Adaptable Pervasive Flows — An Emerging Technology for Pervasive Adaptation

Klaus Herrmann, Kurt Rothermel
University of Stuttgart, Germany

Abstract

The era of pervasive computing brings with it a grand
challenge: Pervasive applications must adapt to the dynam-
ics entailed in human behavior and constantly changing
computing environments. In this paper, we propose Adapt-
able Pervasive Flows as a novel technology that goes far
beyond existing approaches for adapting pervasive comput-
ing systems. APFs model applications in a fashion simi-
lar to classical workflows while being situated in the real
world. The notable advantage of this is that applications as
well as their environment can be adapted proactively based
on knowledge about future tasks. We introduce the visions,
concepts, and challenges of this emerging approach.

1 Introduction

Humans are increasingly embedded in an environment
consisting of growing numbers of computing devices and
artifacts that provide various degrees of computing power
and awareness. Current estimations are that ten years from
now, there will be 7 billion people surrounded by 7 trillion
wireless devices and sensors living on this planet'. Perva-
sive applications are software systems that run in such en-
vironments in a massively distributed fashion and support
mobile human users in their daily activities. They shall pro-
vide adequate computing and communication services in an
anywhere-and-anytime fashion transparently to the user.

This vision holds several scientific challenges ranging
from adequate hardware architectures to communication
protocols and aspects of software distribution. The most
challenging question, however, is:

How can a pervasive application adapt to the
user in order to support him/her in an unobtru-
sive way?

Ideally, the application runs in the background, unno-
ticed by the user, and adapts to his actions. This requires
new paradigms for programming such applications and their

'Source: Wireless World Research Forum

Gerd Kortuem
Lancaster University, UK

Naranker Dulay
Imperial Collage, London, UK

interactions with the users. Today, these interactions are still
done explicitly and manually in most cases which contra-
dicts the idea of unobtrusiveness. Novel methodologies and
technologies are needed to adapt applications to a changing
environment and to dynamic user behavior.

In this paper, we present the vision and the concepts of
Adaptable Pervasive Flows (APFs, also simply called flows
hereafter), a methodology for engineering pervasive appli-
cations that are able to adapt themselves and the human
user’s environment to his goals and activities. Our research
on flows is conducted in a European project called ALLOW?
that is funded under the 7** Framework Programme. In this
project, we take a broad approach to the problem of perva-
sive adaptation penetrating all the relevant problems.

Adaptable Pervasive Flows apply concepts similar to
classical workflows as a basis for adaptation. Many pro-
cesses in real life are defined in terms of flows, either im-
plicitly or explicitly. A flow is a computer-based model
that essentially consists of a set of actions, glued together
by a plan (or control flow) which defines how the actions
should be performed to achieve some goal under a set of
constraints. Flows are explicitly tailored (1) to being exe-
cuted in pervasive environments, and (2) to being adaptable.
They are situated in the real world, i.e., they are logically at-
tached to entities like artifacts or people, moving with them
through different contexts. While they are carried along,
they model the behavior intended for the associated entity,
and adapt the entity’s environment to this behavior. Thus,
when a mobile user carries a flow that specifies his prospec-
tive actions, the pervasive computing machinery in his en-
vironment will be set up for him by the flow. Since people
may change their minds, and since artifacts and people may
be subject to changes in the environment, the flow itself may
also adapt to reflect such changes. This requires flows to
be context-aware. They can take into account the context
pertaining to their entity’s current environment as well as
the entity’s actual activities in order to dynamically adapt to
changing situations.

The paper is structured as follows. In Section 2, we give
a conceptual overview of adaptation in pervasive systems.

This research has been supported by EU-FET project 213339 AL-
LOW.

Published in In Proceedings of the 2008 Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW 2008).

© IEEE 2008

http://dx.doi.org/10.1109/SASOW.2008.25

Section 3 presents the related work in this area. The main
concepts of the flow technology are investigated in Section
4. Conclusion and future work are discussed in Section 5.

2 Adaptation in Pervasive Systems

Employing the anytime-anywhere metaphor of pervasive
computing to provide support to mobile users in their real-
world tasks has an important implication: Applications that
run in such environments are subject to high degrees of dy-
namics. This is the result of intermittent connectivity, vary-
ing availability of resources (devices, services, etc.), chang-
ing quality of service, and other unpredictable variations
that occur as mobile users move through different environ-
ments and contexts.

On the other hand, users expect a stable, robust, and pre-
dictable behavior from an application. Otherwise, the us-
ability of the application and the user’s confidence are dras-
tically decreased, which means that most users would re-
frain from using the application.

This fundamental conflict can only be resolved if the per-
vasive application and the supporting system software are
able to adapt to relevant changes. But what exactly does
adaptation mean? In the following, we will answer this
question for pervasive computing in general terms. We de-
fine, what adaptation actually means in such environments
and what the design space for pervasive adaptation is.

2.1 The Purpose of Adaptation

The purpose of adaptation is to adjust a system to match
its environment despite the fact that this environment is
constantly changing. On the other hand, a system should
adapt to preserve certain invariant properties (perceived by
the user or other systems) over time in the face of external
changes that can cause these properties to deviate. Zadeh
[8] defines that a system is adaptive if it performs accept-
ably well under all practically occurring input functions.
Here, “acceptable performance” is the general invariant,
and “performance” can relate to any measurable behavior of
the adaptive system. Preserving system invariants by adapt-
ing is the measure taken to make the system appear stable
and predictable from the user’s point of view.

2.2 The Subjects of Adaptation

There are essentially three subjects that we may need to
adapt in order to preserve invariant system properties:

The pervasive application: The core application itself
and its components.

The environment: Those hardware and software compo-
nents that do not directly belong to the pervasive ap-
plication but that influence its behavior.

The user: If the system is not able to apply appropriate
adaptations, it should either inform the user that ap-
plication performance is about to deteriorate, or make
suggestions indicating a behavior that would lead to
the preservation of invariants (e.g. move more slowly).

2.3 The Triggers of Adaptation

Changes that make adaptations necessary usually come
from two different sources:

The environment: Pervasive applications are inherently
depending on resources provided by the local environ-
ment (devices or services). When the availability or
quality of these resources changes, the application may
experience deviations from its invariants due to emerg-
ing mismatches in resource supply and demand [6].

The user: As the user moves through the world and acts,
his behavior may violate the current assumptions of
the application and cause deviations from its target in-
variants. Thus, adaptations are triggered to follow his
actions in the world and make the application fit them.

2.4 The Entities Executing Adaptations

Application developers should not be faced with design-
ing and developing the basic mechanisms of adaptation.
This shall be hidden as much as possible inside a special
software component that is responsible for deciding about
and enforcing adaptations across different applications and
environments. We call this software components the adap-
tation middleware. The task of this adaptation middleware
is usually to establish and monitor the bindings of the appli-
cation to the necessary resources in the environment. Fur-
thermore, it must provide ways of specifying the invari-
ants desired for applications and mechanisms for preserving
them by adapting. This should be as transparent as possible
for the application, the developer, and the end user.

However, it may not be possible to encapsulate every
adaptation inside the adaptation middleware. The applica-
tion itself may have to be designed in a way that allows
for highly application-specific adaptations. The adaptation
middleware should also provide means to application devel-
opers to achieve this in a standard way if necessary, avoid-
ing proprietary application-side solutions.

2.5 The Timing of Adaptation

There are essentially two dimensions to the timing of
adaptation. The first dimension defines the time at which

the adaptation is executed relative to the triggering event:
An adaptation can be executed reactively (in reaction to a
triggering event that has already occurred), or proactively
(before the triggering event actually occurs). Proactive
adaptations are most desirable as they can prevent failures
and instabilities rather than trying to cure them. This en-
sures that the user experiences disruptions less often. How-
ever, proactive adaptations are also much more challenging
as they require information about future events.

The second dimension in the timing of adaptations de-
fines the time scales over which adaptations are executed.
At one extreme end, there are short-term adaptations that
affect a specific running instance of an application. The next
instance starts from the same initial state and undergoes new
adaptations. At the the other extreme end, there are long-
term adaptations. In systems that exhibit long-term adap-
tation, the adaptations applied to each application instance
are used to learn from them and to improve the application
with every run. Each new application instance builds on the
instances before it and benefits from the learning process.
For example, if a certain resource R; tends to break down
and has to be replaced by R in every application instance,
the system may learn from this and decide to use o from
the very start as this saves time and effort.

3 State of the Art

There are a number of different approaches for adap-
tation in pervasive systems. Most systems deal with the
management of resources under mobility-induced dynam-
ics. For example, Gaia [5] enables the easy access to
resources in a habitat by employing an extension of the
model-view-controller paradigm. Sessions are used to al-
low mobile users to move across different locations and
have their data and applications available. PCOM [1] al-
lows for adaptation by using a component-based approach.
Applications are composed from components based on con-
tracts and re-configured at runtime when components be-
come unavailable due to changes. These systems may adapt
an application reactively to changes in the environment.

Aura [3, 7] and activity-oriented computing [2] extend
these approaches by explicitly modeling user tasks and in-
tentions as a basis of adaptation. These systems may also
adapt the user’s environment due to the knowledge of his
intentions. However, there is no notion of an overall pro-
cess represented by a series of tasks. Plan-driven ubiqui-
tous computing [4] extends upon Aura and related systems
by introducing a plan-based representation of user tasks to
enable proactive adaptations. This approach is similar to
the one introduced in this paper. However, Adaptable Per-
vasive Flows add a number of key ingredients such as flow
situatedness, flow evolution, adaptive flow distribution, in-
teraction between flows, etc. Therefore, they are a more rig-

orous and general concept that goes far beyond any existing
approach.

4 Adaptable Pervasive Flows

Flows are closely related to classical workflows. They
mainly consist of tasks being connected by context-aware
transitions, and they model the actions of a flow entity over
the course of a more complex overarching activity. An ex-
ample is depicted in Figure 1.

Goal:
Arrive at Frankfurt
Constraints:
arrival before 9:30;
Cost < €300

Location =
bus stop J

Find and invoke |~
service

Service offered |~

at the bus stop

Figure 1. Flow Example

L = Location =
departure airpogJ Frankfurt airpoﬂ

Go to
meeting room
K05

Take plane
LH11
to Frankfurt

Service offered
at the airport \‘

Electronic
navigation
service

Electronic
ticket purchase
service

A flow entity (also simply called entity) may be a human
user or some inanimate object (e.g. a container in a logistics
process) on behalf of which a flow is executed. The system
that is responsible for executing flows is simply called the
flow system. This system is usually distributed and resides
in the environment of the entity. The flow system is re-
sponsible for executing a flow in parallel to the real-world
actions of its entity. The fundamental idea of the flow ap-
proach is that this synchronized execution allows the flow
system to detect deviations of the real-world actions from
the planned actions and use these deviations as the basis
for adequate adaptations. In order to achieve this, we em-
ploy activity sensing technologies to recognize user activi-
ties and other sources of context information (e.g. location).

The flow in Figure 1 models a simple journey of a busi-
ness traveler. Based on location information, the flow ad-
vances through its tasks, and each task can invoke sup-
portive services in the local environment to guide the user
through the whole process (see bottom of Figure 1). A very
important element of the flow is a set of meta data express-
ing the goals and constraints of the flow. In our example,
the goal is to arrive at the airport in Frankfurt, and the con-
straints define the latest arrival time and a maximum cost.
Having this data is vital for doing flow adaptations as they
define the invariants (cf. Section 2.1) that shall be preserved
by adaptations and, consequently, imply a subset of all pos-
sible adaptations in a particular situation. The traveler’s
flow is attached to him and, thus, follows him through the

different stages, locations, and contexts of the process (his
journey).

4.1 Flow Adaptation

A flow can be subject to short-term adaptation (also sim-
ply called “adaptations”) and long-term adaptations (called
“evolution”) (cf. Section 2.5). A key innovation of the flow
technology is that a flow represents information about the
past, current, and (prospective) future activities of its en-
tity. Having information about the future is obviously a
huge advantage for adaptability as it allows for proactive-
ness. Figure 2 shows the range of adaptations possible in
flow systems. On the top left of the figure, the initial journey
flow (Figure 1) is adapted because the user has missed the
bus. Here, we assume that the bus station is equipped with
a flow system that knows possible adaptations for such sit-
uations. It has certain local knowledge (e.g. where the next
taxi stand is located) and can use this knowledge to apply
an adaptation that preserves the goals and constraints of the
flow. This means that flow adaptation is local (and, there-
fore, scalable) in nature: As a flow moves through different
contexts, it can be adapted in each context locally without
requiring access to some centralized adaptation logic.

Horizontal adaptation:
re-planning the flow

\
! Walk to

ok = =l Taketa)ﬂ \
taxi stand,

\ to alrport U

Vertical adaptation:
substituting abstract tasks

Go to
meeting room

Board plane

Electronic
boarding pass check
service

Vertical adaptation:
re-mapping atomic
services

flnd and invoke

service
Electronic Electronic
check-in service B check-in service A

Figure 2. Forms of flow adaptation (Top
left: Horizontal adaptation by re-planning the
flow; Right side: Vertical adaptation by sub-
flow substitution; Lower left: Vertical adapta-
tion by service re-mapping)

The adaptation mechanism tries to adapt the flow such
that the goals remain achievable and the constraints are met.
Unlike other systems for pervasive adaptation, flows repre-
sent a structured models of an application. Therefore, they
provide many potential ways of adaptation like inserting

or replacing tasks or subflows, removing parts of the flow,
changing transitions and their conditions, etc.

We differentiate between horizontal and vertical flow
adaptation. A flow is adapted horizontally if it is re-
planned. That is, if new tasks are inserted, existing tasks are
removed, and transitions between tasks are changed. Figure
2 represents an example of this form of adaptation (top left).
Vertical adaptation is about changing the mapping of flow
tasks to resources in the environment. Tasks can either be
mapped to atomic services (bottom of Figure 2), or they
can be mapped to subflows (middle of Figure 2). In the lat-
ter case, the task is abstract and involves a number of steps
(tasks) that are not known at design-time but only when the
flow is actually executed in the right environment. For ex-
ample, the “Take plane...” task is actually a bit more com-
plex and requires several steps. A concrete representation
of this task as a subflow is present at the concrete airport
and is substituted for the abstract task as the user enters the
airport. This form of late binding allows for very flexible
flow design. If a task is mapped to an atomic service, verti-
cal adaptation means that the task has to be re-mapped (e.g.
because the old service became unavailable).

History of adapted
flow instances
after execution

Current flow
(being executed)

Evolved flow model
(prototype)

Flow
Evolution
Mechanism

Current flow model
provided for next execution

Figure 3. Flow Evolution

After the flow has finished, it represents the best achiev-
able fit under the circumstances prevalent at the time of its
execution. Such flows are not discarded. Instead, they are
collected and used for evolving a common flow model from
which future flow instances for the application are instanti-
ated (see Figure 3). Evolutions are based on the same ma-
nipulations of flows stated above for adaptations. A flow’s
performance (e.g. runtime and ability to achieve its goals
and meet its constraints) may be monitored and used to
compare the fitness of several flow instances. Diverse tech-
niques from the domain of machine learning can be used to
evolve a flow model from a set of flow instances based on
this data.

4.2 Situatedness

Unlike classical workflows, Adaptable Pervasive Flows
are situated in the real world, i.e. they are attached to enti-
ties like artifacts or people, moving with them through dif-
ferent contexts. This attachment is logical in nature, i.e. in
principle the location where the flow is executed and stored
is independent of the current physical location of its entity.
A flow could be executed in some server while the actions
of its entity (e.g. a user) are captured locally and commu-
nicated to the flow. On the other hand, the flow could also
reside on the mobile device of its user. Logical attachment
provides means for maintaining a relation and decoupling at
the same time, and it avoids the need for users to carry com-
puting devices. All that is necessary is a way of identifying
an entity (e.g. RFID).

4.3 Flow Distribution and Mobility

In many cases, there is an inherent need for executing a
flow in close proximity to its user’. This is mainly due to
the interactions that need to be conducted between the user
and the flow. Therefore, it can be beneficial to execute the
flow in the current environment of the user in order to co-
locate it with the resources it uses (e.g. services the tasks are
mapped to). However, considering the wide range of possi-
ble environments, it may well be that there are only small-
scale low-performance devices available near-by. For this
reason, the flow modeling language allows for flows to be
fragmented and the fragments to be placed on different de-
vices. In this way, flow execution is distributed. Scopes are
used to specify relations between the tasks of the flow, and
these relations may be used to control the distribution. E.g.
tasks that need to communicate heavily may better be put
on the same device in environments with a low-bandwidth
network. The distribution of flows must also be adaptable to
changes in the properties of the environment and user mo-
bility. Flow distribution is controlled by a utility function
that regards aspects like communication bandwidth, com-
munication cost between flow fragments and between tasks
and services, the availability of devices, etc.

4.4 Context and Activity Sensing

Employing flows for adaptation requires feedback from
the real world in oder to be able to detect deviations between
the real-world events and the flow’s plan. This feedback
includes context information like time, location, the status
of relevant entities in the environment etc. However, the
core objective of Adaptable Pervasive Flows is to achieve

3For simplicity, we assume here that the flow is attached to a human
user. However, similar observations can be made for flows that are attached
to inanimate objects.

human-orientation. That is, a flow-based system should first
and foremost be able to adapt to the actual needs of its hu-
man users. Therefore, a special kind of context informa-
tion that is employed in the system is activity information
about the current real-world actions executed by humans.
By collecting raw sensor data (e.g. from accelerometers)
and recognizing activities from this data, the flow system
can assess whether a human user is actually doing what the
flow prescribes or whether the flow must adapt to the user.
If, for example, our business traveler should be running to
catch the plane but instead, he is walking slowly, the sys-
tem could inform him about the situation and tell him to
speed up, or it could proactively adapt his environment as it
is shown in Figure 4.

4.5 Environment Adaptation

Many processes in real life are associated with adapting
(setting up, configuring) certain technical equipment in the
environment. In flow-based systems, this is done by the
flow driving the overall process. In order to allow for this
kind of adaptation, the equipment exports services that en-
able flows to issue adaptation requests. Apart from techni-
cal equipment, adaptations may also pertain to humans that

are directly or indirectly involved in the process.
Proceed to Board the
gate A87 plane

Check-in
at
counter 7

security
check

Current time
+

Notify control system

estimated) Notlfy gate personnel
walking time at the security check
> to guide traveler

gate closing time, through fast lane

Figure 4. Environment adaptation example

An example is presented in Figure 4. Here, we assume
that the traveler is in a hurry and trying to catch the plane.
This can be inferred from the current time and parameters
that are available in the environment (estimated walking
time to the gate and gate closing time). As the flow sys-
tem recognizes that the traveler may not be able to make
it in time, it adapts the security check system to guide the
traveler through the fast lane. Additionally, it notifies the
gate personnel that the traveler is on his way, such that the
personnel may wait longer. In this case, the electronic se-
curity check system as well as the personnel at the gate are
considered to be belonging to the environment and different
adaptations are issued to ensure the success of the traveler’s
flow.

4.6 Adaptive User Interfaces

For the interaction of the user and his flow, adequate user
interfaces are required. Interacting with a user through his
mobile device is an option if the user is actually carrying
such a device. However, we explicitly foresee, applications
where this is not the case and in which other means of inter-
action are required. For this purpose, the concept of inter-
action spheres is introduced. An interaction sphere defines
a physical space around a user’s current position. I/O de-
vices (monitors, speakers, terminals, etc.) that reside in this
sphere may potentially be used for interactions. E.g. text
output may be directed to a monitor in close vicinity of the
user, and for text input, the user may be directed to an infor-
mation terminal. Identifying and using those devices close
to the user according to their properties and capabilities in a
natural way is the challenge with respect to this. Note that
with activity sensing, we have another way for the user of
directing input to the flow system: A user may use deliber-
ate gestures (e.g. moving hands) to create input.

4.7 Security, Trust, and Privacy

Any pervasive system that penetrates a human’s life will
only be acceptable if it is sufficiently secure and preserves
the user’s privacy. Doing this is a tough challenge in the
context of this project due to the pervasiveness and the dy-
namics of the whole system. A user’s private data must not
be disclosed to unauthorized parties. His transactions must
be secured to avoid fraud. To achieve this, we plan to use
reputation systems that are capable of assessing the trusta-
bility of an entity based on statistical knowledge about its
prior actions. Such data about an entity A can be captured
as the system is running and provided to other parties that
are not required to know A before hand. Thus, statically
configured access rights can be avoided and the system may
also adapt its level of trust based on what users are doing.

5 Conclusions and Future Work

The new programming paradigm for adaptable pervasive
applications based on the concept of flows holds a large po-
tential. It promises to enable truly proactive adaptations to
dynamic changes in the environment and the application
due to the fact that a flow represents an explicit model of
the future actions within an application. This paves the way
towards human-oriented pervasive systems that adapt in an
unobtrusive and seamless way. We have presented the broad
range of concepts tackled in this international research ef-
fort to realize this vision. Many of them are very challeng-
ing, but we believe that a successful coherent effort to solve
them can result in a major breakthrough.

The research on flow-based systems is still at its very
beginning. Over the next three years, we will follow a rig-
orously defined agenda that ranges from basic models for
flows, context, adaptation, evolution, distribution, user in-
terfaces, and security to fully functional demonstrators in
order to validate our concepts.

References

[1] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM
- A Component System for Pervasive Computing. In Proceed-
ings of the Second IEEE International Conference on Perva-
sive Computing and Communications, 2004.

[2] H. B. Christensen and J. E. Bardram. Supporting Human Ac-
tivities — Exploring Activity-Centered Computing. In Pro-
ceedings of Fourth International Conference on Ubiquitous
Computing, UbiComp 2002, 2002.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Toward Distraction-Free Pervasive Computing.
IEEE Pervasive Computing, April-June 2002, 2002.

[4] G. Look and S. Peters. Plan-driven ubiquitous computing.
In Student Oxygen Workshop Cambridge. MA: MIT Project
Oxygen, 2003.

[5] G.-C. Roman, J. Payton, R. Handorean, and C. Julien. Rapid
Deployment of Coordination Middleware Supporting Ad Hoc
Mobile Systems. Technical Report WUCSE-2002-4, Wash-
ington University, Department of Computer Science, St.
Louis, Missouri, Mar. 2002.

[6] M. Satyanarayanan. The Many Faces of Adaptation. IEEE
Pervasive Computing, July-September:4-5, 2004.

[7] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw.
Task-based adaptation for ubiquitous computing. [EEE
Transactions on Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, 36(3):328-340, 2006.

[8] L.Zadeh. On the Definition of Adaptivity. Proceedings of the
IEEE, 51:469, Mar. 1963.

