Context-Aware Mashups for Mobile Devices

Andreas Brodt!, Daniela Nicklas', Sailesh Sathish?, and Bernhard Mitschang!

1 Universitat Stuttgart, Institute of Parallel and Distributed Systems,
Universitatsstrafie 38, 70569 Stuttgart, Germany
[brodt,nicklas,mitsch]@ipvs.uni-stuttgart.de
2 Nokia Research Center, Visiokatu 1, 33720 Tampere, Finland
sailesh.sathish@nokia.com

Abstract. With the Web 2.0 trend and its participation of end-users
more and more data and information services are online accessible, such
as web sites, Wikis, or web services. So-called mashups—web applications
that integrate data from more than one source into an integrated service—
can be easily realized using scripting languages. Also, mobile devices are
increasingly powerful, have ubiquitous access to the Web and feature
local sensors, such as GPS. Thus, mobile applications can adapt to the
mobile user’s current situation.

We examine how context-aware mashups can be created. One challenge
is the provisioning of context data to the mobile application. For this, we
discuss different ways to integrate context data, such as the user’s position,
into web applications. Moreover, we assess different data formats and the
overall performance. Finally, we present the TELAR mashup platform, a
client-server solution for location-based mashups for mobile devices such
as the Nokia N810 Internet Tablet.

1 Introduction

The proliferation of public web services and other online data sources enables
new services and applications that combine existing information in a new manner.
So-called mashups integrate data and services from multiple sources to provide
innovative services, like the visualization of crime statistics from the Chicago
Police Department on a street map® (one of the first mashups). Mashups are
mostly realized by web pages that leverage script languages such as JavaScript,
which enables better user interactivity by locally executed functions and the
dynamic loading of data from web services. These techniques are often associated
with the Web 2.0 trend. Typically, mashups are created dynamically from existing
data sources that have no knowledge about their participation. Thus, they can
change their interfaces and data formats at any time, which adds a new flavor to
the general data integration problem.

Another trend are mobile systems that have become more and more powerful
in the last years. Soon, users expect their handheld devices to run the same
applications as their desktop systems do. In addition to that, mobile devices

3 http://chicagocrime.org



feature an increasing number of built-in or easily connectable sensors, such
as cameras, GPS receivers, or acceleration sensors. One example is the Nokia
N810 Internet Tablet that possesses 128 MB of RAM, 2 GB of flash memory,
an OMAP2420 microprocessor at 400 MHz as well as a small camera and a
GPS receiver. This is sufficient to run a Linux-based operating system and
thus numerous Linux applications, including context-aware software, such as car
navigation.

However, mobile systems still have limitations in many resources, such as
display size, communication bandwidth (due to their wireless connections), energy,
or the user’s focus. The latter imposes one of the major design issues: mobile
applications should be able to adapt to the user’s situation. Every piece of
information that helps the application to detect that situation is referred to as
context. Such adaptive applications are called context-aware applications [1].

The combination of these two trends—mashups and context-aware applications
on mobile devices—offers great additional value to the user. By integrating
multiple data sources into one experience, new services can be created that
are tailored to the user’s personal needs. And by using local sensor data on a
mobile device, this experience can be adapted to the user’s current situation. In
this paper, we examine the creation of context-aware mashups according to the
following requirements:

— Adaptation should be based on sensors which are built into the mobile device
or locally connected. Although our scenario focuses on location data gained
from a GPS receiver, the solution should allow arbitrary local sensors.

— The mashups should be user-centric, i.e., the user of a mobile device should
benefit from the mashups, rather than a remote person or service provider.

— The mashups should be viewable with the web browser of the mobile device.
This prevents a native solution on the mobile device and has potential
influence on performance.

— There should be a non-adaptive version of mashups in case no context
information is available. This allows viewing the mashups on sensor-equipped
mobile devices as well as on desktop computers and thus increases the
usefulness of the mashups.

— Multiple data sources using arbitrary data formats and interfaces should be
integrated into the mashups. The user should be able add and remove data
sources at runtime, according to her current interest.

The example scenario on which we focus in this paper is a context-aware
mashup which integrates the user’s position obtained from a GPS device, a map
from an online map service, and nearby points of interest (POIs) from different
online data providers, as depicted in Figure 2. The POI metaphor is used by
a large portion of geo-mashups, so scenario covers the main use case of these
mashups. We put this scenario into practice using a three-tier system architecture
with a Nokia N810 Internet Tablet as the client device. We demonstrated this
sample scenario at the EDBT’08 conference [2].

The main contribution of this paper is a system architecture featuring a context
provisioning framework for utilizing local sensors in context-aware mashups. We



give an overview on related work in Section 2. In Section 3 we identify the
requirements of a context provisioning framework for context-aware mashups,
address data integration, and describe our proposed system architecture. We
shortly give a few implementation details of the TELAR mashup platform in
Section 4, discuss the performance of AJAX on mobile devices and illustrate our
optimizations. Finally we conclude the paper in Section 5.

2 Related Work

2.1 Context Provisioning

Context is any information that can be used to characterize the situation of an
entity [1], which is used to adapt the behavior of a context aware application.
In our example scenario, the entity would be the user, and context are his or
her location and interest. While the interest—i.e., which data providers should
be included in the mashup—is configured by the user, the location should be
provided automatically to the mashup system, i.e., by a sensor.

In related research, several context provisioning systems were proposed, e. g.,
the Context Toolkit [3], the context manager of Henriksen et al. [4], or the Nexus
platform [5], to name a few. Unfortunately, none of these approaches are mature
enough to build them into a running product, not to talk about standardization.
Also, they are meant to manage a complex infrastructure of installed sensors and
context services, which is not necessary for context-aware mashups.

On the web, context-aware web pages currently integrate context information
obtained from third-party web services. Today, web services locating the user’s
IP address, such as hostip.info, are able to determine the user’s country and
occasionally the town. This can be sufficient to embed advertisements into a web
page. Services like plazes.com or jaiku.com support uploading context information,
such as the current location and activity. Some people embed this information into
their web page or blog in order to share it with friends. In principle, it is possible
to upload context data to a third-party service. However, this approach cannot
satisfy the time and accuracy requirements of systems such as an electronic tour
guide.

Heading towards device independent web applications several standards have
been defined for supplying context information of a kind. HTTP headers may
provide information about the client’s web browser and could be extended to
convey other context data [6]. However, such extended HTTP headers lack
asynchronous notifications, search, control and standardization. Approaches
based on profiles, such as CC/PP [7] and UAProf [8], provide only static context
attributes, thus lacking asynchronous notifications and mutability. The Device
Profile Evolution (DPE) [9] solves this problem, but is limited to mobile phones
and follows a server-based approach. However, to reduce latency and increase
accuracy, client-based provisioning is desirable.

The context provisioning framework that matches our requirements best is the
W3C Delivery Context Client Interfaces [10]. DCCI is a client-based framework



to which both local sensors and remote services can be bound. DCCI represents
context as a number of properties which are organized hierarchically, using the
W3C Document Object Model (DOM). Web pages can access the resulting
property tree via JavaScript. DCCI properties may be static (e. g., screen size)
or dynamic (e. g., the user’s position). The main advantage of DCCI is that it is
undergoing standardization within W3C and is (at the time of writing) expected
to reach proposed standard status soon.

2.2 Mashups

Mashups are web application hybrids that integrate data from different sources to
provide a value added service. They leverage the availability of open web services,
RSS feeds, or extract information out of regular web pages using screen scraping.
A popular combination is to display information from different sources on a map
(geo-mashups), or to enrich search results from one source (e. g., a hotel finder)
with information from others (e. g., recommendations and pictures).

The mashup portal programmableWeb.com lists 3046 mashups on May 20,
2008, with an average of 3.14 new mashups per day. Over one third are geo-
mashups, 17% are multimedia mashups (video and photo). Floyd et al. [11]
show how mashup techniques can be used for rapid prototyping in user-centered
software development processes. A study at the Human-Computer Interaction
Institute of the Carnegie Mellon University showed that mashups can be even
used for end-user programming [12]. IBM emphasizes the great benefits of so-
called Enterprise Mashups [13], information heavy applications that integrate
distributed information within an enterprise in a quick and dynamic way. Erik
Wilde [14] applied the mashup idea to the management of large knowledge bases.

Most of the existing mashups are programmed manually. However, a number
of mashup platforms exist that facilitate the development: Mash-o-matic [15] can
be used to generate geo-mashups based on so-called superimposed information.
The Openkapow platform? realizes mashups as a combination of so-called robots,
which extract information from RSS streams, web services, or via screen scraping.
With online tools like Yahoo! pipes® or Microsoft’s Popfly®, mashups can be built
out of predefined components and combined using interactive drag-and-drop
interfaces. IBM’s QEDWiki” is an AJAX interface to combine user interface
components that are connected to external data providers. IBM is also working
on a data mashup service for web and enterprise information called DAMIAS.
Intel’s MashMaker [16] allows the creation of complex mashups by browsing,
rather than writing code, applying the principles of functional programming.

While these platforms are good at integrating various data sources into a
new presentation, none of them is capable of utilizing local sensors. Also, our

4 http://openkapow.com

® http://pipes.yahoo.com

5 http://www.popfly.ms

" http://services.alphaworks.ibm.com/qedwiki
8 http://services.alphaworks.ibm.com/damia



scenario focuses on independent points of interest (POIs), thus complex interaction
between data providers, e.g., as supported by Yahoo! pipes or MashMaker, is
not necessary. On the other hand, our scenario may require a lot of flexibility
with respect to accessing the data providers.

3 Context-Aware Mashups

3.1 Context Provisioning

Context-aware mashups (and context-aware web-applications in general) based
on local sensors require a means of context provisioning with the following
characteristics:

Asynchronous Notifications. The mashup needs to be notified of changes in
the user’s context in order to react accordingly.

Mutability. As sensors may become inactive or new sensors may be connected
to the mobile device, the context model needs to be capable of reflecting
these changes.

Search. The mashup needs a means to find out, which kinds of context data
are available. This in turns requires metadata describing the context data.

Control. In order to utilize a local sensor, the mashup needs some degree of
control over the sensor, e.g., to activate it or to trigger a measurement.

Standardization. It is of utter importance to have standardized interfaces
when exposing an API to a huge multi-platform and multi-vendor system
such as the web.

Privacy. The user must be in control of what information is disclosed about
her current situation. As mashups are third-party applications, the context
provisioning system must ensure privacy before the context data reaches the
mashups. The privacy aspect of context provisioning, however, is not in the
focus of this paper.

As discussed in Section 2.1, not every context provisioning framework fulfills
these requirements. We chose the W3C Delivery Context Client Interfaces (DCCI)
[10] as a standardized means for context provisioning, since it possesses most of
these characteristics. DCCI uses the DOM event model to provide asynchronous
notifications. A web page can register for events, such as the change of a property
value or the removal of a property, and is notified via the provided JavaScript
event listener function. In addition to that, it is possible to add and remove
properties dynamically, thus achieving mutability. Moreover, DCCI properties
can have a metadata interface and the DCCI tree is searchable. DCCI does
not directly support control over local sensors. However, for simple notions of
control, such as activating or triggering a sensor, the event model can be used.
Assuming that the value of sensor is only needed when at least one event listener
is registered to the respective DCCI property, the property can (de)activate or
trigger the sensor accordingly.



Web Browser

E—
—— GPS Access
secon] |

Mashup Client } Client Tier

— Page Load — — — — async. HTTP Requests

Mashup Server
Mashup Normalization HTTP Server Tier

N~
Map Service
Data Provider 1 Data Provider n (Google Maps) Data Provider Tier

Fig. 1. Proposed system architecture for context-aware mashups

The drawback with DCCI is that it is meant to be a consumer interface and
therefore lacks a standardized provider interface. Moreover, DCCI is meant to be
used within a wider framework with security controls and object management
that is not addressed within the current specification.

3.2 Data Integration

Our solution to integrate the data from various different data providers is a
simple wrapper approach. Small and independent wrapper scripts impose an
abstraction layer on the data providers creating a consistent RESTful interface
to retrieve the data. The wrappers query the data providers and convert the data
into a single well-known format. As our scenario focuses on POIs, a common data
model is easy to find. The fact that the wrappers need to be programmed makes
user-programming difficult, on the other hand virtually any data source can be
accessed. However, given a sufficient amount of wrappers, one can choose which
data providers to include in a mashup. In addition, wrappers can be parametrized
giving the user or the mashup creator some control.

3.3 Architectural Overview

A graphical overview on our proposed system architecture is given in Figure 1. As
with a typical AJAX-based mashup, there are three tiers: A mashup is viewed in
the client tier. The web browser loads the mashup page and starts the JavaScript
code of the mashup client AJAX application. The mashup page is loaded from the
mashup server, which resides on the Internet and constitutes the server tier. Data



offered by third-party data providers is used, which are distributed throughout
the Internet. The map is loaded from a map service, which, together with the
data providers, makes up the data provider tier. Note that the data provider tier
is outside of the organizational boundaries of the mashup.

A mashup consists of an HTML page importing the JavaScript files of the
mashup client. The mashup client is only deployed to the mashup server and
used as-is. It needs to be configured (most notably, the data providers to use
and the initial position of the map), but not programmed. The mashup client
asynchronously reads the configuration when the mashup page is loaded. The
mashup client then constructs the user interface. It displays a map and visualizes
POI data from the data providers. In order to cope with the heterogeneity of
data formats and interfaces used by the different data providers, a normalization
layer is required. As mentioned in Section 3.2, we used programmed wrappers
to achieve a consistent interface for data retrieval, as this approach offers the
highest degree of flexibility. For other scenarios with less diversity, other, possibly
automatic normalization approaches are applicable (e. g., data providers solely
providing RSS feeds, as used by Yahoo! pipes).

Context information, such as the user’s location, is integrated into the mashup
by extending the web browser. There are two additional components: the DCCI
module and the GPS access module. The DCCI module implements the DCCI
specification [10] and constitutes the interface for providing context data to web
pages. The mashup client registers itself as an event listener to the DCCI module
and is notified whenever the user’s location changes. The GPS access module
connects to the GPS device and ships the location information to the DCCI
module. Dividing the context provisioning framework into a client interface and
a provisioning module allows further context provisioning modules to be added
later on.

The data flow works as follows: Whenever the GPS access module obtains a
new location from the GPS device, the location information is updated in the
DCCI module. The mashup client, which is registered as an event listener to the
DCCI module, is notified about the change via DOM events. Subsequently, the
mashup client updates the user’s location on the map and centers the map to
the new location. If the area shown on the map has significantly changed, the
mashup client sends asynchronous HTTP requests to the wrappers, in order to
obtain POI data for the new map area. The wrappers translate these requests
into calls to the particular APIs of the data providers and convert the resulting
data into a unique data format understood by the mashup client. Finally, the
mashup client reads the reply sent by the wrappers and visualizes the POI data
on the map.

3.4 Mashup Application Development

In order to create a mashup using our proposed architecture, the following steps
need to be taken:

1. Select the data providers. Create the respective wrappers, if not yet available.



Web - TELAR Mashup Platform

Map Data GPS

3F Data Providers

4F Fon access points
= (@ Panoramio Pictures
“JWikipedia Articles

A

FAERESE

Fig. 2. Screenshot of a TELAR mashup on a Nokia N810

2. Write an HTML page, into which the map presentation should be embedded.

3. Deploy the mashup client, the wrappers, and the HTML page to a web server.

4. Configure the mashup client defining the initial map area (center point and
zoom level) and the data provider wrappers to use.

No AJAX programming is required, as the mashup client handles all map
interaction, displays the POIs and integrates the user’s location.

4 The Telar Prototype

4.1 Implementation

We put our proposed architecture into practice on a Nokia N810 Internet Tablet,
as depicted in the screenshot in Figure 2. The Mozilla-based web browser of the
Nokia N810 provides a powerful extension mechanism, using which the DCCI
module and the GPS access module were implemented in C++. The two modules
communicate directly via XPCOM, the component framework of the Mozilla
browser. As DCCI only defines a client interface, the DCCI module had to
define its own provider interface as the back end. Although we did not aim at
implementing a full-fledged provider framework, as proposed in [17], this provider
interface is generic and can be used for different kinds of context data providers.
Based on the provider interface, further browser extensions can be written, which
expose context data via one or more DCCI properties.

To implement the mashup client we used the Google Web Toolkit”. This
gave us the possibility to write the non-trivial mashup client in Java utilizing

9 http://code.google.com/webtoolkit



301w JSON: parsing [s] //
27.51+— ¢ JSON: map interaction [s] /
v GeoRSS: parsing [s]
257, GeoRSS: map interaction [s] /
225

seconds

712 — ———

0 T T T T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100 110 120 130 140

Points of Interest (POls)

Fig. 3. Time for processing POIs in GeoRSS and JSON format

professional development tools. Moreover, the menus and dialogs making up the
user interface of the mashup client could be easily created with the widget library
of the Google Web Toolkit.

The wrappers were implemented in PHP 5 using XSL stylesheets to convert
from XML-based data formats. The wrappers are significantly shorter than 100
lines of code and their implementation was very straight forward. Thus, additional
data providers can be added to the TELAR mashup platform without problems
and changes in the interface of data providers can be easily resolved.

4.2 Performance Optimizations

When the mashup client and some wrappers were implemented, first tests showed
that performance was insufficient. Working fine on a state-of-the-art desktop PC,
it could take minutes until a mashup was completely constructed on a Nokia
Internet Tablet. A similar experience was made on a Pentium II PC. A first
analysis revealed that most of the time was spent for parsing the POI data which
the mashup client retrieved from the wrappers. It took additional time to draw
the POIs on the map. Both steps are done by JavaScript code interpreted in the
browser. In contrast to a desktop PC, the processor of the Nokia Internet Tablet
was simply not powerful enough to do this job quickly.

Our first version used an extended version of GeoRSS [18] as serialization
format for the POIs. GeoRSS is a standardized, simple, and popular format
based on Atom or RSS for describing geographically annotated objects. By using
GeoRSS, existing tools and web pages supporting GeoRSS could be used for
testing the wrappers and the wrappers could even be reused for other applications.

In order to improve performance, the standardized GeoRSS format was
replaced by a proprietary JSON format [19]. As JSON is a subset of JavaScript,



query bounding box 1

map 2

query bounding box 2
map 1 p2

/\ \ map 3

p1
map 4
\}\\ °

p4

= User Trace

Fig. 4. Query bounding boxes for reducing the number of queries

it can be parsed very efficiently using the eval() JavaScript function, which
the web browser implements in native code. Figure 3 shows the performance
measurements done with GeoRSS and JSON. For both formats two values were
measured on a Nokia Internet Tablet with various amounts of data: the time for
unmarshalling the data into objects and the time for drawing these objects on
the map. The readings show that for GeoRSS parsing takes much longer than
drawing the POIs. Parsing 100 POIs of GeoRSS data takes more than 20 seconds,
whereas parsing 100 POIs from JSON takes less than three seconds. As the POls
are in any case unmarshalled to objects first, the time to draw the POIs on the
map is independent of the serialization format. Drawing 100 POIs takes between
eight and ten seconds. Thus, despite of using JSON to serialize the POIs, adding
the POIs to the map still takes too long.

As adding POIs to the map is expensive for devices with limited resources,
unnecessary calls to the map API should be avoided. In the scenario of a walking
user, the map changes every time the GPS access module updates the location
data in the DCCI tree, e. g., in intervals of a few seconds, but only to a small
degree. It would be sufficient to query POIs for the area which was added to
the map with the last location update. However, this is not easily feasible, as
the new area is generally not rectangular. As most data providers only support
rectangular query areas, each query would have to be split in two separate queries,
doubling latency.

Instead, we introduced the approach of an extended query bounding box.
Whenever the mashup client needs new POI data, 25% of padding is added
to the map bounding box. Then, POI data is queried for the resulting query
bounding box. Whenever the map bounding box changes, the mashup client first
tests, whether the new map bounding box is still within the last query bounding
box. Only if this is not the case, a new query bounding box is calculated and
new data is queried.

Figure 4 illustrates the query bounding box. To display POlIs for map 1, query
bounding box 1 is calculated and POIs are retrieved accordingly. As the user



moves from position pl to p2, map 2 is displayed. But as the map bounding box
of map 2 is within query bounding box 1, no new data is required. Only when
the user walks to position p3, the map bounding box of map 3 is not entirely
within query bounding box 1 and new data must be queried. For map 4, the POI
data fetched for query bounding box 2 is available again.

As the area for which the data providers are queried is a lot larger in the
approach of the query bounding box, a larger number of POlIs is retrieved and
the initial loading time of the mashup even increases. But once the mashup is
loaded, significantly fewer queries are needed. In addition to that, the approach
of the query bounding box can cope with changes of the user’s walking direction
very well. The query bounding box is extended in all directions, so if the user
changes his direction, the POIs will be still available for a while.

5 Conclusions

In this paper, we examined user-centric context-aware mashups for mobile devices
on a sample scenario of location-based mashup integrating points of interest (POISs)
from arbitrary data providers. We formulated a list of requirements for a context
provisioning framework for context-aware mashups and found the W3C Delivery
Context Client Interfaces (DCCI) to fulfill these requirements best. We addressed
the challenge of integrating POI data from arbitrary heterogeneous data providers.
For our scenario, we chose an approach based on manually programmed wrappers
to abstract from the various data formats and interfaces, trading flexibility with
the possibility of user programming. Proceeding from these fundamental design
decisions, we presented a system architecture for context-based mashups making
wide use of AJAX. Based on this architecture, we implemented the TELAR
mashup platform, which puts our scenario into practice on a Nokia N810 Internet
Tablet.

We shared our experience with rich web applications making intensive use of
AJAX on a mobile device with limited resources: the performance can be sufficient
for small applications but is not yet fully satisfying. By switching from GeoRSS
to JSON as the serialization format for the POIs we could improve performance
significantly. The same holds for a caching strategy based on extended query
bounding boxes. Despite these measures, the mashup is still far from comparable
to a native application or from viewing the mashup in a PC browser. This is
mainly due to the fact that AJAX applications, such as the mashup client, use
the web browser in a way for which it was not originally designed, which leads to
worse performance.

A main future challenge is implementing privacy in context provisioning
frameworks like DCCI. For the purposes of the TELAR mashup platform, a simple
mechanism similar to popup blockers would be sufficient. However in order to
widely equip web browsers with context frameworks, a general solution is required.
Further potential for future work lies in the sustainability of mashups, so that
even in the case of data providers failing or changing their interfaces mashups
can continue to provide user value.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
5(1) (2001) 4-7

Brodt, A., Nicklas, D.: The TELAR mobile mashup platform for Nokia internet
tablets. In: Advances in Database Technology - EDBT 2008, 11th International
Conference on Extending Database Technology, Munich, Germany, Proceedings.
(2008 (to appear))

. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development

of context-enabled applications. In: CHI. (1999) 434-441

. Henricksen, K., Indulska, J.: A software engineering framework for context-aware

pervasive computing. In: PerCom, IEEE Computer Society (2004) 77-86

. Mitschang, B., Nicklas, D., Gromann, M., Schwarz, T., Honle, N.: Federating

location-based data services. In: Data Management in a Connected World. (2005)

. Daviel, A., Kaegi, F.A., Kofahl, M.: Geographic extensions for http transactions.

Internet draft, The Internet Society (September 2007)

. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.:

Composite capability /preference profiles (cc/pp): Structure and vocabularies 1.0.
Recommendation, W3C (January 2004)

. OMA Device Capability working group: Uaprof. Specification, Open Mobile Alliance

(October 2001)

. OMA Device Capability working group: Device profile evolution architecture. Draft,

Open Mobile Alliance (September 2007)

Waters, K., Hosn, R.A., Raggett, D., Sathish, S., Womer, M., Froumentin, M.,
Lewis, R.: Delivery context: Client interfaces (dcci) 1.0. Candidate recommendation,
W3C (December 2007)

Floyd, I.R., Jones, M.C., Rathi, D., Twidale, M.B.: Web mash-ups and patchwork
prototyping: User-driven technological innovation with Web 2.0 and Open Source
software. In: HICSS, IEEE Computer Society (2007)

Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user programming
for the web. In Rosson, M.B., Gilmore, D.J., eds.: CHI, ACM (2007)

Jhingran, A.: Enterprise information mashups: Integrating information, simply. In
Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L.,
Cha, S.K., Kim, Y.K., eds.. VLDB, ACM (2006)

Wilde, E.: Knowledge organization mashups. TIK Report 245, ETH Zirich
(Swiss Federal Institute of Technology) (March 2006) available at http://dret.
net/netdret/publications#wilO6f.

Murthy, S., Maier, D., Delcambre, L.M.L.: Mash-o-matic. In Bulterman, D.C.A.,
Brailsford, D.F., eds.: ACM Symposium on Document Engineering, ACM (2006)
Ennals, R., Gay, D.: User-friendly functional programming for web mashups. In:
ICFP ’07: Proceedings of the 2007 ACM SIGPLAN international conference on
Functional programming, New York, NY, USA, ACM (2007) 223-234

Sathish, S., Pettay, O.: Delivery context access for mobile browsing. In: ICCGI
’06: Proceedings of the International Multi-Conference on Computing in the Global
Information Technology, Washington, DC, USA, IEEE Computer Society (2006)
18

Reed, C., Singh, R., Lake, R., Lieberman, J., Maron, M.: An introduction to georss:
A standards based approach for geo-enabling rss feeds. White Paper OGC 06-050r3,
Open Geospatial Consortium Inc. (July 2006)

Crockford, D.: The application/json media type for javascript object notation
(json). Request for Comments 4627, The Internet Society (July 2006)



