
Time Jails: A Hybrid Approach to Scalable Network Emulation

Andreas Grau†, Steffen Maier, Klaus Herrmann, Kurt Rothermel

Universität Stuttgart
Institute of Parallel and Distributed Systems (IPVS)

Universitätsstr. 38, D-70569 Stuttgart, Germany

E-mail: {grau,maier,herrmann,rothermel}@ipvs.uni-stuttgart.de

Abstract

It is essential to evaluate the performance of newly de-
veloped distributed software and network protocols. Net-
work emulation enables reproducible evaluation of unmod-
ified real implementations. Software built for distributed
systems, such as a large scale peer-to-peer system, re-
quires evaluation scenarios with thousands of communicat-
ing nodes. Two approaches for scaling network emulation
to such scenario sizes have been proposed in the literature:
node virtualization and time virtualization. Node virtual-
ization allows maximizing the utilization of standard hard-
ware used for emulation experiments. Time virtualization
enables trading experiment duration for virtually increased
resources of the hardware. It stands to reason that a com-
bination of those two approaches may increase scalability
even further. However, in existing combinations, either node
virtualization implies relatively high overhead or time vir-
tualization requires modifications of the test subject imple-
mentation.

In this paper, we present a novel hybrid approach called
Time Virtualized Emulation Environment (TVEE). It inte-
grates node virtualization with low overhead and time vir-
tualization, which is transparent to the execution of test sub-
jects. We introduce virtual time based on epochs to enable
better dynamic hardware utilization during long lasting ex-
periments. Additionally, a mechanism similar to soft timers
ensures an accurate reproduction of network properties in
the time virtualized emulation. Our evaluations show the
accuracy and scalability of time virtualized network emula-
tion. Comparing TCP throughput, TVEE outperforms other
approaches using an event based virtual time by an order of
magnitude.

†Funded by the Deutsche Forschungsgemeinschaft (German Research

Foundation) under grant DFG-GZ RO 1086/9-2.

1 Introduction

The development of new distributed applications and

communication protocols requires mechanisms to evalu-

ate the performance of the corresponding implementations.

Well known approaches for performance evaluation are

simulation and live testing. However, simulators usually

need a special implementation of a simulation model and

cannot be used to evaluate unmodified real prototypes. Live

testing requires an appropriate hardware environment. Set-

ting up such an environment can be prohibitively expensive.

Especially in wireless environments, measurement results

are also not reproducible.

Network emulation solves those limitations by sup-

porting the execution of unmodified real implementations

within a controlled synthetic environment. We consider

all layers above data link layer, including network, trans-

port, and application layer, as software under test, which

is referred to as test subject. On inexpensive commodity

hardware, an emulation tool implemented in software re-

produces specified network properties. The reproduction

is transparent to the execution of the test subjects on the

same computer. Multiple such computers interconnected

by a flexible networking hardware allow the evaluation of

scenarios with as many communicating nodes as computers

are available.

Realistic evaluation scenarios often require thousands of

nodes. In order to scale network emulation to such sce-

nario sizes, different solutions have been proposed in the

literature. We classify them into parallelization, abstraction,

node virtualization, and time virtualization. Parallelization

is typically used to take advantage of the distributed execu-

tion of simulation based approaches [15, 16, 4]. When ex-

ecuting real implementations of test subjects possible roll-

backs of optimistic approaches are very expensive, which

leads to use of conservative approaches. However, de-

pending on the delays of the simulated network, these ap-

proaches require a high synchronization effort. Other ap-

proaches increase scalability by introducing abstractions to

Published in Proceedings of the 22nd Workshop on Principles of Advanced and Distributed
Simulation, (PADS'08), pages 7-14, Roma, June 2008.
© IEEE 2008
http://dx.doi.org/10.1109/PADS.2008.19



the emulation model, e.g. flow-based instead of packet-

based operation [10]. However, flow-based emulation pro-

hibits the use of real network and transport layer imple-

mentations and, therefore, can only be used to evaluate real

application layer implementations. Node virtualization ap-

proaches partition physical emulation computers (pnodes)

into multiple virtual nodes (vnodes) and improve hardware

utilization [8, 1]. Since they usually execute the test subjects

in real-time, scalability is limited by the available hardware

resources. Time Virtualization provides the possibility to

virtually increase resources of an emulation computer by

executing the test subject slower than in real-time [7]. Ex-

isting approaches employ the concept of virtual machines

to provide virtual time transparently to the unmodified test

subjects and to provide node virtualization at the same time.

Yet, such node virtualization limits scalability by the rela-

tively high implied virtualization overhead.

In this paper, we present three main contributions: (1) a

hybrid node virtualization approach having low overhead

and supporting time virtualization transparent to the test

subjects, (2) virtual time based on epochs for maximizing

hardware utilization during long lasting experiments with

minimum synchronization overhead for distributed network

emulation, and (3) a mechanism to ensure the accuracy of

frame delays in a network emulation tool despite time vir-

tualization.

The remainder of this paper is structured as follows. In

Section 2, we discuss existing mechanisms for improving

scalable network emulation with focus on node virtualiza-

tion and time virtualization. We propose the most promis-

ing combination of the two mechanisms and the concept of

time epochs in Section 3, where we also describe how to

integrate the emulation of network properties and improve

its accuracy. In Section 4, we evaluate the scalability of our

prototype before we conclude the paper in Section 5.

2 Classification of Existing Mechanisms and
Related Work

From our main objective of scalable network emula-

tion, we derive the following two requirements. Emulation

should imply minimum overhead, in order to leave as much

hardware resources as possible to the execution of a large

number of test subjects. We are especially interested in low

overhead of computation, network input/output, and main

memory. Emulation should be as transparent as possible

for the execution of unmodified test subjects. With respect

to node virtualization, this implies resource partitioning for

different classes of operating system objects: processes,

filesystems, and the protocol stack consisting of sockets,

routing tables, and network devices. In the following, we

discuss the fulfillment of those requirements for different

approaches and related work in the area of scalable network

emulation. We classify them into parallelization and ab-

straction, node virtualization, and time virtualization.

2.1 Parallelization and Abstraction

Simulating networks requires large computation power.

In order to emulate networks, simulators need to be ex-

tended by a facility to process real network traffic and by a

real-time scheduler which amplifies this demand. In the fol-

lowing, we discuss approaches to reduce computation load

on simulation computers.

The concept of parallelization reduces load on single

computers by distributing a simulator to multiple computers

[15]. Each computer simulates a fraction of the network.

IP-TNE [16] uses a distributed event simulator combined

with a real-time traffic capturing component that enables the

evaluation of real applications within a simulated network.

In contrast to our approach, no node virtualization is used to

maximize hardware usage and emulation runs at real-time.

Using a conservative strategy for distributed event simu-

lation, the synchronization overhead is higher than using

epoch based virtual time.

Whereas approaches based on parallelization distribute

simulation efforts to multiple computers, other approaches

reduce the load on computers by introducing abstractions

in the emulation model, e.g. flow-based instead of packet-

based operation.

An extension of IP-TNE [10] allows mixing of packet

and fluid flows. The integration of fluid flows provides in-

creased scalability. However, fluid flows can only gener-

ate synthetic background traffic. Since the flows model the

transport layer themselves, they cannot be used to evaluate

transport protocols. Hence, the approach is not fully trans-

parent for layers below the application layer.

2.2 Node Virtualization

Resource partitioning for creating virtual nodes can be

done on different layers. The spectrum ranges from emu-

lating the entire hardware including processor architecture

to process memory separation where each process runs in

exclusive virtual memory as is provided by common oper-

ating systems. Here, we focus on concepts that are typically

used for network emulation and support partitioning of our

required resources: virtual machines and virtual routing.

Virtual Machine

Emulation approaches based on virtual machines (VMs) ex-

ecute each vnode inside a virtual machine [1]. Protocol

stacks are located on top of virtual network devices, which

are connected to other VMs by a software switch with an

uplink to other computers. Due to virtualizing the hardware



interface, such approaches are fully transparent for the test

subjects. In each VM runs a guest operating system which

causes memory overhead. The same buffer cache entries

may exist in possibly each guest as they exist in the host

operating system or virtual machine monitor. A minimum

Linux instance needs several megabytes of memory when

executed in a VM based on the Xen [3] hypervisor. The

same program libraries used in different VMs also need ad-

ditional memory. While the memory overhead can be mit-

igated by content based page sharing, this in turn implies

some computation overhead to calculate and compare page

content. Network communication between vnodes based on

VMs requires expensive context switches involving the hy-

pervisor. Such overhead reduces the possible scenario sizes

significantly. The authors in [12] report the faithful execu-

tion of 6 VMs on a pnode, whereas virtual routing is able to

handle scenarios with up to 30 vnodes.

Virtual Routing

Virtual Routing (VR) [11] is based on a more lightweight

virtualization than VMs. Only the protocol stack is virtual-

ized and each process can be attached to a certain stack in-

stance. In combination with approaches such as BSD jails

[9], which partition the remaining required resources, vir-

tual routing is transparent to the test subjects. The benefit

of virtual protocol stacks is that only one operating system

runs on each pnode, resulting in a minimal memory and

computation overhead. Since all test application run under

the same operating system, program libraries can be shared

between vnodes. Communication between vnodes running

on the same pnode even works without additional expensive

context switches.

The comparison of VM based and VR based emulation

approaches shows that VR implies less overhead and thus

supports better scalability. The only remaining limiting fac-

tors for emulating large scale scenarios with hundreds of vn-

odes per pnode are the computation and network resources

available in the hardware. Extending those limits is possi-

ble with time virtualization, which we discuss in the next

section.

2.3 Time Virtualization

Several approaches increase scalability of network emu-

lation by replacing real time with virtual time. The follow-

ing sections cover different approaches for implementing

and presenting virtual time.

Implementation Approaches

Two different ways of implementing time virtualization ex-

ist: virtual machines or modification of an existing operat-

ing system.

One of the topmost benefits of network emulation is the

possibility of using real implementations and, therefore, vir-

tual time must be transparent. Since the protocol stack also

has to use virtual time, we cannot add the virtual time con-

cept at the system call interface.

Gupta et al. [7] introduce the virtual time concept using

virtual machines. By defining a time dilation factor (TDF),

which is used to scale the time provided by the hypervisor

to the virtual machine, it is possible to run a VM with an

arbitrary virtual time. Since the test application runs inside

the VM, it also runs with virtual time.

Another solution, used by Wang et al. [17], includes a

real-time independent virtual time into the kernel. This vir-

tual time is used by applications, the protocol stack, and

their timers as time source. The main benefit of this ap-

proach is that no VM is required which results in less over-

head. The missing VM abstraction causes an increased im-

plementation overhead, because the virtual time concept has

to be implemented throughout the entire kernel and not only

at the small interface between hypervisor and the VM.

In comparison to our approach, both aforementioned ap-

proaches execute emulation scenarios on a single pnode and

thus cannot leverage the resources of multiple distributed

computers.

Approaches to Virtual Time Representation

Two extreme cases for the measurement and advancement

of virtual time exist in the literature: slowing down real-

time by a factor or discrete events.

The TDF (time dilation factor) introduced by Gupta et

al. [7] scales real time by a constant factor. First, such

an approach leads to the problem of selecting an adequate

value for the entire experiment duration. Selecting too high

a value wastes processing power and too low a value results

in biased emulation results. Secondly, the load generated

by the scenario varies over time. Hence, the TDF has to

be selected for periods with maximum load and, therefore,

hardware resource are not optimally utilized.

The authors of dONE (distributed open network emula-

tor) [4] follow another approach. The idea is similar to dis-

crete event simulation. Virtual time is dilated after process-

ing events such as transmission of packets or after timers.

Such an approach provides the emulator with unlimited pro-

cessing power. dONE introduces a time warp operator to

advance virtual time and skip periods where no events hap-

pen.

In case of a parallel discrete event approach, synchro-

nization mechanisms are required to schedule events with-

out causality errors. A causality error occurs when node 1

has a virtual time t1 and node 2 has t2 with t2 > t1 and

node 1 sends a message to node 2 which has to arrive be-

fore t2. Two basic approaches exist to handle this prob-



lem: conservative and optimistic [6]. The conservative ap-

proach prevents the existence of causality errors by execut-

ing events only if it can be guaranteed that no other node

sends a message that has to be processed before. In case

of the optimistic approach, events can be executed without

limitations, but when a causality error is detected, the sim-

ulation state has to be rolled back.

When running real applications rollback-based ap-

proaches are very expensive, since each memory operation

of the test subject needs to be logged and possibly recov-

ered on a rollback. In the field of network emulation with

event-based virtual time, only conservative approaches are

feasible. Since the transmission times of frames are small,

this results in a huge synchronization overhead. The authors

of dONE [4] report to accurately emulate a TCP flow over

a 100 Mbps link using FTP running at a third of real-time.

Even running on slower hardware, our prototype accurately

emulates a fully loaded 1 Gbps link using netperf while run-

ning at half of real-time, which is over a magnitude faster.

3 TVEE Approach

In the following, we describe our approach for improved

scalable network emulation, called TVEE (Time Virtualized

Emulation Environment), in three steps. First, we describe

hybrid virtualization, which allows for creation of memory

and network I/O efficient vnodes. Secondly, we introduce

the concept of time epochs, which provide virtual time with

low synchronization demand. Thirdly, we present mecha-

nisms to emulate a network accurately in the presence of

time virtualization.

3.1 Hybrid Virtualization

We now propose a hybrid virtualization approach com-

bining virtual machines (VMs) and virtual routing (VR) to

provide virtualization of time and nodes (Figure 1).

vn1 vn2 vn3

guest (VM)

pnode

guest OS with VR

Figure 1. TVEE architecture: Multiple virtual
routing instances inside one virtual machine

To limit the number of required code modifications for

implementing virtual time, we make use of the virtual ma-

chine approach. A single VM per pnode provides virtual

time. As shown in the evaluation, the memory overhead in-

troduced by one VM is negligible and the CPU overhead

can be handled by slowing down virtual time.

Since scalability is the topmost requirement, we use VR

with namespace partitioning inside the single VM to virtu-

alize nodes. As discussed during classification, the main

benefits of VR are low per vnode memory overhead and ef-

ficient intra-pnode communication without additional con-

text switches. Using the concept of namespace partitioning,

each vnode has its own processes and filesystemes.

Hybrid virtualization allows the emulation of a large

number of vnodes per pnode.

3.2 Time Epochs

During runtime of an experiment, the load on pnodes

varies over time resulting in changing resource utilization.

Minimizing the overall experiment runtime requires to max-

imize utilization of available hardware resources. Using

virtual time based on discrete events maximizes resource

utilization, however, at the same time introducing a high

synchronization overhead. Alternatively, using a constant

TDF requires no synchronization at experiment runtime but

results in a low average resource utilization.

In order to maximize resource utilization without a high

synchronization overhead, we introduce the concept of

epochs. During an epoch, the TDF remains constant. All

vnodes independently run with the same TDF. Assuming

sufficiently accurate local clocks in the hosting pnodes, vir-

tual time of vnodes remains synchronized without the need

of any synchronization during an epoch. At an epoch tran-

sition, all VMs synchronously switch to a new TDF. Epoch

based virtual time allows to minimize experiment runtime

by solving the following optimization problem: selecting

optimal TDF and epoch duration for a given load.

Solving this problem requires a definition of load. We

are currently using the percentage of CPU time consumed

by the virtual machine and host which is measured by the

hypervisor. In contrast to this approach, which focuses on

the CPU resource, an alternative approach may build on uti-

lization of the physical network. Since overload of CPU

or network biases emulation results, it stands to reason to

use both load metrics. For the following description of our

epoch based virtual time we assume the CPU based metric.

Overloaded pnodes may cause biased emulation results.

Therefore, a mechanism to prevent overload is required.

Whenever the load exceeds an overload warning threshhold

to an upcoming overload is assumed and the TDF should

be increased. Therefore, an overload report is sent to a cen-

tral coordinator which instantly initiates an epoch transition.

The coordinator ensures serialization of TDF changes in

case of multiple overloaded pnodes causing multiple over-

load reports. However, optimal resource utilization also re-



quires avoidance of underload. Therefore, a mechanism to

detect underload and switch to a smaller TDF value is re-

quired. For this purpose, each pnode periodically sends load

reports to the coordinator. If the load of all pnodes is below

an underload threshhold tu, the coordinator initiates a new

epoch with a decreased TDF value.

There are various challenges associated with the algo-

rithm outlined above. The first challenge is how to syn-

chronously switch the TDF in a distributed emulation en-

vironment ensuring virtual time synchronization. Since pn-

odes are usually connected by a local area network, mul-

ticast can be used to inform pnodes to switch TDF at the

same time. However, due to different loads on pnodes the

time to process such a message in the protocol stack is not

deterministic. To guarantee fast responsiveness, processing

of TDF change requests should be performed in the hyper-

visor, which gets interrupted by a frame receive interrupt.

Using this approach ensures epoch transitions with very low

jitter.

A second problem we are currently investigating covers

the question which TDF value to use. Dinda et al. [5] report

epochal behavior of load, which encourages epoch based

virtual time and also potentially allows load forecast of near

future load [18]. Therefore, we investigate mechanisms to

adapt the TDF value in future work. The key challenges are

the avoidance of oscillations in case of dynamic load as well

as fast responsiveness in case of sudden load peaks while at

the same time minimizing the overall experiment runtime.

3.3 Network Emulation

After describing the virtualization of nodes and time, we

now focus on the emulation of network properties in such a

virtualized environment.

In each vnode, the protocol stack, consisting of network,

transport, and application layer, is stacked on top of the

virtual ethernet device. Connecting each virtual ethernet

device with a bridge allows efficient communication be-

tween vnodes on same pnode. Joining the uplink port of the

bridge with the pnode’s ethernet device provides commu-

nication between vnodes running of different pnodes. Fig-

ure 2 shows the layers of our TVEE implementation.

In our implementation, we integrate the network emula-

tion tool into the virtual network device driver. Placing the

emulation tool inside the virtual routing instances enables

back pressure on saturation of the emulated network con-

nection as with real network devices.

The tool delays frames accordingly to the specified prop-

agation delay and bandwidth limitation. It is also able to

drop frames with a loss ratio, which can be configured for

each sender receiver pair individually. This can be used to

emulate wireless connections between nodes where the loss

ratio depends on the channel quality between sender and

Figure 2. The layers of our TVEE implementa-
tion

receiver.

For each frame to process, the tool calculates the frame’s

transmission time, starts a timer to go off at this time, and

places the frame in a delay queue. The frame is removed

from the queue and transmitted when the timer expires.

Since our emulation tool runs inside the virtual machine,

the only available timers are based on the timer interrupt

with a typical granularity of 1 ms. Generally it is possible

to extend the VM to support hardware timers with a higher

resolution such as APIC timers. However, this would re-

quire expensive context switches involving the hypervisor

which we would like to avoid.

time

Appl. sending
frame x

1 2 22211211103 ... ...

settimer()
timer

xmit(1-10) xmit(11-20)
timerKernel

Figure 3. Emulation with interrupt triggered
timers

For emulating high speed links (>Gbps) the granularity

of interrupt triggered timers is too coarse. These links send

more than a hundred frames per millisecond which results

in a bursty transmission behavior. In Figure 3 the bursty

behavior is visualized by example of an application sending

a frame every 0.1 ms at a configured propagation delay of

1 ms. Each timer activates the transmission of ten frames.

Such a behavior is not only unrealistic but it also leads to



load peaks which prohibits load-aware TDF adaptation. To

avoid these effects, we use a timer triggered by events [2]

instead of interrupts.

The basic idea behind event triggered timers is to reuse

existing system events to trigger the timer. TVEE uses

frame-level sending and receiving events to trigger delayed

frame transmission. Whenever a frame enters the emulation

tool the delay queues are checked for frames to be transmit-

ted.

time

Appl. sending
frame x

1 2011102 ... ...

q(1) q(10)
x(1)

Kernel
q(2) q(11)

x(2)
q(20)
x(10)

... ...

Figure 4. Emulation with event triggered
timers (q = enqueue frame; x = transmit
frame)

Figure 4 again shows an application sending a frame ev-

ery 0.1 ms. However, here an event triggered timer is used

for frame delays. After the first ten frames are enqueued,

send requests of following frames trigger the transmission

of previously delayed frames. Using this technique one

frame is transmitted every 0.1 ms in this example.

The benefit of this approach is that increased link speed

increases timer granularity, too. The granularity of the

timers can be further improved by sharing the events of all

emulation devices on a pnode. In case of periods where

the duration between two frame-level events is higher than

the configured delay, interrupt triggered timer are used as

fallback solution. Since there are only a few frames to be

delayed then, this does not result in a bursty transmission.

4 Evaluation

We evaluate our implementation in two steps. First, we

show the accuracy of network emulation in our hybrid vir-

tualization environment. Due to space restrictions we focus

on the emulation of bandwidth and delay. Secondly, we

show the scalability of TVEE as the paramount design cri-

terion.

Xen [3] in version 3.1.0 using Linux (2.6.18) acts as

foundation of our prototype implementation. Including

OpenVZ [14] into Xen provides virtual routing with names-

pace partitioning. We extended Xen to provide guests run-

ning with virtual time as well as the virtual ethernet device

driver of OpenVZ to provide configurable network proper-

ties.

All evaluation benchmarks are performed on Pentium 4

2.4 GHz PCs. Each PC is equipped with a Gigabit Ether-

net adaptor and 512 MB of RAM. We divide the memory

into 64 MB for dom0 and 429 MB for domU. The memory

assigned to dom0 could be further decreased by running a

minimal linux system. However, this constant amount does

not affect the evaluation results.

4.1 Bandwidth Emulation

First, we measure if the emulation layer is able to en-

force a configured bandwidth faithfully. Therefore, we set

up a scenario with 2 connected vnodes in two variations.

One variant uses a single pnode hosting both vnodes and

the other uses two pnodes with one vnode each. We config-

ure the link bandwidth with different values ranging from

64 kbps to 100 Gbps and no additional delay. To measure

the maximum throughput of the link, we use the netperf

tool [13] in UDP mode. It generates load according to con-

figured send and receive buffers of 64 kB and an Ethernet

MTU of 1500 Bytes.

As shown in Figure 5, the measured throughput corre-

sponds to the configured bandwidth. Note that, due to the

used hardware, for high speed links an emulation running at

real-time is not possible. Therefore, we increased the TDF

to avoid overloading of emulation nodes.

4.2 Delay Emulation

Next, we examine if the emulation tool faithfully repro-

duces configured delays. Again, the scenario consists of 2

connected vnodes. The link has a bandwidth of 100 Mbps

and a variable delay between 1 ms and 100 ms. We use the

ping tool to measure the round trip time between the vn-

odes. Variations of this scenario use one or two pnodes to

host vnodes on same or different pnodes respectively. We

also vary the TDF. As shown in Figure 6, the delays are

emulated accurately.

4.3 Memory Consumption

As outlined during the discussion of the TVEE archi-

tecture, the scalability of an emulation solution heavily de-

pends on the memory overhead. To evaluate the memory

overhead of our approach we create a scenario with an in-

creasing number of vnodes attached to the same network.

Figure 7 shows the required memory usage.

The memory usage consists of two components. One

constant amount for the base system including Linux kernel

requiring about 27 MB and a constant per vnode memory

usage of about 300 kB. In comparison, a vnode based on

Xen requires at minimum 6 MB of memory [3]. As shown

in Figure 7, the memory footprint increases linearly with the

number of vnodes. This allows us to run over a thousand vn-

odes on a single pnode which is equipped with half a giga-



byte of main memory. Please note that the main memory is

shared by hypervisor, dom0 (64 MB), and virtual machine.

0.064

1
2
5

11

100

1000

10000

100000

0.064 1 2 5 11 100 1000 10000 100000

U
D

P
 th

ro
ug

hp
ut

 [m
bp

s]

configured network bandwidth [mbps]

bandwidth emulation between vnodes (netperf)

same pnode
different pnodes

Figure 5. UDP throughput between two vn-
odes with different bandwidth

1

2

5

10

20
30
50

100

1 2 5 10 20 30 50 100

ha
lf 

m
ea

su
re

d 
ro

un
d 

tri
p 

tim
e 

[m
s]

configured network delay [ms]

delay emulation between vnodes (ping)

same pnode, tdf=1
different pnodes, tdf=1

same pnode, tdf=10
different pnodes, tdf=10

Figure 6. RTT between two vnodes with dif-
ferent delays

4.4 VNode/PNode Ratio

In the following, we use TVEE to measure a TCP flow

through a chain of routers in an emulated network. The

scenario consists of two pnodes, one hosting a router chain

and the other a TCP sender and receiver. All links in the

scenario are configured with a bandwidth of 100 Mbps and

no additional delay. During the experiment different chain

lengths are configured ranging from 4 to 253 routers. The

maximum time-to-live of IP packets prohibits larger chains.

We measure maximum TCP throughput while varying the

TDF from −8 (running 8 times faster than real-time) to 64

(slowdown of factor 64). We use netperf with configured

16

32

64

128

256

512

0 2 4 8 16 32 64 128 256 512 1024

us
ed

 m
em

or
y 

[M
B

]

#vnodes

memory consumption of vnodes

used memory without buffer caches
used memory with buffer caches

memory limit of tvee (429MB)

Figure 7. Required memory for increasing
number of vnodes.

 1

 10

 100

-8 -4 -2 1 2 4 8 16 32 64

tc
p 

th
ro

ug
hp

ut
 [m

bp
s]

time dilation factor

infrastructure emulation - 100mbit network
vn1 (pnode1) - router chain (pnode2) - vn2 (pnode1)

4 routers
8 routers

16 routers
32 routers
64 routers

128 routers
253 routers

Figure 8. TCP flow emulation through a chain
of routers

send and receive buffers of 64 kB to transmit data using

sendfile for 10 s.

The results of this experiment visualized in Figure 8

show that TCP throughput of the system scales linearly with

increasing TDF.

5 Summary

We introduced an approach to measure the performance

of unmodified real distributed applications or protocols in

a large controlled environment by combining hybrid node

virtualization with epoch based virtual time. TVEE uses hy-

brid virtualization technique to efficiently map multiple vir-

tual nodes (vnodes) to an emulation computer (pnode) with

minimum overhead for network I/O and memory footprint

per vnode. Time virtualization virtually increases pnode

resources. Dynamically changing the time dilation factor



(TDF) minimizes experiment runtime and maximizes node

utilization. In comparison to parallel discrete event simu-

lation, our epoch based virtual time approach enables dy-

namic TDF with very low synchronization overhead. Using

the concept of trigger based timers, TVEE is able to emulate

high speed networks while reducing bursty frame delay.

Our evaluations showed that virtual nodes have a very

low memory overhead of only about 300 kB. We showed

that, using time virtualization, the performance of a pnode

linearly scales with the TDF. This allows the emulation of

scenarios with hundreds of vnodes per pnode. Additionally,

links between vnodes can have bandwidths, which are mag-

nitudes larger than the pnode’s physical network bandwidth.

Currently, we are investigating mechanisms for monitor-

ing the load of pnodes to provide the foundation of auto-

matic load-dependent TDF selection. Based on resource

monitoring, we will extend TVEE with mechanisms to au-

tomatically adapt the TDF to the current system load as well

as to simultaneously switch epochs in order to optimize uti-

lization of a distributed TVEE for long lasting experiments.

Finally, we want to evaluate the advantage of event trig-

gered timers.

References

[1] G. Apostolopoulos and C. Hasapis. V-eM: A Cluster of Vir-

tual Machines for Robust, Detailed, and High-Performance

Network Emulation. In Proceedings of the 14th IEEE In-
ternational Symposium on Modeling, Analysis, and Simula-
tion (MASCOTS’06), pages 117–126, Monterey, CA, USA,

Sept. 11–14 2006.

[2] M. Aron and P. Druschel. Soft timers: efficient microsec-

ond software timer support for network processing. In Pro-
ceedings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP’99), pages 232–246, Charleston, SC,

USA, Dec. 12–15 1999.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art

of Virtualization. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP’03), pages

164–177, Bolton Landing, NY, USA, Oct. 19–22 2003.

[4] C. Bergstrom, S. Varadarajan, and G. Back. The Distributed

Open Network Emulator: Using Relativistic Time for Dis-

tributed Scalable Simulation. In Proceedings of the 20th
Workshop on Principles of Advanced and Distributed Sim-
ulation (PADS’06), pages 19–28, Singapore, May 24–26

2006.

[5] P. A. Dinda. The statistical properties of host load. Scientific
Programming, 7(3-4):211–229, 1999.

[6] R. M. Fujimoto. Parallel discrete event simulation. In

Proceedings of the 21st Conference on Winter Simulation
(WSC ’89), pages 19–28, Washington, D.C., USA, 1989.

[7] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vah-

dat, and G. M. Voelker. To Infinity and Beyond: Time-

Warped Network Emulation. In Proceedings of the 3rd Sym-
posium on Networked Systems Design and Implementation
(NSDI’06), pages 87–100, San Jose, CA, USA, May 8–10

2006.

[8] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,

T. Stack, K. Webb, and J. Lepreau. Feedback-directed Virtu-

alization Techniques for Scalable Network Experimentation.

University of Utah Flux Group Technical Note FTN-2004-

02, School of Computing, University of Utah, May 2004.

[9] P. H. Kamp and R. N. M. Watson. Jails: Confining the om-

nipotent root. In Proceedings of the 2nd International SANE
Conference, 2000.

[10] C. Kiddle, R. Simmonds, and B. Unger. Improving Scalabil-

ity of Network Emulation through Parallelism and Abstrac-

tion. In Proceedings of the 38th Annual Simulation Sym-
posium (ANSS’05), pages 119–129, San Diego, CA, USA,

Apr. 4–6 2005.

[11] K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sug-

awara, and S. Chiba. Secure and Manageable Virtual Pri-

vate Networks for End-users. In Proceedings of the 28th An-
nual IEEE International Conference on Local Computer Net-
works (LCN’03), pages 385–394, Bonn/Königswinter, Ger-

many, Oct. 2003.

[12] S. Maier, A. Grau, H. Weinschrott, and K. Rothermel. Scal-

able Network Emulation: A Comparison of Virtual Routing

and Virtual Machines. In Proceedings of the IEEE Sympo-
sium on Computers and Communications (ISCC’07), pages

395–402, Aveiro, Portugal, July 1–4 2007.

[13] netperf. http://www.netperf.org, 2007.

[14] OpenVZ. http://openvz.org, 2007.

[15] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A Generic

Framework for Parallelization of Network Simulations. In

Proceedings of the 7th International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS’99), pages 128–135, College

Park, Maryland, Mar. 24–28 1999.

[16] R. Simmonds and B. W. Unger. Towards scalable net-

work emulation. Computer Communications, 26(3):264–

277, 2003.

[17] S. Y. Wang and H. T. Kung. A New Methodology for Easily

Constructing Extensible and High-Fidelity TCP/IP Network

Simulators. Computer Networks, 40(2):205–315, 2002.

[18] R. Wolski, N. Spring, and C. Peterson. Implementing a

performance forecasting system for metacomputing: the

Network Weather Service. In Proceedings of the 1997
ACM/IEEE Conference on Supercomputing, pages 1–19, San

Jose, CA, USA, 1997.


