
Adaptable Pervasive Flows – An Emerging Technology for Pervasive Adaptation

Klaus Herrmann, Kurt Rothermel

University of Stuttgart, Germany

Gerd Kortuem

Lancaster University, UK

Naranker Dulay

Imperial Collage, London, UK

Abstract

The era of pervasive computing brings with it a grand

challenge: Pervasive applications must adapt to the dynam-

ics entailed in human behavior and constantly changing

computing environments. In this paper, we propose Adapt-

able Pervasive Flows as a novel technology that goes far

beyond existing approaches for adapting pervasive comput-

ing systems. APFs model applications in a fashion simi-

lar to classical workflows while being situated in the real

world. The notable advantage of this is that applications as

well as their environment can be adapted proactively based

on knowledge about future tasks. We introduce the visions,

concepts, and challenges of this emerging approach.

1 Introduction

Humans are increasingly embedded in an environment

consisting of growing numbers of computing devices and

artifacts that provide various degrees of computing power

and awareness. Current estimations are that ten years from

now, there will be 7 billion people surrounded by 7 trillion

wireless devices and sensors living on this planet1. Perva-

sive applications are software systems that run in such en-

vironments in a massively distributed fashion and support

mobile human users in their daily activities. They shall pro-

vide adequate computing and communication services in an

anywhere-and-anytime fashion transparently to the user.

This vision holds several scientific challenges ranging

from adequate hardware architectures to communication

protocols and aspects of software distribution. The most

challenging question, however, is:

How can a pervasive application adapt to the

user in order to support him/her in an unobtru-

sive way?

Ideally, the application runs in the background, unno-

ticed by the user, and adapts to his actions. This requires

new paradigms for programming such applications and their

1Source: Wireless World Research Forum

interactions with the users. Today, these interactions are still

done explicitly and manually in most cases which contra-

dicts the idea of unobtrusiveness. Novel methodologies and

technologies are needed to adapt applications to a changing

environment and to dynamic user behavior.

In this paper, we present the vision and the concepts of

Adaptable Pervasive Flows (APFs, also simply called flows

hereafter), a methodology for engineering pervasive appli-

cations that are able to adapt themselves and the human

user’s environment to his goals and activities. Our research

on flows is conducted in a European project called ALLOW2

that is funded under the 7
th Framework Programme. In this

project, we take a broad approach to the problem of perva-

sive adaptation penetrating all the relevant problems.

Adaptable Pervasive Flows apply concepts similar to

classical workflows as a basis for adaptation. Many pro-

cesses in real life are defined in terms of flows, either im-

plicitly or explicitly. A flow is a computer-based model

that essentially consists of a set of actions, glued together

by a plan (or control flow) which defines how the actions

should be performed to achieve some goal under a set of

constraints. Flows are explicitly tailored (1) to being exe-

cuted in pervasive environments, and (2) to being adaptable.

They are situated in the real world, i.e., they are logically at-

tached to entities like artifacts or people, moving with them

through different contexts. While they are carried along,

they model the behavior intended for the associated entity,

and adapt the entity’s environment to this behavior. Thus,

when a mobile user carries a flow that specifies his prospec-

tive actions, the pervasive computing machinery in his en-

vironment will be set up for him by the flow. Since people

may change their minds, and since artifacts and people may

be subject to changes in the environment, the flow itself may

also adapt to reflect such changes. This requires flows to

be context-aware. They can take into account the context

pertaining to their entity’s current environment as well as

the entity’s actual activities in order to dynamically adapt to

changing situations.

The paper is structured as follows. In Section 2, we give

a conceptual overview of adaptation in pervasive systems.

2This research has been supported by EU-FET project 213339 AL-

LOW.

Published in In Proceedings of the 2008 Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW 2008).
© IEEE 2008
http://dx.doi.org/10.1109/SASOW.2008.25



Section 3 presents the related work in this area. The main

concepts of the flow technology are investigated in Section

4. Conclusion and future work are discussed in Section 5.

2 Adaptation in Pervasive Systems

Employing the anytime-anywhere metaphor of pervasive

computing to provide support to mobile users in their real-

world tasks has an important implication: Applications that

run in such environments are subject to high degrees of dy-

namics. This is the result of intermittent connectivity, vary-

ing availability of resources (devices, services, etc.), chang-

ing quality of service, and other unpredictable variations

that occur as mobile users move through different environ-

ments and contexts.

On the other hand, users expect a stable, robust, and pre-

dictable behavior from an application. Otherwise, the us-

ability of the application and the user’s confidence are dras-

tically decreased, which means that most users would re-

frain from using the application.

This fundamental conflict can only be resolved if the per-

vasive application and the supporting system software are

able to adapt to relevant changes. But what exactly does

adaptation mean? In the following, we will answer this

question for pervasive computing in general terms. We de-

fine, what adaptation actually means in such environments

and what the design space for pervasive adaptation is.

2.1 The Purpose of Adaptation

The purpose of adaptation is to adjust a system to match

its environment despite the fact that this environment is

constantly changing. On the other hand, a system should

adapt to preserve certain invariant properties (perceived by

the user or other systems) over time in the face of external

changes that can cause these properties to deviate. Zadeh

[8] defines that a system is adaptive if it performs accept-

ably well under all practically occurring input functions.

Here, “acceptable performance” is the general invariant,

and “performance” can relate to any measurable behavior of

the adaptive system. Preserving system invariants by adapt-

ing is the measure taken to make the system appear stable

and predictable from the user’s point of view.

2.2 The Subjects of Adaptation

There are essentially three subjects that we may need to

adapt in order to preserve invariant system properties:

The pervasive application: The core application itself

and its components.

The environment: Those hardware and software compo-

nents that do not directly belong to the pervasive ap-

plication but that influence its behavior.

The user: If the system is not able to apply appropriate

adaptations, it should either inform the user that ap-

plication performance is about to deteriorate, or make

suggestions indicating a behavior that would lead to

the preservation of invariants (e.g. move more slowly).

2.3 The Triggers of Adaptation

Changes that make adaptations necessary usually come

from two different sources:

The environment: Pervasive applications are inherently

depending on resources provided by the local environ-

ment (devices or services). When the availability or

quality of these resources changes, the application may

experience deviations from its invariants due to emerg-

ing mismatches in resource supply and demand [6].

The user: As the user moves through the world and acts,

his behavior may violate the current assumptions of

the application and cause deviations from its target in-

variants. Thus, adaptations are triggered to follow his

actions in the world and make the application fit them.

2.4 The Entities Executing Adaptations

Application developers should not be faced with design-

ing and developing the basic mechanisms of adaptation.

This shall be hidden as much as possible inside a special

software component that is responsible for deciding about

and enforcing adaptations across different applications and

environments. We call this software components the adap-

tation middleware. The task of this adaptation middleware

is usually to establish and monitor the bindings of the appli-

cation to the necessary resources in the environment. Fur-

thermore, it must provide ways of specifying the invari-

ants desired for applications and mechanisms for preserving

them by adapting. This should be as transparent as possible

for the application, the developer, and the end user.

However, it may not be possible to encapsulate every

adaptation inside the adaptation middleware. The applica-

tion itself may have to be designed in a way that allows

for highly application-specific adaptations. The adaptation

middleware should also provide means to application devel-

opers to achieve this in a standard way if necessary, avoid-

ing proprietary application-side solutions.

2.5 The Timing of Adaptation

There are essentially two dimensions to the timing of

adaptation. The first dimension defines the time at which



the adaptation is executed relative to the triggering event:

An adaptation can be executed reactively (in reaction to a

triggering event that has already occurred), or proactively

(before the triggering event actually occurs). Proactive

adaptations are most desirable as they can prevent failures

and instabilities rather than trying to cure them. This en-

sures that the user experiences disruptions less often. How-

ever, proactive adaptations are also much more challenging

as they require information about future events.

The second dimension in the timing of adaptations de-

fines the time scales over which adaptations are executed.

At one extreme end, there are short-term adaptations that

affect a specific running instance of an application. The next

instance starts from the same initial state and undergoes new

adaptations. At the the other extreme end, there are long-

term adaptations. In systems that exhibit long-term adap-

tation, the adaptations applied to each application instance

are used to learn from them and to improve the application

with every run. Each new application instance builds on the

instances before it and benefits from the learning process.

For example, if a certain resource R1 tends to break down

and has to be replaced by R2 in every application instance,

the system may learn from this and decide to use R2 from

the very start as this saves time and effort.

3 State of the Art

There are a number of different approaches for adap-

tation in pervasive systems. Most systems deal with the

management of resources under mobility-induced dynam-

ics. For example, Gaia [5] enables the easy access to

resources in a habitat by employing an extension of the

model-view-controller paradigm. Sessions are used to al-

low mobile users to move across different locations and

have their data and applications available. PCOM [1] al-

lows for adaptation by using a component-based approach.

Applications are composed from components based on con-

tracts and re-configured at runtime when components be-

come unavailable due to changes. These systems may adapt

an application reactively to changes in the environment.

Aura [3, 7] and activity-oriented computing [2] extend

these approaches by explicitly modeling user tasks and in-

tentions as a basis of adaptation. These systems may also

adapt the user’s environment due to the knowledge of his

intentions. However, there is no notion of an overall pro-

cess represented by a series of tasks. Plan-driven ubiqui-

tous computing [4] extends upon Aura and related systems

by introducing a plan-based representation of user tasks to

enable proactive adaptations. This approach is similar to

the one introduced in this paper. However, Adaptable Per-

vasive Flows add a number of key ingredients such as flow

situatedness, flow evolution, adaptive flow distribution, in-

teraction between flows, etc. Therefore, they are a more rig-

orous and general concept that goes far beyond any existing

approach.

4 Adaptable Pervasive Flows

Flows are closely related to classical workflows. They

mainly consist of tasks being connected by context-aware

transitions, and they model the actions of a flow entity over

the course of a more complex overarching activity. An ex-

ample is depicted in Figure 1.

Leave

home

Walk to

bus stop

Take bus

628

to airport

Take plane

LH11

to Frankfurt

Go to

meeting room

K05

Goal:

Arrive at Frankfurt

Constraints:

arrival before 9:30; 

Cost < €300
Location = 

bus stop

Location = 

departure airport

Location = 

Frankfurt airport

Electronic

ticket purchase 

service

Electronic

navigation

service

Find and invoke

service

Find and invoke

service

Service offered 

at the bus stop

Service offered 

at the bus stop

Service offered 

at the airport

Service offered 

at the airport

Figure 1. Flow Example

A flow entity (also simply called entity) may be a human

user or some inanimate object (e.g. a container in a logistics

process) on behalf of which a flow is executed. The system

that is responsible for executing flows is simply called the

flow system. This system is usually distributed and resides

in the environment of the entity. The flow system is re-

sponsible for executing a flow in parallel to the real-world

actions of its entity. The fundamental idea of the flow ap-

proach is that this synchronized execution allows the flow

system to detect deviations of the real-world actions from

the planned actions and use these deviations as the basis

for adequate adaptations. In order to achieve this, we em-

ploy activity sensing technologies to recognize user activi-

ties and other sources of context information (e.g. location).

The flow in Figure 1 models a simple journey of a busi-

ness traveler. Based on location information, the flow ad-

vances through its tasks, and each task can invoke sup-

portive services in the local environment to guide the user

through the whole process (see bottom of Figure 1). A very

important element of the flow is a set of meta data express-

ing the goals and constraints of the flow. In our example,

the goal is to arrive at the airport in Frankfurt, and the con-

straints define the latest arrival time and a maximum cost.

Having this data is vital for doing flow adaptations as they

define the invariants (cf. Section 2.1) that shall be preserved

by adaptations and, consequently, imply a subset of all pos-

sible adaptations in a particular situation. The traveler’s

flow is attached to him and, thus, follows him through the



different stages, locations, and contexts of the process (his

journey).

4.1 Flow Adaptation

A flow can be subject to short-term adaptation (also sim-

ply called “adaptations”) and long-term adaptations (called

“evolution”) (cf. Section 2.5). A key innovation of the flow

technology is that a flow represents information about the

past, current, and (prospective) future activities of its en-

tity. Having information about the future is obviously a

huge advantage for adaptability as it allows for proactive-

ness. Figure 2 shows the range of adaptations possible in

flow systems. On the top left of the figure, the initial journey

flow (Figure 1) is adapted because the user has missed the

bus. Here, we assume that the bus station is equipped with

a flow system that knows possible adaptations for such sit-

uations. It has certain local knowledge (e.g. where the next

taxi stand is located) and can use this knowledge to apply

an adaptation that preserves the goals and constraints of the

flow. This means that flow adaptation is local (and, there-

fore, scalable) in nature: As a flow moves through different

contexts, it can be adapted in each context locally without

requiring access to some centralized adaptation logic.

Leave

home

Walk to

bus stop

Take bus

628

to airport

Take plane

LH11

to Frankfurt

Go to

meeting room

K05

Check-in

at

counter 7

Proceed to 

gate A87
Board plane

Electronic

check-in service A

Electronic

boarding pass check

service

find and invoke

service

Walk to

taxi stand

Take taxi 

to airport

Horizontal adaptation:

re-planning the flow

Vertical adaptation:

substituting abstract tasks

Electronic

check-in service B

Vertical adaptation:

re-mapping atomic 

services

�

�

Figure 2. Forms of flow adaptation (Top

left: Horizontal adaptation by re-planning the

flow; Right side: Vertical adaptation by sub-

flow substitution; Lower left: Vertical adapta-

tion by service re-mapping)

The adaptation mechanism tries to adapt the flow such

that the goals remain achievable and the constraints are met.

Unlike other systems for pervasive adaptation, flows repre-

sent a structured models of an application. Therefore, they

provide many potential ways of adaptation like inserting

or replacing tasks or subflows, removing parts of the flow,

changing transitions and their conditions, etc.

We differentiate between horizontal and vertical flow

adaptation. A flow is adapted horizontally if it is re-

planned. That is, if new tasks are inserted, existing tasks are

removed, and transitions between tasks are changed. Figure

2 represents an example of this form of adaptation (top left).

Vertical adaptation is about changing the mapping of flow

tasks to resources in the environment. Tasks can either be

mapped to atomic services (bottom of Figure 2), or they

can be mapped to subflows (middle of Figure 2). In the lat-

ter case, the task is abstract and involves a number of steps

(tasks) that are not known at design-time but only when the

flow is actually executed in the right environment. For ex-

ample, the “Take plane...” task is actually a bit more com-

plex and requires several steps. A concrete representation

of this task as a subflow is present at the concrete airport

and is substituted for the abstract task as the user enters the

airport. This form of late binding allows for very flexible

flow design. If a task is mapped to an atomic service, verti-

cal adaptation means that the task has to be re-mapped (e.g.

because the old service became unavailable).

…

Flow

Evolution

Mechanism

History of adapted 

flow instances

after execution

Evolved flow model

(prototype)

Current flow 

(being executed)

Current flow model 

provided for next execution

Figure 3. Flow Evolution

After the flow has finished, it represents the best achiev-

able fit under the circumstances prevalent at the time of its

execution. Such flows are not discarded. Instead, they are

collected and used for evolving a common flow model from

which future flow instances for the application are instanti-

ated (see Figure 3). Evolutions are based on the same ma-

nipulations of flows stated above for adaptations. A flow’s

performance (e.g. runtime and ability to achieve its goals

and meet its constraints) may be monitored and used to

compare the fitness of several flow instances. Diverse tech-

niques from the domain of machine learning can be used to

evolve a flow model from a set of flow instances based on

this data.



4.2 Situatedness

Unlike classical workflows, Adaptable Pervasive Flows

are situated in the real world, i.e. they are attached to enti-

ties like artifacts or people, moving with them through dif-

ferent contexts. This attachment is logical in nature, i.e. in

principle the location where the flow is executed and stored

is independent of the current physical location of its entity.

A flow could be executed in some server while the actions

of its entity (e.g. a user) are captured locally and commu-

nicated to the flow. On the other hand, the flow could also

reside on the mobile device of its user. Logical attachment

provides means for maintaining a relation and decoupling at

the same time, and it avoids the need for users to carry com-

puting devices. All that is necessary is a way of identifying

an entity (e.g. RFID).

4.3 Flow Distribution and Mobility

In many cases, there is an inherent need for executing a

flow in close proximity to its user3. This is mainly due to

the interactions that need to be conducted between the user

and the flow. Therefore, it can be beneficial to execute the

flow in the current environment of the user in order to co-

locate it with the resources it uses (e.g. services the tasks are

mapped to). However, considering the wide range of possi-

ble environments, it may well be that there are only small-

scale low-performance devices available near-by. For this

reason, the flow modeling language allows for flows to be

fragmented and the fragments to be placed on different de-

vices. In this way, flow execution is distributed. Scopes are

used to specify relations between the tasks of the flow, and

these relations may be used to control the distribution. E.g.

tasks that need to communicate heavily may better be put

on the same device in environments with a low-bandwidth

network. The distribution of flows must also be adaptable to

changes in the properties of the environment and user mo-

bility. Flow distribution is controlled by a utility function

that regards aspects like communication bandwidth, com-

munication cost between flow fragments and between tasks

and services, the availability of devices, etc.

4.4 Context and Activity Sensing

Employing flows for adaptation requires feedback from

the real world in oder to be able to detect deviations between

the real-world events and the flow’s plan. This feedback

includes context information like time, location, the status

of relevant entities in the environment etc. However, the

core objective of Adaptable Pervasive Flows is to achieve

3For simplicity, we assume here that the flow is attached to a human

user. However, similar observations can be made for flows that are attached

to inanimate objects.

human-orientation. That is, a flow-based system should first

and foremost be able to adapt to the actual needs of its hu-

man users. Therefore, a special kind of context informa-

tion that is employed in the system is activity information

about the current real-world actions executed by humans.

By collecting raw sensor data (e.g. from accelerometers)

and recognizing activities from this data, the flow system

can assess whether a human user is actually doing what the

flow prescribes or whether the flow must adapt to the user.

If, for example, our business traveler should be running to

catch the plane but instead, he is walking slowly, the sys-

tem could inform him about the situation and tell him to

speed up, or it could proactively adapt his environment as it

is shown in Figure 4.

4.5 Environment Adaptation

Many processes in real life are associated with adapting

(setting up, configuring) certain technical equipment in the

environment. In flow-based systems, this is done by the

flow driving the overall process. In order to allow for this

kind of adaptation, the equipment exports services that en-

able flows to issue adaptation requests. Apart from techni-

cal equipment, adaptations may also pertain to humans that

are directly or indirectly involved in the process.

Check-in

at

counter 7

Proceed to

security

check

Take security

check

Proceed to

gate A87

Board the

plane

Notify control system

at the security check

to guide traveler 

through fast lane

Current time

+

estimated

walking time

>

gate closing time

Notify gate personnel

Figure 4. Environment adaptation example

An example is presented in Figure 4. Here, we assume

that the traveler is in a hurry and trying to catch the plane.

This can be inferred from the current time and parameters

that are available in the environment (estimated walking

time to the gate and gate closing time). As the flow sys-

tem recognizes that the traveler may not be able to make

it in time, it adapts the security check system to guide the

traveler through the fast lane. Additionally, it notifies the

gate personnel that the traveler is on his way, such that the

personnel may wait longer. In this case, the electronic se-

curity check system as well as the personnel at the gate are

considered to be belonging to the environment and different

adaptations are issued to ensure the success of the traveler’s

flow.



4.6 Adaptive User Interfaces

For the interaction of the user and his flow, adequate user

interfaces are required. Interacting with a user through his

mobile device is an option if the user is actually carrying

such a device. However, we explicitly foresee, applications

where this is not the case and in which other means of inter-

action are required. For this purpose, the concept of inter-

action spheres is introduced. An interaction sphere defines

a physical space around a user’s current position. I/O de-

vices (monitors, speakers, terminals, etc.) that reside in this

sphere may potentially be used for interactions. E.g. text

output may be directed to a monitor in close vicinity of the

user, and for text input, the user may be directed to an infor-

mation terminal. Identifying and using those devices close

to the user according to their properties and capabilities in a

natural way is the challenge with respect to this. Note that

with activity sensing, we have another way for the user of

directing input to the flow system: A user may use deliber-

ate gestures (e.g. moving hands) to create input.

4.7 Security, Trust, and Privacy

Any pervasive system that penetrates a human’s life will

only be acceptable if it is sufficiently secure and preserves

the user’s privacy. Doing this is a tough challenge in the

context of this project due to the pervasiveness and the dy-

namics of the whole system. A user’s private data must not

be disclosed to unauthorized parties. His transactions must

be secured to avoid fraud. To achieve this, we plan to use

reputation systems that are capable of assessing the trusta-

bility of an entity based on statistical knowledge about its

prior actions. Such data about an entity A can be captured

as the system is running and provided to other parties that

are not required to know A before hand. Thus, statically

configured access rights can be avoided and the system may

also adapt its level of trust based on what users are doing.

5 Conclusions and Future Work

The new programming paradigm for adaptable pervasive

applications based on the concept of flows holds a large po-

tential. It promises to enable truly proactive adaptations to

dynamic changes in the environment and the application

due to the fact that a flow represents an explicit model of

the future actions within an application. This paves the way

towards human-oriented pervasive systems that adapt in an

unobtrusive and seamless way. We have presented the broad

range of concepts tackled in this international research ef-

fort to realize this vision. Many of them are very challeng-

ing, but we believe that a successful coherent effort to solve

them can result in a major breakthrough.

The research on flow-based systems is still at its very

beginning. Over the next three years, we will follow a rig-

orously defined agenda that ranges from basic models for

flows, context, adaptation, evolution, distribution, user in-

terfaces, and security to fully functional demonstrators in

order to validate our concepts.

References

[1] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM

- A Component System for Pervasive Computing. In Proceed-

ings of the Second IEEE International Conference on Perva-

sive Computing and Communications, 2004.

[2] H. B. Christensen and J. E. Bardram. Supporting Human Ac-

tivities – Exploring Activity-Centered Computing. In Pro-

ceedings of Fourth International Conference on Ubiquitous

Computing, UbiComp 2002, 2002.

[3] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.

Project Aura: Toward Distraction-Free Pervasive Computing.

IEEE Pervasive Computing, April–June 2002, 2002.

[4] G. Look and S. Peters. Plan-driven ubiquitous computing.

In Student Oxygen Workshop Cambridge. MA: MIT Project

Oxygen, 2003.

[5] G.-C. Roman, J. Payton, R. Handorean, and C. Julien. Rapid

Deployment of Coordination Middleware Supporting Ad Hoc

Mobile Systems. Technical Report WUCSE-2002-4, Wash-

ington University, Department of Computer Science, St.

Louis, Missouri, Mar. 2002.

[6] M. Satyanarayanan. The Many Faces of Adaptation. IEEE

Pervasive Computing, July-September:4–5, 2004.

[7] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw.

Task-based adaptation for ubiquitous computing. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Ap-

plications and Reviews, 36(3):328–340, 2006.

[8] L. Zadeh. On the Definition of Adaptivity. Proceedings of the

IEEE, 51:469, Mar. 1963.


