
flashWeb: Graphical Modeling of Web Applications

for Data Management

Mihály Jakob Oliver Schiller Holger Schwarz Fabian Kaiser

Institute of Parallel and Distributed Systems
Universität Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany
Email: {mihaly.jakob, oliver.schiller, holger.schwarz, fabian.kaiser}@ipvs.uni-stuttgart.de

Abstract

This paper presents flashWeb, a Computer-Aided
Web Engineering (CAWE) tool for the model-driven
development of web applications that focus on data
management. Present-day web applications, like on-
line auction systems or enterprise web portals require
comprehensive data access, data processing and data
manipulation capabilities. However, existing web ap-
plication development approaches treat data manage-
ment operations as second-class citizens. They inte-
grate data operations into existing models or derive
them as a by-product of business processes. We argue
that data management is an important part of the ap-
plication logic hence we capture operations with an
additional Operation Model. We show that the ex-
plicit modeling of operations provides many benefits
that distinguish our solution from other approaches.
We present the flashWeb development process uti-
lizing a graphical notation for the models in use, a
CAWE tool that supports the creation of the graph-
ical models and a code generator that creates ready-
to-run web applications.

Keywords: Model-driven web engineering, Graphical
web application modeling, CAWE tool, Web applica-
tion generation, Object-orientation

1 Introduction

The development of data-intensive web applications
has been topic to many research activities in the field
of web application engineering over the last decade.
Traditionally, the primary focus of data-intensive web
applications is on the presentation of large amounts
of static data in a hyperlinked manner. In addition
to that, present-day web applications offer a wide
range of interactive features allowing users to mod-
ify content that is stored by the web application and
to create personalized views or navigation patterns.
E-commerce web sites are omnipresent examples for
this category of web applications. An online auc-
tion system like eBay allows users to create accounts
and auction items, place bids or provide feedback on
completed transactions thereby creating new content
and associations between existing content objects. All
users of the system are able to access content objects
through searching, diverse indexes and listings that
are properly filtered and ordered according to dif-
ferent criteria. As present-day web applications rely

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-Sixth International Conference on
Conceptual Modeling - ER 2007 - Tutorials, Posters, Panels and
Industrial Contributions, Auckland, New Zealand. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 83, John Grundy, Sven Hartmann, Alberto H. F. Laender,
Leszek Maciaszek and John F. Roddick, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

heavily on different kinds of data management opera-
tions, we need an approach that facilitates the devel-
opment of web applications providing strong support
for reusable business logic components.

In this paper, we present flashWeb, a CAWE tool
for the model-driven development of web applications
that support data management operations. We show
that our solution utilizing the Operation Model and
the novel graphical connections between models al-
lows the rapid development of such web applications.
Figure 1 depicts an overview of the flashWeb devel-
opment process.

Figure 1: flashWeb Development Process

After the requirements analysis phase, the devel-
oper uses four models to define the web applica-
tion. The Content Model captures content objects
and their relationships. The Operation Model defines
data management operations that provide sophisti-
cated access to the web application’s content. The
Composition/Navigation Model describes the compo-
sition of the user interface and the navigation struc-
ture of the web application. Finally, the Presentation
Model defines the positioning and the visual appear-
ance of user interface components. As the next step,
the models are used to generate the implementation of
the web application. The flashWeb CAWE tool sup-
ports the creation of the graphical models, the code
generation step as well as the deployment of source
code into an appropriate run time environment for
the web application.

In Section 2, we compare our approach to existing
web application development methods. Upfront, we
point out the following differentiating characteristics:

• An Operation Model graphically defines opera-
tions that provide versatile access to the web ap-
plication’s content. Operations are defined only
once and can be directly used by elements of the
Composition/Navigation Model.

• Models are connected in a graphical manner pro-
viding an enhanced overview of the application
logic indicating which user interface components



access which operations and which operations ac-
cess which content data.

• All models provide fine granular modeling ele-
ments and extension facilities that support the
development of web applications with arbitrary
functionality.

The rest of the paper is organized as follows: In
Section 3 we describe the model-driven web appli-
cation development approach that is supported by
the flashWeb CAWE tool. We briefly introduce the
flashWeb models and explain how they are used in
conjunction. We also present the idea of graphical
connections between models. In Section 4 we describe
the flashWeb CAWE tool that supports the graphical
specification of web applications based on the intro-
duced models. We also briefly describe a code gen-
eration strategy producing ready-to-run web appli-
cations. Finally, we conclude the paper and discuss
open research issues in Section 5.

2 Related Work

Over the last decade, numerous research approaches
have been proposed in the field of model-driven web
engineering. Some examples are Hera (Houben, G. J.
et al. 2003), OO-H (Gomez, J. et al. 2000), OOHDM
(Schwabe, D. et al. 1996), UWE (Koch, N. and Kraus,
A. 2002), W2000 (Baresi, L. et al. 2001) and WebML
(Ceri, S. et al. 2000, 2002). Most of these approaches
were designed to support the development of online
information systems that present large amounts of
data in a hyperlinked manner. Some of these ap-
proaches are also supported by CAWE tools that help
to create graphical models and in some cases generate
a web application partially. VisualWADE (Gomez, J.
2004) supports OO-H, ArgoUWE (Knapp, A. et al.
2003) builds UML models for UWE and WebRatio
(Acerbis, R. et al. 2004) supports the development of
WebML web applications.

However, over the last few years web applications
have evolved into more complex systems that also
provide data management functionality and support
business processes. Hence, we need web engineering
solutions with enhanced data management function-
ality. This is only partially supported by existing ap-
proaches. Moreover, some approaches jump right to
support business processes without offering a solid ba-
sis for data management. We compare the flashWeb
development process to UWE, to WebML and to OO-
H because these approaches have the most in common
with our solution.

The UWE approach uses UML throughout the
whole development process. A Conceptual Model
captures real world entities and their relationships.
Navigation nodes of the Navigation Structure Model
are derived from classes of the Conceptual Model.
Navigation patterns are derived from associations be-
tween Conceptual Model classes and extended with
indexes. Thus, navigation nodes (web pages) corre-
spond to entities of the Conceptual Model resulting in
a coarse-grained content presentation. In contrast to
that, the Composition/Navigation Model of flashWeb
is independent from the Content Model. Thus, in
our case a user interface page can represent several
entities of the Content Model by accessing arbitrary
operations of the Operation Model.

As a response to arising data management require-
ments, WebML (Bongio, A. et al. 2000) provides
model elements that support simple data manipu-
lation. Similar to WebML, we support the idea of
modeling operations with appropriate modeling prim-
itives. However, we pursue a different approach re-
garding where operations are defined and how they

are connected to user interface components. WebML
allows the developer to use basic data management
operations, like to add, to modify or to delete content
objects. It also provides model elements to create or
to delete associations between content objects. How-
ever, operations are directly defined in the Hypertext
Model of WebML, which makes this model compli-
cated. To solve this problem, we strictly separate
modeling elements that concern page composition and
data access into different models. Our solution also
provides composite operations that are defined only
once and can be easily called by elements of the Com-
position/Navigation Model.

The OO-H (Gomez, J. et al. 2000) approach is
based on OO-Method (Pastor, O. et al. 1997) and uses
an Object Model that is similar to our Content Model.
It allows the definition of objects through classes that
hold attributes and services. The Dynamic Model is
additionally used to define object states and object
interactions. The Navigation Access Diagram defines
the user interface of the web application using Naviga-
tion Links that extend classes of the Object Model. In
contrast to that our Composition/Navigation Model
does not include classes of the Content Model or the
Operation Model. It associates user interface ele-
ments to operations of the separate Operation Model
utilizing graphical connections. Thus, in our case a
better separation of concerns is achieved.

3 The flashWeb Modeling Approach

The flashWeb CAWE tool supports the model-driven
development of web applications that provide ad-
vanced data management functionality. It utilizes
graphical models throughout the entire development
process. Different aspects of the web application are
captured with different models assuring a clear sepa-
ration of concerns. In a previous publication (Jakob,
M. et al. 2006) we introduced the initial idea of an
Operation Model that accomplishes the separation of
data management functionality from other modeling
concerns. Additionally, we showed (Jakob, M. et al.
2006) that the generation of a large web application
with a comprehensive Operation Layer for data ac-
cess is possible. However, that first approach utilizes
a preliminary prototype version of our models that are
encoded in XML. The graphical models presented in
this paper are not just a different representation of
those text-based models, but provide besides the ob-
vious advantages many advanced concepts.

The flashWeb development approach is based on
three graphical models, the Content Model, the Oper-
ation Model and the Composition/Navigation Model.
The Presentation Model is a textual model that de-
fines position and visual appearance of user interface
components. The following sections provide a brief
description of each model and of model interactions.

3.1 Content Model

The Content Model of flashWeb defines the content
structure of the web application using a UML compli-
ant notation. Basically, it captures real world entities
and their relationships with a UML class diagram.
The Content Model supports classes and associations,
aggregation and composition as well as specializa-
tion/generalization. Class attributes are described by
their names, data type and their multiplicity. As-
sociations are specified by their name, role names
and multiplicities for the participating classes and op-
tionally by an association class. The bottom half of
Figure 3 depicts a very simplistic Content Model ex-
ample which is an excerpt from the specification of
an online auction system.



3.2 Operation Model

The Operation Model defines data management op-
erations that provide full read and write access to
the web applications content storage. This model
serves as an intermediary between the Composi-
tion/Navigation Model and the Content Model. Ele-
ments of the Composition/Navigation Model may be
associated with arbitrary operations of the Operation
Model that retrieve, modify or delete web applica-
tion content. An important feature of the Operation
Model is the reuse of operational constructs. Ba-
sic and composite operations are defined only once
and can be used by an arbitrary number of Composi-
tion/Navigation Model elements.

The syntax of the Operation Model is simple.
Each Content Model class has its counterpart in the
Operation Model. However, the definition of a sepa-
rate Operation Model is still advisable for the follow-
ing reasons. First, the developer may define further
Operation Model classes that can be used as contain-
ers for composite and custom operations. These op-
erations may affect several Content Model objects so
putting them into a single Content Model class is not
justifiable. Note that depending on the customiza-
tion level a web application may have a fair amount
of custom and composite operations. Secondly, using
different models for content and operations provides a
better separation of concerns. An example class that
defines operations for a content object is depicted on
the left hand side of Figure 2.

Figure 2: Basic Operation Examples

This is a UML-near notation and defines class-
level operations (underlined), instance-level opera-
tions that access one object of the class (not un-
derlined) and instance-level operations that access
related objects through associations (dashed under-
lined). The operation signature is composed of the
operation name, the parameter list and the data type
of the operations return value. Associations between
classes are visualized in the Content Model and are
not repeated in the Operation Model. In most cases,
a flashWeb developer is not interested in the exact op-
eration signatures. Therefore, the Operation Model
also employs a simplified graphical notation that ab-
stracts from details. The right hand side of Figure 2
shows an example of this notation. Each operation is
represented with an alias and an icon.

3.3 Operation Types

The Operation Model supports three types of oper-
ations: basic operations, composite operations and
custom operations.

Basic operations provide simple access to web ap-
plication content. They allow to retrieve, to create,
to modify or to delete content objects. Addition-
ally, they also provide similar access to associations.
Figure 2 lists the most important basic operations for
the User class displaying both the UML-near and the
simplified graphical notation.

Composite operations combine two or more oper-
ations as one transaction. These operations play an
important role in the Operation Model because the
application logic of a web application often requires
operations to be executed as one transaction. A sim-
ple example is the creation of an auction item and
the subsequent association of this item with a user
in one transaction. Such a composite operation com-
bines two basic operations, one that creates an auc-
tion item and another that associates this item to a
user. An arbitrary number of basic operations can
be flexibly composed into composite operations by so
called operation connectors. These connectors define
all necessary mappings between results and parame-
ters of participating operations.

Finally, the custom operation type is an extension
facility of the Operation Model for non-standard ap-
plication code. It allows the definition of custom ap-
plication code in the programming language that im-
plements the Operation Layer of the web application,
e. g. Python, Java, etc. This extension mechanism is
necessary for web applications that require more than
standard data management functionality.

3.4 Connecting Operations to Content

Graphical connections between models are a key char-
acteristic of the flashWeb development process. They
express an important part of the web applications ap-
plication logic and provide enhanced overview thereof.
Whereas we use a UML-near notation for the Content
Model and the Operation Model, connections between
models clearly exceed the possibilities that are pro-
vided in UML. Capturing the same semantics, e. g.,
by using UML stereotypes, would result in a much
more complicated graphical representation. Thus, we
advocate using a domain specific notation to achieve
a simple yet powerful way to develop web applica-
tions. Figure 3 shows an example of basic operations
and their data access for the User and AuctionItem
classes.

Figure 3: Operations accessing Content



Connections between the Content Model and the
Operation Model (dashed arrows) directly visualize
for each operation the manner of data access. Data
access arrows can be unidirectional or bidirectional
indicating whether an operation receives data from
the content storage, writes data to the content stor-
age or both. For example the class-level create+ op-
eration creates a new object and is connected to the
corresponding Content Model class. The bidirectional
arrow between this operation and the Content Model
class indicates that the operation modifies the web
applications content and receives data from the con-
tent storage, i.e., the newly created class object.

3.5 Composition/Navigation Model

The Composition/Navigation Model of flashWeb de-
fines the web applications user interface. Its modeling
elements allow piece-by-piece web page construction
and the connection of different elements by naviga-
tion edges. Basically, there are four types of model
elements. First, structure elements allow to create
pages and to divide pages into different areas. Sec-
ondly, content elements simply present the web appli-
cations content in different types of object views and
object listings. Thirdly, data-entry elements allow the
definition of user interface components that require
the user to provide information that is stored or pro-
cessed by the web application. Finally, navigation el-
ements connect different elements of the user interface
with navigation edges thereby creating the navigation
structure of the web application. Note that these cat-
egories only define the main purpose of modeling ele-
ments. Many elements combine one or more of these
aspects in some way. The top half of Figure 4 depicts
a very simplistic Composition/Navigation Model ex-
ample.

3.6 Connecting the User Interface to Opera-
tions

Graphical connections between the Composi-
tion/Navigation Model and the Operation Model
play a central role in the flashWeb development
process. All connections of this type are explicitly
defined by the web application developer. Connec-
tions between the two models (dashed arrows in
Figure 4) indicate which user interface components
access which operations. Connections may be defined
using unidirectional or bidirectional operation access
arrows. They indicate whether an operation only
receives parameters, only returns a value or both.
Connections between the models are labeled in both
directions. Labels show which parameters are passed
on to an operation and which variables are entered
into the namespace of a Composition/Navigation
Model element. A special name result identifies the
result value of an operation. Figure 4 depicts an
example showing a simple Composition/Navigation
Model and an Operation Model.

The Composition/Navigation Model displays two
web pages. The User Page includes an Object View
element that displays a User object and an Entry
Form element that defines a search form. The Ob-
ject View element receives a User object from the
operation get of the User class. The UserId variable
from the namespace of the User Page is renamed to
Id and passed on to this operation. The operation
returns a User object in the User variable. The Ob-
ject View element uses the value of this variable and
displays the User object. The User Page also pro-
vides a search form with two fields. The Name field
has the type Input and requires the user to provide
some text. The Category field of the type Selection
receives the list of categories from the getall operation

Figure 4: User Interface accessing Operations

of the Category class. The search form also provides
a search button that calls the search operation in the
AuctionItem class. Note that the search operation
in this example is a custom operation. The operation
call (if the user activates the search button) sends the
parameters Name and Category to the search opera-
tion and receives a list of found AuctionItem objects.
Finally, search results are passed on to the Search Re-
sult Page in the Items variable. This page includes
an Object Index showing all results.

3.7 Presentation Model

The Presentation Model of flashWeb is not a graph-
ical model. It consists of a set of style definitions
that can be assigned to elements of the Composi-
tion/Navigation Model in a flexible way. Style def-
initions are structured into categories like size, color,
position, etc. Each element can be assigned an arbi-
trary number of style definitions resulting in the final
rendering of the element.

4 The flashWeb CAWE Tool

The introduced flashWeb modeling approach pur-
sues the rapid development of web applications. To
achieve that, a CAWE tool is required that facilitates
the fast creation of flashWeb models, the generation
of application code and the deployment of code into
the desired target platform. In the following sections
we present the flashWeb CAWE tool that fulfills these
requirements. The demonstration will include the de-
scription of the user interface, a step-by-step expla-
nation of the model creation process as well as the
description of the code generator and the generated
web application.

4.1 User Interface

The user interface of the flashWeb CAWE tool con-
sists of a menu, a tool bar, a fly-out palette, a status
bar and a canvas. Figure 5 depicts the mentioned
components.

The menu provides common actions like create,
open or save a project. Frequently used actions, e. g.
redo and undo, are additionally available in the tool
bar. In contrast to the menu and the tool bar, actions
provided by entries of the fly-out palette are specific
to model creation. The entries are categorized cor-
responding to the three graphical models: the Con-
tent Model, the Operation Model and the Composi-
tion/Navigation Model. Actions that concern creat-
ing elements of a certain model reside in the corre-
sponding category. The last category concerns the
creation of connections between models.



Figure 5: Content and Operation Modeling

The status bar displays various messages that in-
form the web application developer about the state
of the models, e. g., error messages. An example is
a message indicating that the type referenced by a
model element cannot be resolved.

Last but not least, the canvas holds the graphical
models. It is unlimited in space, but only a certain
part is visible. The visible part can be zoomed and
moved in all directions. This functionality is essential
for large models, so the web application developer is
able to obtain a better overview. Note that there
exists only one canvas for all models and it is not
separated into parts respective to the models. Hence,
the web application developer is free to place model
elements arbitrarily.

The number of connections beetween models in-
creases quickly. The flashWeb CAWE tool provides
several features to handle this circumstance. First,
most model elements can be collapsed, so that their
subelements and most of their connections become
hidden. Figure 5 shows the collapsed AuctionItem op-
eration class and other classes that are decollapsed.
Secondly, all incoming and outgoing connections of
a selected model element are highlighted. Observe
the highlighted connection between the getLastName
operation and the LastName attribute in Figure 5.
Finally, there exists the possibility to hide all con-
nections of a certain type temporarily, e. g., to hide
all connections between the Content Model and the
Operation Model.

To enhance the comfort of model editing, the
flashWeb CAWE tool provides support for undoing
changes. This feature is combined with the possibil-
ity to redo undone changes.

4.2 Modeling

In this section we demonstrate by example the func-
tionality of the flashWeb CAWE tool. Figure 5 de-
picts the small Content Model and Operation Model
example from Section 3.4, where the semantics of this
example is explained in more detail.

The creation of a model element is a simple task.
The following steps describe how the User content
class is created with the flashWeb CAWE tool. First,
the web application developer selects the Class ele-
ment of the Content category from the palette. Sec-
ondly, he clicks on the canvas at a desireable location.
Finally, he fills in the name of the class, e. g., User in
the dialog that is presented to him. After that, the
class is created. Note that the counterpart in the Op-
eration Model is automatically generated. Moreover,
the flashWeb CAWE tool automatically creates basic

operations, like createUser, and connects them to the
Content Model.

Attributes for a content class can be added us-
ing the context menu of the corresponding model ele-
ment. The required information, the name, the type
and the mulitplicity of the attribute is queried by a
dialog. The creation of a content class attribute re-
sults in the generation of according access operations
and the adaptation of operations that depend on class
attributes. Thus, due to the creation of the attribute
FirstNames the operations setFirstNames and get-
FirstNames are generated and the basic operations
createUser, selectUser, deleteUser and edit are ex-
panded by the parameter firstNames. If the length of
the parameter list exceeds a defined threshold, only
an abbreviated form is displayed. The full operation
signature is obvious and is shown in a tooltip that
pops up if moving the mouse pointer over the op-
eration. As described in Section 3.2 there exists a
simplified graphical notation for operation signatures
that can be used as an alternative.

Creating connections between model elements is
also a simple task. Subsequently, we describe how the
Bid association between the User and AuctionItem
Content Model classes is created. First, the devel-
oper selects the Association palette entry. Secondly,
he selects the User class as source and then the Auc-
tionItem class as target of the association. Finally,
he provides the name, the role names and the multi-
plicities for the dialog that is opened. Having entered
the necessary information, the association is created.
Basic access operations in the corresponding Opera-
tion Model classes and appropriate connections to the
Content Model are generated automatically.

Figure 6 depicts a small Operation Model and
Composition/Navigation Model example from Sec-
tion 3.6. It shows the two pages User Page and Search
Results Page that model pages of the user interface.

Figure 6: Composition and Navigation Modeling

The body of a page element consists of two parts,
one that defines variables and another that contains
subelements. The section containing subelements is
surrounded by a frame and bears the contents label.
For example, the User Page page in Figure 6 defines
the variable UserId and contains two subelements.
An Object View element that displays a User object
and Custom Form named Search Items.

Model elements of the Composition/Navigation
Model that require an input from a variable or from
an operation call, possess an input slot. Input slots
are visualized as small rectangles attached to the cor-
responding element, e. g., the Object View element
on the User Page page. The slots of an element are
numbered consecutively to identify input parameters



uniquely. The web application developer may connect
an input slot to a variable of a surrounding Composi-
tion/Navigation Model element or to an operation of
the Operation Model. This can be achieved either by
using the context menu of the input slot or by select-
ing the Operation Call element from the palette. Note
that the input slot of the Object View element dis-
playing a User object is connected to the getUser op-
eration, which receives its input, i.e., the user id from
the UserId variable of the User Page. Mappings be-
tween namespaces are displayed as labels on the cor-
responding edge. The label UserId→id denotes that
the UserId variable from the namespace of the User
Page page is mapped to the id parameter of the ge-
tUser operation. Additionally, the result→User label
indicates that the result of the corresponding opera-
tion is mapped to the User variable in the namespace
of the connected Object View element.

A successful generation of the web application de-
mands holding all models in a consistent state. To
support this task, the flashWeb CAWE tool provides
three useful features. First, all dialogs immediately
validate entered data, e. g., the dialog querying the
name of a class validates that the entered name is
unique. In case of a violation the dialog shows an ap-
propiate error message and prevents the web applica-
tion developer from proceeding. Secondly, the CAWE
tool provides information through pop-ups if the de-
veloper tries to select a model element as part of an
action, indicating whether the selection is appropri-
ate. Finally, an element having an inconsistent state
is accordingly annotated and the status bar shows an
appropriate error message.

4.3 Code Generation and Deployment

The flashWeb CAWE tool provides a flexible strategy
for integrating code generator components that sup-
port different target platforms, e. g., JavaEE, Zope
or Ruby on Rails. It bases upon the Rich Client
Platform (RCP), which constitutes a small subset of
the Eclipse Platform. The RCP focuses on the de-
velopment of applications with the utilization of the
plugin-based architecture of Eclipse, but is indepen-
dent from the Eclipse IDE. A key benefit of this archi-
tecture is the ease of extensibility, which avails build-
ing the code generation and deployment part of the
tool. Code generator components are Eclipse plug-
ins that register themselves to the flashWeb CAWE
tool. Generator plugins provide two modes of op-
eration: on-demand and on-the-fly. The on-demand
mode requires the web application developer to trig-
ger the code generation process explicitly. The on-
the-fly mode adjusts the generated code each time
the web application developer changes the models.
Note that generator plugins can be configured to de-
ploy generated code to the designated target platform
automatically. Using the on-the-fly mode and the de-
ployment feature of the flashWeb CAWE tool enables
the developer to propagate model changes instantly
to the implementation of the web application thereby
minimizing the edit-generate-test cycle. Currently,
the flashWeb CAWE tool provides one fully functional
code generator plugin for the Zope 3.3 application
server. The demonstration includes the description
of code generation features and the presentation of
the generated web application.

5 Conclusions and Future Work

This paper introduces flashWeb, a CAWE tool for the
model-driven development of web applications with
focus on data management functionality. The over-
all strategy of the CAWE tool is to provide a wide

range of standard modeling elements that support
most of the web application developers needs. Addi-
tional functionality can be inserted into the modeling
process using custom elements, e. g., custom opera-
tions. The presented CAWE tool has been used to
create several small applications that serve as proof of
concept for the suitability of our approach. However,
we plan to thoroughly evaluate flashWeb in different
application areas creating medium and large projects.

References

Acerbis, R. et.al. (2004), WebRatio: an Innovative
Technology for Web Application Development, in
Proc. of ICWE2004, Munich, Germany.

Baresi, L., Garzotto, F. & Paolini, P. (2001), Extend-
ing UML for Modeling Web Applications, in Proc.
of HICCS34, Maui, Hawaii, USA.

Bongio, A., Ceri, S., Fraternali, P. & Maurino, A.
(2000), Modeling Data Entry and Operations in
WebML, in Proc. of WebDB2000, Dallas, USA.

Ceri, S., Fraternali, P., & Bongio, A. (2000), Web
Modeling Language (WebML): a Modeling Lan-
guage for Designing Web Sites, in Computer Net-
works Vol. 33, p. 137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M.,
Comai, S. & Matera, M. (2002), Designing Data-
intensive Web Applications, Morgan-Kaufmann.

Conallen, J. (2003), Building Web Applications with
UML, Addison-Wesley.

Gomez, J. (2004), Model-Driven Web Development
with VisualWADE, in Proc. of Source.

Gomez, J., Cachero, C. & Pastor, O. (2000), Ex-
tending a Conceptual Modelling Approach to Web
Application Design, in Proc. of CaiSE2000, Stock-
holm, Sweden.

Houben, G. J., Barna, P., Frasincar, F., & Vdovjak,
R. (2003), Hera: Development of Semantic Web In-
formation Systems, in Proc. of ICWE2003, Oviedo,
Spain.

Jakob, M., Schwarz, H., Kaiser, F. & Mitschang, B.
(2006), Modeling and generating application logic
for data-intensive web applications, in Proc. of
ICWE2006, Palo Alto, USA.

Jakob, M., Schwarz, H., Kaiser, F. & Mitschang, B.
(2006), Towards an Operation Model for Generated
Web Applications., in Proc. of MDWE2006, Palo
Alto, USA.

Knapp, A., Koch, N., Moser, F. & Zhang, G. (2003),
ArgoUWE: A Case Tool for Web Applications, in
Proc. of EMSISE2003, Geneva, Switzerland.

Koch, N. & Kraus, A. (2002), The Expressive
Power of UML-based Web Engineering, in Proc.
of IWOOST02, Cyted.

Lima, F. & Schwabe, D. (2003), Modeling Applica-
tions for the Semantic Web, in Proc. of ICWE2003,
Oviedo, Spain.

Pastor, O. et al. (1997), OO-Method: An OO Soft-
ware Production Environment Combining Conven-
tional and Formal Methods, in Proc. of CaiSE1997,
Barcelona, Spain.

Schwabe, D., Rossi, G. & Barbosa, S. (1996),
Systematic Hypermedia Application Design with
OOHDM, in Proc. of Hypertext96, Washington,
USA.


