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Abstract. The usage of small mobile devices for data-intensive applications be-
comes more and more self-evident. As a consequence we have to consider these
devices and their inherent characteristics in future system designs, like the limi-
tations of memory and communication bandwidth. For example, when querying
data servers for information, a mobile application can hardly anticipate the size
of the result set. Our approach is to give more control over the data delivery
process to the application, so that it can be adapted regarding its device status,
the costs and availability of communication channels, and the user’s needs. This
paper introduces a flexible and scalable approach by providing spatially feder-
ated cursor functionality. It is based on an open federation over a set of loosely
coupled data sources that provide simple object retrieval interfaces.

1. Introduction

With the growth of online accessible data and information systems, the need for integra-
tion architectures is increasing. As can be seen in the Web 2.0 trend, more and more
information is provided by autonomous data sources, like web sites, Wikis, or web ser-
vices. To uniformly integrate this information for application use is a very cumbersome,
and, at large, almost impossible task. However, when focusing on a certain application
domain, we can exploit common characteristics to provide integrated views: e.g., WWW
search engines integrate their search results based on rankings that represent the relevance
to the user’s query. In the Nexus project, we target the upcoming application domain of
location-based information services and pervasive computing. Here, new data-intensive
applications emerge, which support their users with the right information at the right time
and right place, i.e., providing on demand what fits best to the user’s current situation [Dey
and Abowd 1999]. They often rely on large-scale information systems, where the data is
scattered across a multitude of data sources ranging from web sites over digital libraries
and geo-information systems to sensors and other stream-based sources. Our integration
approach is based on an open federation over a set of loosely coupled data sources that
provide simple object retrieval interfaces.

In contrast to conventional distributed database systems, the partitioning of the
information is unknown. There is no closed-world assumption, since data providers can
dynamically connect and disconnect from the platform. Also, there can be multiple repre-
sentations of real-world entities in several data providers. Our open federation differs also
from conventional federated database systems: since it is based on simple object retrieval
and does not provide the full-fledged SQL function set, it does not have to materialize
the whole result set within the federation layer when integrating the results from the data
providers.



This allows us to develop a scalable algorithm for object retrieval that works on
partial results from data providers. It is based on the concept of a federated cursor. Cur-
sors are a long-known database concept that allows an application to piece-wise retrieve
tuples of a result set [Date 2000]. This is especially beneficial if the applications run on
resource-limited devices, which typically retrieve information over a costly wireless com-
munication channel. Such devices are often used in the areas of location-based services
and pervasive computing.

The remainder of the paper is structured as follows: we overview related work in
Chapter 2. Chapter 3 describes the Nexus platform which provides an integrated view
over geographic data sources in the application domain of location-based and context-
aware services. In Chapter 4, we introduce the cursor concept, and in Chapter 5 we
present a flexible and efficient federation strategy also covering histograms. Our prototype
implementation is evaluated in Chapter 6. Finally, in Chapter 7 we conclude the paper
with an outlook on future work in this area.

2. Related Work

There has been some work addressing the problem of efficiently processing and incremen-
tally retrieving partial results. [Haas et al. 1999] try to speed up data intensive applications
needing fine-grained object access by loading the cache of the system with relevant ob-
jects. The decision of what objects are relevant is taken by the frequency applications
access objects. However, this technique does not consider multiple representations of
the same object containing incomplete or partial information distributed over several data
sources. In this case one has to find and fetch all representations of an object in order to
get a complete and consistent object representation.

Garlic [Josifovski et al. 2002] is a platform for federated data management of
relational data sources based on IBM DB2. For the incremental retrieval of the result set
two possibilities are described. One is to materialize the entire result of each data source.
The other is the retrieval of the data using the cursor mechanism. Each time Fetch is
invoked, one data element a time is retrieved from the data source. Here, no possibility
of sophisticated retrieval of the result sets is mentioned. The possibility of incomplete
partial results is also not taken into consideration.

In Disco [Tomasic et al. 1996] the problem of dealing with unavailable data sour-
ces is addressed. The selected approach uses a partial evaluation semantics to return
partial answers to queries. Here the portions of the query that could not be answered are
mapped back to OQL and integrated with the portions of the query being answered by
data providers. It is neither described how exactly the results are retrieved from the data
providers nor how the partial results of the portions of the query are integrated to a single
answer.

Information Manifold [Levy et al. 1995, Levy et al. 1996] deals with the efficient
query processing in a distributed environment involving a large number of data sources.
They use descriptions of the data sources for a given query to identify relevant sources,
query these sources and finally collect the complete result from these partial results. The
query processing engine tries to recognize sources providing redundant information and
prunes them. No integration of the partial results or further computations are made. This
has to be done by the inquiring application. Also, no further reflection on alternative



retrieval mechanisms were made.

There also exist several mediator-based systems like TSIMMIS [Garcia-Molina
et al. 1997] or MedMaker [Papakonstantinou et al. 1996]. However, we focus on location-
aware applications using location-based data and provide domain-specific operators and
optimizations.

3. The Nexus Platform

The Nexus platform is a federated open system for location-based applications [Nicklas
and Mitschang 2004]. As depicted in Figure 1, the Nexus architecture is built up in three
tiers: applications, a federation tier containing Nexus nodes and a service tier consisting
mainly of context servers, which provide stored or sensed data. Context servers must
implement a predefined interface, through which they are contacted by Nexus nodes, and
they must register at the Area Service Register (ASR), announcing the area they offer data
for. Otherwise the implementation of a context server is not restricted, thus it can easily be
tailored to the needs of different kinds of data like positions of vehicles (high update rates)
or geometries of buildings (large data volumes) [Grossmann et al. 2005]. Being an open
system, adding new context servers to the Nexus platform is not restricted. In particular,
it is possible that the data of a new context server overlaps with existing ones in both
its service area and content, which can lead to multiply represented objects (MReps).
When integrating different result sets from different context servers, Nexus nodes try to
detect such multiple representations based on location-based criteria and merge them into
a single object [Volz and Walter 2004, Volz 2006]. In the following, the term federation
is used as a synonym for Nexus nodes.
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Figure 1. Overview of the original Nexus architecture

The Nexus platform uses a request-response protocol in which queries typically
contain a spatial restriction. The processing model is depicted in Figure 1:

1. An application sends a query like Menu and position of all restaurants closer than
1 mile to my current position to an arbitrary Nexus node.

2. The Nexus node determines the relevant context servers by an ASR lookup based
on the spatial restriction and the queried object type. In the example above the



spatial restriction corresponds to closer than 1 mile to my current position and the
object type to restaurants.

3. The Nexus node forwards the query to those context servers. The context servers
process the query and send back their results.

4. The Nexus node integrates the context servers’ results. It detects and merges mul-
tiply represented objects (MReps). For this, domain-specific methods are used
that exploit the spatial structure of the data: only objects in a spatial vicinity are
considered candidates for being MReps.

5. The Nexus node returns the integrated result to the application.

Initially, this processing model computes and forwards the full result to the re-
questing application, which has no control over the data transfer. Obviously, when trans-
ferring large results, this can overburden resource-limited devices. For this reason we
developed a better suited processing model based on the federated cursor concept.

4. The Federated Nexus Cursor Concept

The main idea for this federated cursor approach is to

e request only context servers that actively contribute

e process only the necessary result data

e support temporarily disconnected applications

e support mobility of applications (free choice of Nexus node).

In the past, cursors were used to bridge the so-called “impedance mismatch” be-
tween database systems and programming languages. The cursor allows conventional
programming languages to cope with tuple-wise processing by providing a pointer to the
actual tuple to be worked up.

The idea has been retained but applied to the domain of a federated, context-
aware platform. Here, the cursor concept is used for retrieving partial results of spatial
queries in order to prevent memory overflow and to save communication bandwidth, thus
bridging the “resource mismatch” between often resource-limited mobile devices and the
‘unlimited’ server infrastructure.

Using a cursor, an application does not have to wait until the entire result is trans-
ferred before processing it. Depending on the type of connection there may be unwanted
disconnections: the larger the result, the higher the risk that the full result never reaches
the querying application. Also, certain network paths may be expensive.

One way to overcome this problem is to partition the spatial query into many
small disjoint sub-queries and post each sub-query subsequently. However, this approach
requires knowledge about the results’ size of each sub-query which (without the neces-
sary information) cannot be clearly predicted. Thus, the way the initial query should be
partitioned is unclear. With a cursor no partitioning is necessary. Instead the result is
partitioned with respect to the application needs, which is especially useful if the result is
suitably ordered.

In the subsequent chapters the general concept of a federated, status-conscious
cursor is introduced, which is used to efficiently retrieve objects over distributed data
sources by exploiting the spatial nature of the data.



4.1. Query Processing Sequence

Up to now, a Nexus application posts a spatial query and receives an answer consisting
of the query result. The new cursor-based processing model is three-phased. This is
analogous to the cursor processing as described in [Date 2000]. The application has to
post a query associated with a cursor on the query’s result. After that, the application can
start to piece-wise process the result. In the end, the result is deleted, if either its lifetime
has expired or the application signals that it is no longer needed.

4.1.1. Phase 1: Initialization Phase

In the initialization phase preparations for the next phase (delivery phase) are made. The
necessary steps are as follows (cf. Figure 2):

1. An application sends a spatial query to an arbitrary Nexus node and addi-
tionally asks the federation to create a cursor on the query’s result.

2. The Nexus node determines the relevant context servers by an ASR lookup
based on the spatial restriction and the object type in the query.

3. The Nexus node forwards the query to those context servers, which process
the query and send their results back. Additionally, the federation sends
back an ID (called Nexus Session Locator, see below) of that cursor to the
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Figure 2. Overview of the new architecture

4.1.2. Phase 2: Delivery Phase

If the initialization phase has been successfully completed, the application is able to send
cursor operations on its cursors to the federation to give access to the result data piece by
piece. This phase is called delivery phase. The necessary steps are as follows:

4. The application posts a next operation stating the next elements pertaining
to a certain result identified by an ID.



5. The federation looks for the result belonging to the ID and prepares the
objects that go to the result set. Objects have to be retrieved from the
context servers (if they are not already in cache).

6. Multiply represented objects have to be detected and merged. This opera-
tion can reduce the number of objects.

7. The result set is sent back to the application.

The application repeats the delivery phase until the end is reached or it does not
need any further elements and decides to finish the retrieval. If the application signals that
decision, the federation enters the termination phase.

4.1.3. Phase 3: Termination Phase

This final phase is entered if the lifetime of the result has expired or if the application
signals the federation that it does not need more elements. The resources connected to the
ID are released.

4.2. Session Management

For identifying sessions within the Nexus platform we introduce the so-called Nexus Ses-
sion Locator (NSL). A NSL consists of two parts: a basic service part, which encodes the
Nexus node the session was created on and thus holds the session information and a ses-
sion identifier (SID). The hosting node is encoded within the NSL to support distributed
session management: since we want to support mobile devices, an application can change
its Nexus node. Using the NSL, a Nexus node that receives a cursor query for a cursor
that it does not host can easily forward that query to the correct node. If a mobile device
changes the Nexus node during operation, the new node has to retrieve the specific appli-
cation information from the relevant Nexus node encoded in the NSL in order to be able
to process the request adequately. For this, there are two possibilities: one is to transfer
all relevant information to the new node (incrementally or at once) and to replace the part
of the NSL storing the host with the new host address. The other is to always forward the
query to the original node.

5. Federated Processing Strategies

After introducing the general federated cursor concept, we discuss federated processing
strategies. In order to optimize query processing, the context servers should support a
cursor concept, too. It is an optional feature of a context server. Without that function-
ality the entire result from each context server has to be transferred to the federation. In
Figure 2, the context servers are also extended by a session management in order to be
able to hold application specific information. In that way, the results can be kept at each
context server locally and objects just needed will be transferred to the federation.

To provide optimal response times for applications, the federation should pre-
cache partial results [Haas et al. 1999]. There exist several ways to do this. The naive ap-
proach is to query all relevant context servers and cache all results locally. This approach
has the advantage that there is no more communication overhead between the federation
and the context servers and long latencies for query answering are avoided. But it suffers



from high memory consumption within the federation layer and a long initialization phase
since the results of all context servers must be fetched.

To reduce the memory consumption at the federation layer, spatially portioned
queries can be sent to the context servers. Here the initialization phase consists of the
non-trivial problem of partitioning the query. Objects may be queried that currently are
not needed and in worst case never needed and it must be taken care that all multiply
represented objects are present for the merge operation at processing time.

Both solutions sketched above are not recommendable. One suffers from memory
consumption in the federation layer. The other suffers from communication overhead
between the federation and context servers and could also miss information for some
objects. So there is a trade off between memory consumption and the system load.

5.1. Cache Histograms

A major feature of the Nexus federation is the merging of multiply represented objects
(MReps). To correctly perform this operation also in the cursor mode, we have to pre-
cache partial results in a way that all candidates for a MRep-merge are present whenever
this operation is carried out. The naive way would be to pre-cache the whole result at fed-
eration level. However, this introduces an often unnecessary memory usage at federation
level and communication overhead between federation and context servers, particularly if
an application does not retrieve the whole result.

We use cache histograms to solve that problem in an efficient way. A single cache
histogram represents the query-dependent frequency distribution of the resulting objects
based on a sorting criterion (i.e., the distance from a geographical point). Cache his-
tograms are provided by each context server. A cache histogram consists of a set of cache
histogram entries. Each cache histogram entry consists of a bucket value which indicates
how the partial result of a context server was sorted and the amount of occurrences of that
bucket within that partial result. A bucket here refers to a discrete point in the sorting
domain and not to an interval as usual.
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Figure 3. Federated cache strategy using cache histograms
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As shown in Figure 3, each context server delivers a cache histogram (CH-CSI1
to CH-CSn) which is spatially sorted. C,; corresponds to a cache histogram entry and
gives the value of the cache entry and its frequency of occurrence. In our example the
value refers to the distance of an object to the reference point, e.g., C; ;, with a value of



<17,5>, addresses 5 nearest objects from context server 1 with a distance of 17 to that
reference point.

If cache histograms supplied by the corresponding context servers are not already
sorted by the bucket value, the federation has to do it by itself. That may occur if the
cache histogram is created before sorting the partial result or the context server does not
support sorting at all. Usually the context servers support result sorting. If no sorting
criterion is specified, the federation has to sort it. The federation now merges the cache
histograms delivered by each data context server into a federated cache histogram in order
to get an overall overview (CH-F) of all data sources involved in the incremental retrieval
process. The most important information at this point is the order in which the context
servers should be queried, what context servers have to be queried and the quantity of
objects (which is encoded in the cache histogram entries) to query the context servers for.

Since there may be multiple representations for the same real world entity, there
can be objects with the same sorting value in different cache histogram. In that case
these entries are stored as a linked list as shown in Figure 3. Elements in the linked
list potentially represent the same object. All these objects must be transferred to the
federation in order to guarantee a lossless merge. Whether two or more entries in the
linked list represent the same object is decided by the federation’s merger algorithm.
Here C; ; and C,; got the same bucket value and are thus stored as linked list. Taking
for example C,; ; with a value of <17,5> and C, ; with a value of <17,3>, the federation
would first ask context server 1 for the next 5 objects and then context server 2 for the
next 3 objects each with a distance of 17 to the reference point.

Listing 1 shows the cache histogram algorithm in pseudocode. It is used by the
federation to build up a federated cache histogram.

Listing 1. The cache histogram algorithm

// application sends query to system
receive application query

// determine the relevant context servers
ask ASR for relevant context servers

// answer
send NSL to application

// send query to all necessary sources
for each context server do
forward query
// get cache histograms from each context server
receive the cache histogram
// eventually sort them
if cache histogram not sorted
sort cache histogram

// merge the cache histograms
merge cache histograms to federated cache histogram

5.2. The Retrieval Process Using Cache Histograms

Internally, the cursor is split in an horizontal (H) and vertical (V) component. The H
component traverses the cache histogram from left to right, the V component from top
to bottom. The algorithm is shown in Figure 4 for a next operation. The initial state of
the algorithm is displayed in the upper left. The H component corresponds to the current



cursor position. The V component indicates the position within the linked list of elements
with the same bucket value.

CH-F |

\ c2,1 \ \ c2,2 \

Lﬁ next operation

(;'_grrent H positié'fi:

| CH-F |
Lot ]c12]csr|cse]

Figure 4. One cache histogram retrieval step

On the bottom right side the next two steps of the algorithm are displayed. First all
elements in the linked list have to be processed (step 1), to ensure that all representations
of the same object are retrieved.

The next step is to move the H-position by one to the right (step 2). If the linked
list here has also got more than one element then step 1 is repeated. Otherwise step 2 is
repeated.

The algorithm ends filling the federation caches if the amount of objects needed to
answer the previously posted query is reached or if there are no more objects to retrieve.
In the last case, a message stating that there are no more objects is sent to the inquiring
application.

The algorithm works in an efficient way in terms of memory consumption and
network load because only relevant context servers are queried for objects, irrelevant con-
text servers are not considered as the federation only retrieves objects as a result of next
operations. Furthermore no multiply represented objects are missed. Listing 2 shows a
simplified version of the retrieval process using cache histograms.

Listing 2. Retrieval process algorithm using cache histogram

// application requests next N objects
K := number of objects in output buffer
PL := []
do N - K times
// output buffer does not contain enough objects
if V-component points to cache histogram entry
P := context server in current cache histogram entry
M := bucket size in current cache histogram entry
if P in PL
increment number of objects to fetch from P by M
else
append P to PL
set number of objects to fetch from P to M
move V-component one step down
else



move H-component one step right
OL := []
for each P in PL do
retrieve the given number of objects from P
append objects to OL
merge objects in OL
append OL to output buffer
remove first N objects from output buffer
send removed objects to application

6. Experience and Evaluation

Considering scenarios where mobile devices are forced to piecewise retrieve result sets
due to memory limitations of the device, extending the Nexus platform by cursors is
clearly an enhancement. Without a cursor, such devices would have to send the same
query multiple times to a Nexus node, receive the complete result set each time but only
process the appropriate subset and ignore the rest, which is obviously inferior wrt. over-
all query processing time, data volume transferred and overall energy consumption. In
order to assess the overhead involved with the cursor concept, we conducted a suite of
experiments to show that the additional overhead caused by the cursor management and
histogram calculations is comparatively small.
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The context server used for the experiments is implemented in Java and was run-
ning on a SUN Blade 2000 with two 1.2 GHz UltraSPARC III CPUs and 6GB of RAM.
IBM DB2 8.1.3 was used as the backend system for storing the data. The database con-
tained 3380 objects in total. Figure 5 shows the runtimes of a nearest-neighbor-query with
sorting by distance from a reference point. We varied the number of objects to retrieve be-
tween 100 and 1000. guery refers to query processing alone, +cursor additionally creates
a cursor and +hist. furthermore computes a histogram. Figure 6 shows the fractions of the
runtime required for processing the query, creating a cursor and computing a histogram
for the 1000 objects query. The extra overhead is below 7%. This fraction is even lower
for smaller result sets, approximately between 0.5% and 2%.



7. Conclusion

In this paper, we introduced a generic federated cursor concept, explained the underlying
idea, and applied it to an integration architecture, the Nexus platform. The main idea is
to request just those context servers that actively contribute and to process only necessary
result data in order to reduce memory consumption and transmission volume over the
network.

Multiple object representation is an additional problem to deal with since no infor-
mation should be missed in order to achieve a lossless merge of multiple representations.
It was solved by introducing the novel approach of cache histograms representing a query-
dependent frequency distribution of the resulting objects based on some sorting criterion.

Finally, temporarily disconnected applications due to faulty mobile connections
are supported. This problem was solved using sessions. In this way applications are able
to reconnect at later time and at arbitrary connection points.

Our prototype evaluation and measurements indicated that the overhead intro-
duced by the cursor concept is in the low percentage range. This is clearly acceptable
in view of the benefits the cursor concept introduces to the applications and the federation
layer, e.g. availability, disconnection and partial evaluation.

However, the approach suffers from assumptions that may not always be correct.
First, it assumes that stored values of objects are exact. That implies that the ordering is
always the same for each object and the corresponding bucket, but that is not always cor-
rect. For example, if the objects are sorted by distance to the application’s reference point
there could be some divergence between the position values or between the calculated
distances to that reference point. The introduction of an interval could eliminate the error
and minimize communication overhead between federation and context servers. Such an
interval can be calculated on statistical values the federation (or some other component)
has to collect in advance. Here the problem consists of dynamically finding convenient
ranges for each bucket.
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