Protocol (GAP) makes use
of these relaxed conditions by assuming that each replica
knows a subset of all replicas that currently exist, albeit, this
knowledge may be incomplete. The GAP deals with this
circumstance by running independent reconciliation pro-
cesses among groups of replicas. Each replica has a view of
the current replica group. If a replica chooses to reconcile
then it does so with the group of the replicas in its current
(possibly incomplete) view. In the ASG, a replica acquires
this view by querying a distributed Lookup Service [6] that
maintains approximate information about the current set of
service replicas. Like the original anti-entropy protocol, the
GAP achieves eventual consistency by exploiting the epi-
demic nature of successive reconciliation processes among
several subsets of replicas.

This protocol has a nice property: If the dynamics and
disturbances in the systems are low, a single reconciliation
process is sufficient to bring all replicas of a service up-
to-date since all replicas have a complete view. If, however,
the dynamics is high and views tend to be rather incomplete,
the protocol still achieves synchronization, albeit, this may
take more reconciliation actions among smaller subsets of
replicas. Additionally, the synchronization may not be as
tight since the dynamics avoids complete synchronization
among all replicas at any point in time. Thus, the consis-

tency among the overall group of replicas may degrade as
the dynamics increases, but it does not break down. Further-
more, the fact that a whole group takes part in a reconcilia-
tion is exploited to reduce the number of bytes transmitted
between the replicas and to speed up the reconciliation.

The dynamics (degree of mobility) displayed by users
does not influence the reconciliation process presented here
since it only affects which replica a client submits its oper-
ations to. The general necessity of propagating each oper-
ation among all replicas remains the same. The effects of
the users’ mobility on their access to data can be mitigated
through the session guarantees introduced for the original
bayou system [12]. The implementation of these guaran-
tees is orthogonal to the process described here.

4.1 The Protocol

Like in the original Bayou protocol, each replica ri holds
a version vector covering all replicas known to ri. An ex-
ample of a version vector for a replica r1 in an overall group
of four replicas could be

r1.v = (5.1, 5.2, 7.3, 11.4) . (1)

The GAP is started by one replica that is called active here-
after. All remaining replicas in its view are passive. In the
first phase, the active replica requests all passive replicas to
send their current version vectors. For demonstration pur-
poses, let us assume that r1 is active, that it has three other
replicas (r2, r3, and r4) in its view, and that the version
vectors are the following:

r1.v = ( 5.1, 5.2, 7.3, 11.4 )
r2.v = ( 3.1, 11.2, 10.3, 15.4 )
r3.v = ( 3.1, 8.2, 17.3, 15.4 )
r4.v = ( 3.1, 8.2, 10.3, 15.4 )

(2)

After having collected all vectors, the active replica r1 tries
to retrieve all Writes that it does not already hold from the
passive replicas. It tries to minimize the number of mes-
sages needed to reconcile by comparing the vectors and by
calculating the best order in which to synchronize with the
group of replicas. To do this, r1 applies a greedy strat-
egy by selecting the passive replica that promises to pro-
duce the best update progress. Note that, unlike Bayou, the
ASG does not synchronize its logical clocks with the system
clock in any way. The reason for this is that unsynchronized
clocks allow an educated guess about the number of events
that happened between two timestamps since a logical clock
is only advanced if some event occurs. Thus, based on the
timestamps in the version vectors, ri can calculate a pref-
erence value prefik for every replica rk in its view. This
value is an indication of how much progress ri could make
by reconciliating with rk. To calculate the preference value,



ri first compares its version vector with the vectors of the
other replicas in its view. It does so component-wise and
calculates the distance dik(j) between the version vectors
of replicas ri and rk for every vector component j. The
result is the distance vector dik of ri with respect to rk:

dik(j) =





max(0, rk.v(j)− ri.v(j)) : ∃kj ∧ ∃ij

rk.v(j) : ∃kj∧ 6 ∃ij

0 : 6 ∃kj ∧ ∃ij

(3)

The difference between two timestamps is defined as the
difference of their logical clock components. The predicate
∃ij is true iff the version vector of ri has a component j,
i.e., an entry for replica rj . If a component j exists in both
vectors, then both replicas have operations originating from
rj . In this case, we simple subtract the two timestamps.
Note that if ri has a more recent Write from rj than rk, the
difference is negative. Thus, ri cannot benefit from a recon-
ciliation with rk with respect to the Writes produces by rj .
Therefore, we set the distance to zero in this case. If com-
ponent j only exists in rk.v, then ri has never received any
operation originating from rj . Thus, the distance between
the two timestamps is equal to the timestamp of rk.v(j). Fi-
nally, if component j only exists in ri.v, then rk does not
provide any operations originating from rj , and ri would
not gain anything from reconciliating with rk, concerning
operations from rj .

For every passive replica rk, ri sums up all distance vec-
tor components dik(j) and gets the total preference prefik

that ri has for reconciliating with rk:

prefik =
∑

j

dik(j) (4)

Finally, ri selects the replica rl with the highest preference
value because a reconciliation with this replica has the high-
est potential benefit. For the reconciliation, ri sends its cur-
rent version vector to rl, and rl sends all Writes that are
missing on ri. Then, ri updates its version vector to reflect
the newly received operations and repeats the procedure un-
til ∀k : prefik = 0. That is, ri has every Write existing on
the replicas in its view. Now, ri merges these operations
into its data store (roll-back, merge, and roll-forward). In
the final phase of the protocol, ri sends all Writes missing
on the other replicas in its view to the respective replicas
who in turn merge them with their data stores. Now, all
replicas in the group are perfectly synchronized.

For the setup in our example, the replicas’ initial version
vectors are given in Equation 2. Calculating the difference
vector d1k for every k results in:

d12 = ( 0, 6, 3, 4 )
d13 = ( 0, 3, 10, 4 )
d14 = ( 0, 3, 3, 4 )

(5)

Since r1 always has the most recent operations originating
from itself, the first component of each preference vector is
0. If r1 would reconcile with r2, it could potentially receive
6 (11 − 5) new operations submitted at r2, 3 operations
submitted at r3, and 4 submitted at r4. Note that it is not
guaranteed that r1 makes this progress in terms of the num-
ber of new operations. This is due to the way in which the
logical clocks are incremented: A replica does not only in-
crement its clock if a new operation is submitted, but also
when it communicates with other replicas.

In our example, the preference values are the following:

pref12 = 13
pref13 = 17
pref14 = 10

(6)

Thus, r1 choses r3 first and requests an update. Note that
r3’s version vector completely covers that of r4: For ev-
ery component, r3 provides at least the operations held by
r4. Thus, after updating its write log with the operations re-
ceived from r3, there is no need for r1 to request an update
from r4 anymore. If ra covers rb, then prefia ≥ prefib

and ra is ranked before rb. Therefore, covering replicas are
always chosen before covered ones and, thus, no updates
are requested from covered replicas at all. After the update
from r3, the situation is as follows:

r1.v = ( 5.1, 8.2, 17.3, 15.4 )
r2.v = ( 3.1, 11.2, 10.3, 15.4 )
r3.v = ( 3.1, 8.2, 17.3, 15.4 )
r4.v = ( 3.1, 8.2, 10.3, 15.4 )

(7)

p12 = ( 0, 3, 0, 0 ) ⇒ pref12 = 3
p13 = ( 0, 0, 0, 0 ) ⇒ pref13 = 0
p14 = ( 0, 0, 0, 0 ) ⇒ pref14 = 0

(8)

Now, r2 is the only replica with a preference value greater
than 0. r2 potentially still holds 3 operations (submitted
locally at r2) that r1 has not seen. After receiving an update
from r2, r1 is consistent with the union of all replicas in its
view. At this point, r1 calculates the differences between its
own log and that of the other replicas and updates each of
them accordingly. Afterwards, all replicas hold the same set
of operations. Thus, they are all consistent with each other.

4.2 Stable Writes and Log Truncation

Like Bayou, the ASG consistency protocol employs the
principle of stable Writes to be able to truncate write logs. A
replica may decide to remove any stable Write from its log.
This raises the problem that the sender may have removed
committed Writes that the receiver has not seen yet due to
extended periods of disconnection. Thus, there is no way
to reconcile by exchanging Writes since some of them are



missing. In Bayou, the solution for this problem is a com-
plete transfer of the data store’s state up to the first omitted
Write after having rolled back to that position in the log.
In the ASG, we try to avoid this situation because complete
state transfers can be very costly. Before we give a detailed
discussion of the mechanism employed to avoid complete
state transfers, we define some new notations.

Each replica stores the most recent commit sequence
number it has seen. This the point up to which the replica’s
data store is stable. CSN j

i denotes the CSN of replica rj as
it is currently perceived by replica ri. Note that this value
can be outdated due to the fact that ri may not have had
contact with rj for some time. Thus, CSN j

i ≤ CSNj .
CSNi denotes the actual current CSN of ri. CSNmin

i

is the minimal value of all CSNs currently perceived by
ri: CSNmin

i = min1≤j≤n

(
CSN j

i

)
. CSNmin is the

actual, current, minimal value over all CSNs. CSNmax
i

and CSNmax are defined analogously. To denote the value
of any of these parameters at some time index t, we write
CSN j

i (t), CSNi(t), CSNmin
i (t) etc. respectively. OSNi

denotes the Omit Sequence Number of replica ri. The OSN
is only known to the replica itself and indicates the CSN of
the most recent omitted write operation.

Let {r1, . . . , rn} be the group of replicas that take part in
a reconciliation. Let S be the set of the Commit Sequence
Numbers of the Writes that are sufficient in order to do a
reconciliation without state transfer:

S =
{
s | CSNmax ≥ s > CSNmin

}
(9)

To avoid state transfers during a reconciliation among the
replicas {r1, . . . , rn}, the following property must hold:

∀s ∈ S : ∃i ∈ {1, . . . , n} : CSNi ≥ s > OSNi (10)

In other words, for every required Write (all CSNs s ∈ S),
there has to be some replica in the group that still holds the
operation. We call this property the Bounded Divergence
(BD) Property. Figure 1 depicts an example of a reconcilia-
tion group of 4 replicas that fulfills this requirement. How-
ever, if r4 was not present in the group, then the Write with
the commit sequence number 7 would not be present on any
replica. r1 and r3 have not yet received this Write, and r2

already removed it to save space. Thus, r2 would have to
transfer its state at least up to the result of the execution of
Write number 7 to both r1 and r3.

4.3 Bounded Divergence

In the following, we describe an extended version of
the GAP that exploits the relaxed conditions in the ASG
to avoid state transfers completely. We call this proto-
col the Bounded Divergence Group Anti-Entropy Protocol
(BD-GAP). We introduce an additional timestamp vector
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Figure 1. Group of four replicas with different
write log states.

which is called the CSN vector. Each replica ri maintains
such a vector that holds the values CSN j

i . Whenever i and
j take part in the same reconciliation process, they mutu-
ally exchange their CSN vectors after all the write logs in
the group have been synchronized. That is, if ri takes part in
a reconciliation with a total of n replicas, then ri receives all
n− 1 CSN vectors of the other participants. Subsequently,
ri updates its own CSN vector as follows:

CSN j
i := max1≤k≤n

(
CSN j

k

)
(11)

Thus, CSN j
i now holds the highest CSN for replica rj that

was perceived by any of the participants in the current rec-
onciliation process. This represents the best guess of rj’s
current CSN. Note that rj itself may not be participating
in the current reconciliation. Therefore, this guess may be
based on a CSN received by one of the participants in an
earlier reconciliation.

The goal is to limit the divergence of the write logs such
that state transfers do not happen. The basic idea is to set
a limit to the number of Writes that a replica may omit,
such that property (10) is never violated. To achieve this,
we introduce a simple rule for the removal (omission) of
Writes from the write log:

Definition 4.1 (Omission Rule). ri must never omit a com-
mitted Write that has a CSN higher than CSNmin

i .

This means, we take the smallest known CSN among all
known replicas (not only the participating ones!) and set it
as the omit limit. Thus, we only omit Writes that have been
received by all known replicas. Before we state the two
central theorems that express the validity of this approach,
we give the fundamental assumptions that must be fulfilled:

Definition 4.2 (Assumptions).

1. All replicas of a given service stem from a single, ini-
tial replica either directly or indirectly.



2. A replication at time t always produces a spawned
replica rs with a CSN equal to the CSN of the parent
replica rp: CSNs(t) = CSNp(t).

3. The CSN of a replica never decreases as time pro-
gresses: ∀t0, t1|t0 < t1 : CSNi(t0) ≤ CSNi(t1).

4. There is a single primary replica with the exclusive
right to commit Writes.

Theorem 4.1. The Omission Rule guarantees that the BD
Property (Equation 10) holds even if partitions occur.

For spatial restrictions we can only sketch the proof here.
The full proof can be found in [4].

Proof (sketch). Let g(t) be the time-dependent group of all
existing replicas, and let gi(t) be the subgroup known to
replica ri. Then gi(t) = g(t) \ gi(t) is the set of replicas
that ri has no knowledge of. In the following, we omit t for
brevity, and we write, for example, g instead of g(t). If

∀ri ∈ g : CSNmin
i ≤ min

rj∈g
CSNj (12)

then the BD Property holds. Proving that (12) holds for
rj ∈ gi if the Omission Rule is obeyed is straight forward
since CSNmin

i = minrj∈gi CSN j
i and CSN j

i ≤ CSNj .
For ro ∈ gi, we must show that

∀ro ∈ gi : CSNo ≥ CSNmin
i . (13)

Due to our assumptions, ro must have been replicated in-
directly by ri, or ri and ro must have a common ancestor
rw ∈ gi. In both cases, we can show that (13) holds since
any replication is also a reconciliation. Thus, (13) is a con-
sequence of the assumptions stated in Definition 4.2.

Theorem 4.2. If partitions among the overall set of existing
replicas are only temporary, then the Bounded Divergence
GAP does not let write logs grow indefinitely large.

The basic idea of the proof is as follows: We assume that
a replica exists that can never remove any Write from its log
and show that this can only happen if permanent partitions
occur. This is the reverse implication of Theorem 4.2.

Proof. We assume that a replica ri exists that can never
remove any Write from its log due to the Omission Rule.
This must be a result of ri’s CSNmin value never being
increased. For CSNmin to remain at the same value, ri’s
CSN vector must be invariant in at least one position. That
is, one replica rk must exist whose element CSNk

i in ri’s
vector never increases. This can be directly concluded from
the Omission Rule. We assume that new Writes are con-
stantly being submitted somewhere in the system. Other-
wise, indefinite growth could never occur. If ri’s value for

rk’s CSN never increases, then either rk never receives any
new committed Write, or it is unable to propagate its new
CSN to ri. In the first case, rk must be permanently sep-
arated from the primary replica. In the latter case, ri must
be permanently separated from rk. Thus, in both cases, a
permanent partition must exist.

4.4 Triggering Reconciliations

In the GAP, replicas decide autonomously when to start
an active reconciliation process. This is done based on two
simple parameters. A replica starts an active process

• if the number of Writes received from clients since the
last reconciliation exceeds the write threshold Wrec, or

• if the time that has passed since the last reconciliation
exceeds the reconcile timeout Trec, and at least one
Write has been received locally during that time.

These two predicates are called reconciliation rules. The
first rule sets a limit to the level of inconsistency that may
occur within a group of replicas. If N is the number of
replica in the group, then they may at most reach the incon-
sistency level equal to having N ·Wrec different Writes in
the group. This upper limit is reached if all replicas in the
group receive an equal amount of Wrec Writes in the time
period Trec. However, it is more likely that they experience
different load conditions. Thus, a new reconciliation pro-
cess will be started by one replica that reaches the limit first
while other replicas may have less Writes.

The second rule ensures that even if it takes very long
for a replica to reach the write threshold, reconciliation pro-
cesses will take place in regular intervals as long as Writes
are received at all. If this rule was not applied, there could
be long-lasting periods of growing inconsistency.

5 Experimental Results

5.1 Setup

We have implemented a simulation of the complete
ASG. To produce a benchmark scenario for our consistency
protocol, we modeled the data stores of the replicas as bit
strings of ` bits each (` = 100 in the following). Each Write
toggles one of the bits in the data store associated with the
respective replica. A w-fraction of all operations produced
by clients are Writes. w is called the write ratio.

This artificial application (setting bits in a bit string) en-
ables us to come up with a simple measure for the consis-
tency among an arbitrary number of replicas. For this pur-
pose, we introduce a global data store represented by the
bit string BG. This data store is the result of all operations



from all clients being executed in the correct order on a sin-
gle bit string. In reality, this string would not exist, but in
the simulation, we can easily construct it. Let |B| denote
the number of 1-bits in the bit string B. Our consistency
measure κ is defined as follows:

κ = 1−
∑

r∈R |Br ⊕BG|
|R| · ` (14)

The numerator denotes the number of differences between
BG and all the bit strings Br found in the set of existing
replicas R. The denominator is the number of bits existing
in all data stores. The fraction measures the inconsistency
found in the system. To find the consistency, we subtract
it from 1. κ is 1 if all replicas hold bit strings identical to
BG, and it is 0 if each Br is the negation of BG. One can
easily verify that, if the individual bit strings are indepen-
dent, the expected value of κ is 0.5. Thus, if κ is close to
0.5, this indicates that no correlation exists among the data
stores. From a reasonable consistency protocol, we would
expect values much high than 0.5. An ideal protocol would
constantly maintain κ at 1.

We denote the time-dependent consistency function as
κ(t). κ(t) is simply computed from the bit strings and the
value of |R| at time t. The average consistency κ for a com-
plete simulation run is defined as follows:

κ =

∑
t∈[0,T−1] κ(t)

T
(15)

5.2 Results

In the following figures, vertical bars indicate the 95%
confidence intervals of the measurements. Each measure-
ment represents the average of 100 experiments. Figure 2(a)
depicts how many bytes have to be transmitted during rec-
onciliations for one byte of a write operation. We denote
this ratio as ws. This shows how efficient the GAP works
for different write rates w. As the write ratio w is increased,
ws drops until it reaches a minimum at about w = 0.2. The
decrease is caused by the fact that the GAP relies on col-
lecting a number of Writes and transmitting them together
in one message in a specific order that minimizes the traf-
fic. For a low write ratio, reconciliations will mostly be trig-
gered by the timeout Trec. Therefore, the overhead is higher
since more messages are needed to transmit the same num-
ber of Write operations. As w increases beyond 0.2, trans-
missions tend to be triggered by the write threshold. Thus,
the time interval between reconciliations gets shorter. The
consistency protocol takes an optimistic approach concern-
ing conflicts that may occur between concurrent reconcil-
iation attempts. At high write ratios, conflicts occur more
often and lead to messages being dropped. Therefore, ws

increases for values higher than w = 0.2.
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Figure 2. Experimental results.

In Figure 2(b), the average consistency κ is depicted for
increasing write ratio w. As expected, an increasing write
ratio reduces the consistency. However, it decreases only by
about 10% from the maximal value at w = 0.1 to the mini-
mal value at w = 0.4. Moreover, after an initial steep drop,
the consistency stabelizes around a value of about 0.71.
This behavior is the result of the combination of the rec-
oncile write threshold Wrec and the reconcile timeout Trec.
Initially, (approximately for w < 0.3) the number of Writes
received by a replica on average is not high enough to trig-
ger the write threshold rule. Reconciliations are always trig-
gered by the timeout rule. Therefore, an increasing write ra-
tio causes more inconsistency in this phase as the time inter-
vals between consecutive reconciliations are approximately
equal. However, as w is increased beyond a certain value,
the intervals start getting shorter as the write threshold rule
takes over: After a certain number of Writes is received, a



replica starts a reconciliation process, and for large w this
point is reached before the timeout expires. Doing a recon-
ciliation after a prescribed number of Writes have modified
the data store limits the inconsistency experienced through-
out the whole system. This keeps the system at a constant
consistency level.

Figure 2(c) shows how κ develops as the number of
clients in the system increases. In this experiment, w was
kept constant at a value of 0.1. The same general behavior
as for a growing write ratio can also be observed here: κ
drops until it converges to a value of about 0.71. The reason
is that a growing number of clients produce a growing num-
ber of write operations. Therefore, the timeout rule fires in
the initial stages (for a low number of clients), and the write
threshold takes over for a higher number of clients.

6 Conclusions and Future Work

In this paper we have introduced an extension to the well-
known anti-entropy consistency protocol for a more tightly
coupled Ambient Service environment. The Bounded Di-
vergence Group Anti-entropy Protocol (BD-GAP) runs rec-
onciliation processes among an arbitrary group of service
replicas and exploits this fact to increase its efficiency in
terms of network bandwidth. Due to this group reconcil-
iation concept, the protocol can adapt to different degrees
of dynamics. If the dynamics is low, a high degree of con-
sistency can be achieved efficiently. In highly dynamic sit-
uations, the reconciliation groups tend to get smaller, and
the epidemic nature of the original Bayou protocol comes
into play. This leads to a graceful degradation of the over-
all consistency level without breaking down the system. We
have shown that costly state transfers can be avoided com-
pletely by introducing the simple Omission Rule that limits
the divergence of the individual write logs. Finally, our ex-
perimental results show that the interaction between the two
tunable parameters of the system also limits the decrease in
consistency suffered as the load (write ratio and client num-
ber) on the system increases.

If the vision of Ambient Intelligence shall be realized
and intelligent environments shall interact with the user in a
decentralized fashion, then flexible data consistency mech-
anisms are a key requirement. The adaptiveness of our ap-
proach is a clear advantage over existing technologies as it
enables a wide range of working conditions. The class of
applications that may be run in the ASG is a superset of
those targeted by Bayou. However, eventual consistency
still limits this class such that critical tasks (e.g. classical
financial transactions) are prohibitive.

In our future work, we concentrate on designing a proper
model for shaping the consistency characteristics by tuning
Wrec and Trec. The goal in this respect is to allow a pur-
poseful tuning to adapt the system to different classes of

services. Furthermore, the performance of the system in
more realistic applications shall be investigated.
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