A Framework for Adapting the Distribution of Automatic
Application Configuration

Stephan Schuhmann
Universitat Stuttgart
Institute of Parallel and
Distributed Systems (IPVS)
Universitatsstr. 38
70569 Stuttgart, Germany
schuhmann@ipvs.uni-

stuttgart.de

ABSTRACT

Numerous current research projects deal with the issue of
automatic application configuration in pervasive computing
scenarios. While completely distributed configuration is in-
evitable in infrastructure-less ad hoc scenarios, many real-
istic pervasive application scenarios are located in heteroge-
neous environments where additional computation power of
resource-rich devices can be utilized. However, most of the
current projects either focus solely on smart environments
which rely on additional infrastructure devices, or they ad-
dress ad hoc environments and treat all involved devices
as equal. This leads to suboptimal results in case of present
resource-rich devices, as their additional computation power
is not exploited. In this paper, we present a framework
that is based on clustering and allows the efficient and flex-
ible support of automatic application configuration both in
infrastructure-based and ad hoc environments. This is real-
ized by a new concept called Virtual Container that enables
the local emulation of remote devices’ functionalities and
resources. In our evaluation results, we prove that this con-
cept considerably reduces configuration delays noticeable by
the user.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed Applications; D.2.11 [Software
Engineering]: Software Architectures— Domain-specific
architectures

General Terms

Design, Measurement, Performance

Keywords
Adaptivity, Components, Middleware, Pervasive Computing

Klaus Herrmann
Universitat Stuttgart
Institute of Parallel and
Distributed Systems (IPVS)
Universitatsstr. 38
70569 Stuttgart, Germany
herrmann@ipvs.uni-

stuttgart.de

© ACM, 2008. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in
Proceedings of the 2008 ACM Int.'| Conference on Pervasive
Services (ACM ICPS'08), pp. 163-172, Sorrento, Italy, July
2008.

http://doi.acm.org/10.1145/1387269.1387297

Kurt Rothermel
Universitat Stuttgart
Institute of Parallel and
Distributed Systems (IPVS)
Universitatsstr. 38
70569 Stuttgart, Germany
rothermel@ipvs.uni-

stuttgart.de

1. INTRODUCTION

The research area of pervasive computing has emerged
from the fact that many heterogeneous mobile end-user de-
vices are available that have to be connected seamlessly with
each other. This integration is possible by the introduction
of middleware platforms that insert a logical layer between
hardware and software. The middleware provides certain
basic services to ease the development of distributed appli-
cations. Therefore, such platforms offer a unique program-
ming model and try to hide the heterogeneity of underlying
layers. Main goal of the middleware is technology abstrac-
tion and the increase of the quality of service for the users.

In this connection, applications for pervasive computing
need to be configured before execution, as the availability
of the needed resources may change over time. This con-
figuration should be performed automatically without user
intervention to enable technology abstraction. In order to
additionally increase the quality of service for the user, auto-
matic configuration should be calculated as fast as possible.

Regarding pervasive computing scenarios that support au-
tomatic application adaptation on system-level, there exist
two groups: Smart Environments, and Peer-to-Peer Per-
vasive Computing Environments. Smart Environments are
systems that provide a specific functionality by additional
infrastructure devices. In such scenarios, there is usually
an ongoing contact between the mobile devices and the en-
vironment. Contrary to this, Peer-to-Peer Pervasive Com-
puting scenarios are based on spontaneously networked en-
vironments without infrastructure support. These ad hoc
networks are typically highly dynamic, and the involved sys-
tems are acting in a cooperative way. Both types of envi-
ronments have their specific application scenarios.

Currently, a lot of projects engage in the configuration
and adaptation of pervasive applications. However, these
systems focus on only one type of scenario, either on infra-
structure-based Smart Environments [9],{10],[12],[13], or on
infrastructure-less Peer-to-Peer scenarios [2],[6]. Thus, they
normally do not provide efficient support for both system
types. In this regard, our system PCOM [2] does not repre-
sent an exception, as it was initially created to provide mid-
dleware support for self-organizing infrastructures in net-
worked mobile systems. PCOM indeed can be used in both
types of scenarios. However, it regards each device as being
equal and, thus, does not take special care of infrastructure
devices whose additional resources could be used for con-

figuration. Though, this can improve calculation speed and
decrease communication overhead considerably.

The main contribution of this paper is a framework for
enabling the efficient use of both infrastructure-based and
ad hoc environments. This allows to support both scenarios
in an efficient way and represents an important step towards
hybrid application configuration which is taken place on a
subset of the involved devices. To provide support of infras-
tructure and ad hoc scenarios, we introduce a new concept
called Virtual Container. This concept enables the local
emulation of remote devices and allows local access to the
relevant configuration logic on these devices. As the use
of all elements of a programming language is privileged in
complex scenarios and since we assume cooperative users
behaviors, we decided to use mobile code for obtaining the
distributed configuration logic. This enables centralized ap-
plication configuration on distinguished devices without the
necessity of remote validation of the obtained configuration,
and it reduces communication overhead and configuration
latency. In order to identify the device that performs cen-
tralized configuration and acts as a coordinator, we intro-
duced a clustering scheme to our framework. Moreover, we
provide several strategies to access the required distributed
configuration logic for further reduction of the configuration
latency, and we present an advanced mechanism which ac-
tually performs the process of calculating a valid application
configuration. This mechanism uses the Virtual Container
concept and the provided access strategies. As our evalua-
tion results will show, this framework significantly reduces
the configuration latency noticeable by the user.

The rest of this paper is structured as follows: In the
next section, we discuss some related projects and point that
these projects do not cover the full spectrum of possible en-
vironments. In Section 3, we state the prerequisites for this
work. Then, we present our concepts and their realization
in Sections 4 and 5. This is followed by our evaluation re-
sults. Finally, Section 7 concludes this paper and gives a
short outlook on our future work.

2. RELATED WORK

Many projects deal with the development of abstractions
which allow automatic adaptation of pervasive applications
at runtime. In this section, some of them are presented.

Gaia [12] is a project which provides a CORBA-based
middleware for Smart Environments, Gaia OS. It supports
developers by providing services for the development of user-
centric, resource-dependent, and context-aware mobile dis-
tributed applications. Gaia represents a highly integrated
environment and supports various kinds of devices, such as
audio devices, video cameras, or even fingerprint sensors.
The system is transparent to the user, but yet regards secu-
rity aspects. It supports stationary as well as mobile devices,
but it is not suited for the use in ad hoc environments.

The project Aura [13] provides a highly integrated en-
vironment for pervasive computing that consists of various
modules. Besides mobile devices like laptops, it seamlessly
integrates existing infrastructure to support users in their
daily work. In this connection, a context observer recog-
nizes changes in the current user context and reports them
to the task manager which exploits this information to adapt
the system to the changed conditions. Such as Gaia, Aura
cannot be used in Peer-to-Peer environments.

Another project that depends on resource-rich infrastruc-

ture devices is Matilda’s Smart House [10] which focuses on
Pervasive Healthcare support for aged persons. The system
creates a lucent environment for users via mobile sensors and
end-user devices. Therefore, it relies on the OSGi® platform
for component and lifecycle management.

The iRoom project [9] aims at an increased user experi-
ence of distributed visualization, as it focuses on integrating
high-resolution displays into application configuration. The
main component of this project is the iROS middleware that
provides services for the implementation of distributed ap-
plications by the use of infrastructure devices. iRoom sup-
ports the automatic adaptation of graphical user interfaces
depending on the available devices, e.g., PDAs or laptops.

P2PComp [6] is a project to provide context-aware mobile
devices by a Peer-to-Peer pervasive computing middleware.
Therefore, the P2PComp middleware also uses the OSGi
platform and extends it with an abstract communication
layer. This project focuses on ad hoc environments and does
not take special care of additional infrastructure devices,
which yields suboptimal results in Smart Environments.

Our system PCOM [2] is a component system which was,
similar to P2PComp, developed as a middleware for self-
organizing infrastructures in mobile ad hoc networks with-
out supporting infrastructure devices. However, PCOM pro-
vides automatic adaptation on system level, while P2PComp
depends on additional user interaction. PCOM supports a
wide range of end-user devices and can integrate additional
infrastructure devices, but it does not take special care of
their computation power and, hence, does not exploit avail-
able resources efficiently in many scenarios. Therefore, we
developed a framework which we present in this paper.

Q

E

k]

il ‘Matilda's

£ Smart
House

P2PCom

é Previous .

> PCOM

<

System Adaptation User

Figure 1: Classification of PCOM & related projects

In summary, one can see that some projects like Gaia or
Aura focus on Smart Environments which means they rely
on additional infrastructure, while systems like P2PComp
or the PCOM system as yet concentrate on ad hoc scenar-
ios. We created a survey of the discussed projects which is
shown in Figure 1 and clarifies that only our new PCOM
system provides system-level support for ad hoc as well as
for infrastructure scenarios.

1Open Services Gateway initiative

3. PREREQUISITES

In this section, we at first motivate our work. Then, we
provide required background information about the PCOM
system and the automatic configuration of distributed appli-
cations in PCOM. Finally, we briefly present an exemplary
application scenario for PCOM.

3.1 Motivation

In infrastructure-less Peer-to-Peer environments, distri-
buted application configuration is mandatory to guarantee
applicability in each application scenario. All devices are
involved in calculating a valid configuration in a distributed
way which balances configuration load on them.

However, most realistic pervasive application scenarios
are situated in heterogeneous environments where additional
computation power of resource-rich stationary devices with
external power supply is available. If such infrastructure
devices perform centralized application configuration, they
lessen configuration load for the mobile devices. Conse-
quently, the operating time of these mobile devices increases.
Furthermore, resource-rich devices can perform calculation
of application configurations much faster due to their high
computation power. This helps to decrease latencies and,
thus, increases quality of service for the application user. In
addition, the message complexity is linear to the number n
of devices if a configuration is locally calculated on a particu-
lar device, as all devices only have to communicate with this
single device. However, completely distributed application
configuration requires a message amount of c- (Z) = nn=b
as each of the n devices are connected with each other and
every device needs to transmit a fixed number of ¢ messages.
This yields a higher message complexity of O(n?). Thus, it
can be seen that centralized configuration on resource-rich
stationary devices implies many advantages.

In the following, we focus on the efficient support of these
Smart Environments that feature resource-rich infrastruc-
ture devices as well as resource-weak mobile devices. In
consequence, our approach has to efficiently support both
infrastructure-based and infrastructure-less environments.

The concepts which we recognized to enable this support
are presented in Section 4.

3.2 System architecture

PCOM is a component system for automatic adaptation
and configuration of distributed pervasive applications [2].
It originally was designed for use in mobile ad hoc networks
without additional infrastructure. Thus, PCOM is a system
that does not rely on any central instance. This has seri-
ous impacts on PCOM’s inital system architecture, which is
illustrated in Figure 2.

PCOM provides a runtime environment for components
with contractually specified interfaces for the design of dis-
tributed applications that are automatically configured and
adapted during runtime without user interaction. Coopera-
tive user behavior is assumed, i.e. all users are trustworthy.

The components are executed within a PCOM Container
that provides a specified interface to the PCOM middle-
ware and basic services for the components. A component
features factories which are representatives for locally in-
stalled components and support a negotiation phase that
recursively determines the non-functional parameters of a
component without starting it. This enables a resource-
conserving configuration of the components. In order to

[Application Manager]

‘ Greedy Distributed ‘ ‘Asynchronous Backtracking l
Assembler (GDA) Assembler (ABT)
Assembler
[Container]
PCOM
[Invocation Broker
[Device Registry HService RegistryH
{ Plugin Manager
BASE

Figure 2: Previous system architecture

support contracts which represent resource dependencies be-
tween components, PCOM features allocators that encapsu-
late the access to exclusive resources (e.g., a single display)
and, thus, allow transparent access to these resources. Al-
locators are used both during configuration and execution
process of an application. Such as factories, they have to be
registered on the corresponding container which then can de-
termine a valid configuration for the distributed application,
and execute the application.

The automatic configuration of components is performed
by so-called assemblers which enable access to components
prior to their instantiation and, thus, decouple the configura-
tion processes from the lifecycle management of the compo-
nents. Currently, PCOM supplies a completely distributed
assembler based on the Asynchronous Backtracking algo-
rithm (ABT) by Yokoo et al. [15], and a distributed greedy
heuristic (Greedy Distributed Assembler, GDA) [7]. These
assemblers are optimized for use on resource-poor mobile
devices. Lifecycle management of applications is performed
by the Application Manager which allows to start, stop, and
configure the distributed application with the aid of the con-
tainers and the assemblers.

PCOM uses the BASE Microbroker [3] to support auto-
matic configuration and adaptation of communication pro-
tocols at runtime. This enables a more stable and flexi-
ble communication platform. BASE provides distribution-
independent access to the offered services and decouples the
application from the underlying communication protocols.
The main component of BASE is the Invocation Broker
which delegates method calls to the corresponding services
on the mobile devices. Furthermore, BASE manages the de-
vices in range through the Device Registry and the services
available on a device through the Service Registry. The au-
tomatic configuration of the supported protocols is possible
by the Plugin Manager, as the protocols are outsourced in
plugins which are loaded and configured at runtime. The
plugin concept of BASE allows the microbroker to support
a wide range of end-user devices that reaches from simple
microcontrollers and mobile phones up to full servers. The
only requirement is the presence of a Java Virtual Machine
that supports the CLDC? profile.

2Connected Limited Device Configuration, [14]

3.3 Automatic Application Configuration in
PCOM

A PCOM application consists of one or more components
that are independent from each other and atomic with re-
spect to distribution. The application is modeled as a tree of
interdependent components which are units of composition
with contractually specified interfaces and explicit context
dependencies. Components are recursively arranged within
the tree. So, they may use other components to provide their
service. PCOM components enclose directed contracts that
describe on the one hand the functionality offered by the
parent component, and on the other hand the requirements
that need to be fulfilled by the child component.

Automatic configuration denotes the task of automatically
determining a composition of components that can be in-
stantiated simultaneously as an application. Such a compo-
sition is subject to two classes of constraints: structural con-
straints that define what constitutes a valid composition re-
garding functionalities, and resource constraints due to lim-
ited resources. The complexity of automatic configuration
arises from the fact that both constraints must be fulfilled si-
multaneously. The components of an application form a tree
structure of dependencies. To obtain a valid configuration,
the components have to recursively resolve the contractu-
ally specified dependencies. As proved in [7], the problem
of finding a possible configuration can be regarded as a Dis-
tributed Constraint Satisfaction Problem (DCSP) [15]. The
result of a successful configuration process is a tree structure
that comprises the involved resources and components.

L PCOM Container, PCOM Container, PCOM Containery
Assembler, Assembler, Assembler; -
ClEd - € EICd - B |CIED - Ea
Legend:

. Active Assembler E Component i on container

Figure 3: Distributed configuration with PCOM

Figure 3 presents distributed configuration with PCOM
using GDA or ABT in a scenario with three containers. It
can be seen that the assemblers of the involved contain-
ers perform configuration cooperatively. They use BASE
for message exchanges. As mentioned above, completely
distributed configuration causes a message complexity of
O(n?). In the previous PCOM version, the user has to define
statically which assembler shall be used for configuration.

3.4 Exemplary PCOM application

A pervasive presenter [8] represents a typical PCOM ap-
plication scenario. The presenter leverages the resources
present in the environment for a presentation application.
The functionality of displaying presentation slides on re-
mote systems is provided by the cooperation of distributed
devices. The actual composition of available input and out-
put devices is calculated by the PCOM configuration algo-
rithms. Furthermore, this application composition can au-
tomatically be adapted by PCOM without user intervention.

4. CONCEPTS

In order to provide the possibility of adapting the distri-
bution of automatic application configuration and efficiently

support various environments, several changes are necessary
to systems that was originally designed for completely dis-
tributed application configuration. In particular, we recog-
nized four issues that have to be considered in the design of
a framework to achieve the above mentioned functionality:

1. Election of the device to perform centralized
application configuration: Before centralized configura-
tion can take place, a dedicated device has to be identified
which performs the actual configuration and acts as a coor-
dinator for the configuration process. Therefore, the proper-
ties of the available devices have to be investigated to define
this device. This has to be done in a distributed manner to
retain applicability in Peer-to-Peer environments. The elec-
tion of a specific node to become a coordinator for a group
of nodes is typically done by the introduction of clustering
schemes and is a common subject in the research area of
mobile ad hoc networks. Consequently, a lot of schemes for
organizing nodes to clusters exist [16]. Thus, we decided to
develop a Clustering Framework which uses a common clus-
tering algorithm of Basagni [1] to obtain the cluster head
that acts as a coordinator for the cluster members. As clus-
tering has to be performed before configuration, this process
causes additional latencies. In our case, a valid configura-
tion has to be calculated as fast as possible to ensure a high
quality of service for the application user. Thus, the used
clustering scheme should guarantee stable clusters and par-
ticularly avoid many reclustering processes. Therefore, the
clustering strategies are of particular interest. We present
the Clustering Framework we developed in Section 5.3.

2. Recovery of configuration-specific information:
After the cluster head was elected, this node needs to collect
the environmental information that is relevant for configu-
ration processes, i.e. the available devices and the resources
present on them. Furthermore, the validation of an appli-
cation configuration has to be performed after the configu-
ration was calculated. If this validation can be performed
completely local by the central coordinator, communication
amount and configuration latencies are reduced. As this
configuration logic is very complex and calls for all elements
of a programming language, we decided to use Mobile Code
to transmit those code parts of a program to the cluster
head which contain the corresponding logic. This enables
the emulation of Virtual Containers at the cluster head, as
Section 5.1 will show. Furthermore, the code to be loaded
represents only small amounts of data which do not make
a noteworthy contribution to the configuration latencies, as
the evaluation section will show. Further details concerning
the collection of data relevant for configuration is given in
Sections 5.5 and 5.6.

As device resources are typically limited, changes in the
availability of these resources have to be transmitted to
the cluster head which then updates the local proxy of the
remote device. To notify the cluster head of changed re-
source conditions, we implemented a distributed Fvent Ser-
vice which is presented in Section 5.2.

3. Automatic adaptation of the degree of decen-
tralization: The optimal distribution of the configuration
process among the available devices depends on the resources
that are available on these devices. Thus, a mechanism that
automatically determines which devices should be involved
in the process of calculating a valid configuration is required.
We present an abstraction that enables this adaptation in
Section 5.4. This mechanism at first identifies the current

resource condition in the environment in a distributed man-
ner. Subsequently, it decides if the configuration has to be
performed in a centralized or in a distributed fashion, and
which device(s) are involved in the process for obtaining a
valid configuration. Further extensions to this abstraction
are possible to support additional configuration strategies,
e.g., hybrid configuration on arbitrary subsets of all devices.

4. Access of configuration-specific information in
advance to decrease latencies: Another issue of rele-
vance is the point in time at which the remote configuration
logic is accessed and transmitted to the cluster head. There-
fore, it is necessary to have a look on the interaction model
of a pervasive application which is illustrated in Figure 4a.

User ‘ System
== 8
| | |
I | Tp | Tp
start appl start appl.f
TN{} ! TN{: |‘
| [_gconfigure | [Jcsnfigure
} Tc : Céxecute
| execute Tw I Ty
T \ i T, | A
M | Te
I |
\ T{l I
| [| |
el o
a) b)

Figure 4: a) Interaction diagram of previous PCOM,
b) Interaction diagram with use of pre-configuration

In this model, the total waiting period Tw for the user
is composed of the application time Ta and the network
latency Tn which arises twice. The application time can
further be divided into the configuration time T¢, and the
execution time Tr. Thus, Tw can be expressed by the fol-
lowing Equation 1.

Tw=2-Tn+Tc+TE (1)

Hence, Tw can be reduced if, for instance, another type
of network technology is used, or if the configuration or ex-
ecution of the application is speeded up. Previous work [7]
aimed in minimizing T¢ and Tk and represents a good basis
for further improvements. However, optimizations have only
been taken within the application time T4. But in practice,
the period Tp before the execution of the application could
be used to decrease configuration latency. In this period, the
proactive transmission of configuration-relevant data could
be performed without increasing Tw for the user. Thus, the
waiting period for the user can be reduced by reorganizing
some part of the configuration process into the period Tp,
as it is illustrated in Figure 4b. This leads to a reduced
configuration time of

Tc2=Tc —Tc

within T4. Both T4 and Ty are reduced to T and Ty .

Thus, we focused on an access method to obtain the con-
figuration logic in advance in order to reduce the configu-
ration latency. Furthermore, we designed an access method
that supports possible reclustering processes and helps to
decrease latencies in these cases. Section 5.5 presents the
realized access methods.

S. REALIZATION

Figure 5 gives an overview of PCOM’s and BASE’s new
system architecture. We present the changes to the archi-
tecture in the following sections.

[Application Manager

Assembler Clustering
DefSelector |Mlemca lLmMcA mm Framework
Selector

Accessor
‘ Virtual Container(s)

PCOM

\ Container

’ Invocation Broker

o)

\ Plugin Manager ‘
BASE

Figure 5: New system architecture. The new ele-
ments of the architecture are highlighted in black.

5.1 Virtual Containers

The main goal of the work underlying this paper was
the efficient use of the particular computation power on
resource-rich infrastructure devices that can serve as a clus-
ter head in Smart Environments. The cluster head performs
configuration and represents the coordinator for all adjacent
devices which, thus, constitute the cluster members. This
means that the resources used for configuration are hosted
on the cluster head, while the logic for validating a config-
uration is distributed among the devices involved in a con-
figuration process. This presumes that the cluster head ac-
quires knowledge of the currently available components and
resources on the other devices. Thus, as already mentioned
in our motivation, we decided to transmit the configuration
logic to the cluster head in order to perform centralized con-
figuration for the cluster members. As resources are limited
and PCOM enables access to these resources via allocators,
changes in the state of remote allocators and factories have
to be considered. Furthermore, both allocators and factories
need certain standard services from the PCOM containers
they are registered on. Thus, we introduce the Virtual Con-
tainer (VC) concept, illustrated in Figure 6. This concept is
based on the idea that the cluster head emulates a “virtual”
PCOM Container for every cluster member which simply
contains the functions relevant for configuration, and keeps
the device states of the remote devices up to date. This en-
ables a strong decoupling of the configuration processes from
the real PCOM Containers. Based on this concept, meth-
ods for eager and lazy loading of the configuration logic are
presented in Section 5.5.

To obtain the required containers as well as the facto-
ries and allocators that are registered at these containers,
we decided to use mobile code [4]. It has to be considered
that mobile code normally is subject to security risks, as
the transmission of threats such as viruses or worms is po-
tentially possible. However, regarding the system model we
presented in Section 3.2, we assume cooperative user be-
haviors, which enables the use of mobile code without the
necessity of using digital signatures and, thus, the manage-

PCOM Container; PCOM Container, PCOM Container;
Cq |Co| - |Ck (o7} [- [Cqi |Cy - [Cp
Virtual Container;,

Virtual Containery
VC, Ve, [Bve,,

Legend: —

.Ac1ive Unit D Passive Unit Component i VCJ- Virtual Component j

Figure 6: Virtual Container concept

ment of certificates. Mobile code enables the transmission
of code segments from one runtime environment to another.
The only requirement is the existence of a class loader [11]
which is the case if a device supports CLDC specification.
There exist multiple paradigms to obtain remote code. [4]
presents three paradigms besides the classical client-server
model where code is only executed on a server: Remote Eval-
uation, Code On Demand, and Mobile Agents. In our case,
Code On Demand is the preferrable choice, as it represents
the scenario that a process A on device S4 possesses the re-
quired resources for configuration and loads the executable
code of process B on device Sg to execute it locally. Fur-
thermore, this code may be effectively constrained to solely
executing uncritical actions if Code On Demand is used.

5.2 Extensions to BASE

As one can see in Figure 5, there are two architectural
extensions to BASE:

e Event Service: The basic idea of the VC concept
presented in Section 5.1 is the creation of one virtual
container for every remote PCOM Container. This
VC emulates the remote container. As availability
of resources on remote containers may change over
time, the VCs have to be updated. This happens via
BASE’s new Event Service which implements a dis-
tributed message service.

e Mobile Code Service: In order to update the state
of a remote container, the configuration logic has to be
transfered to the current cluster head. This is possible
using the Mobile Code Service of BASE. This service
is implemented in a way that it can transfer general
classes which also enables the distribution of BASE
plugins, for instance.

5.3 Clustering Framework

The Clustering Framework is a main component of the
new PCOM system architecture. The central component of
this framework is the Cluster Service which provides meth-
ods for requesting the current cluster head and the cluster
members. It delegates occurring events (e.g., neighborhood
changes) to the corresponding clustering strategies.

Regarding these clustering strategies, we have implement-
ed the Distributed Mobility Adaptive Clustering (DMAC)
algorithm that represents a completely distributed version
of the Generalized Clustering Algorithm of Basagni [1]. In
this algorithm, adjacent nodes initially exchange their node

weights. The node with highest weight becomes cluster
head. According to custom, weights are assigned values be-
tween 0 and 1. As we described previously in this paper,
many cluster changes should be avoided as they cause addi-
tional latencies due to the reclustering process. This means
the clustering strategies should be based on node properties
which do not or only marginally change over time. Thus, we
developed several clustering strategies which calculate the
node weight based on the devices’ hardware that is relevant
for computation and the power supply of the devices. This
typically leads to resource-rich cluster heads and decreases
the probability of inevitable reclusterings because the cluster
head ran out of power. As computation resources typically
do not change for the short term, and infrastructure de-
vices as likely cluster heads are connected to external power
sources, this results in high cluster stability particularly in
Smart Environments. The implemented clustering strategies
are the following;:

e The battery-awareness strategy (BAStrategy) deter-
mines based on the remaining power sources of a node
which weight wpa it is assigned. We decided to calcu-
late the weight based on two factors: The remaining
power of the device’s internal battery power, and if the
device is connected to an external power source. Thus,
the node weight calculates to

wpa = 0.5 ppat + 0.5 - AC_connected,

where pyq+ represents the remaining battery power rel-
ative to full charge, and AC_connected is a binary
variable with AC_connected = 1 in case the device is
connected to an external AC power source, otherwise
AC"_connected becomes zero. In case a node solely de-
pends on an external power source which is likely for
stationary devices, ppq: is assigned one as the external
power source is supposed to be continuously available.
Hence, a node that is connected to an external power
source gets the highest possible weight of 1.0, while
mobile devices without external power source are as-
signed weights of 0.5 or less, as they are more likely to
breakdown soon.

e The resource-awareness strategy (RAStrategy) as-
signs weights wra based on the available computa-
tional resources, i.e., the CPU. Therefore, nodes are
assigned specific power classes, based on the CPU fre-
quency and the number of CPU cores. We decided to
choose a simple strategy that assigns the maximum
weight of 1.0 to a powerful dual core CPU with a
clock frequency of 2.0 GHz or more, while embedded
devices with single core CPUs of less than 500 MHz
clock frequency are assigned a weight of 0.0. Accord-
ingly, devices with CPUs between these bounds get
graded weights.

e The implemented strategy that is based on device types
(DTStrategy) assigns weights wpr according to the
type of the device. Therefore, we defined the device
types “infrastructure” for devices like desktop PCs,
notebooks, or servers (wpr = 1.0), “mobile” for smart
phones and PDAs (wpr = 0.5), and “cellular” for sim-
ple cellular phones (wpr = 0.0). Of course, additional
device types and weightings are possible.

e Finally, the combined strategy (CombStrategy) is an
advanced strategy which uses combined weighted sums
of the weights from the previously described strategies.
This proceeding is similar to that presented in [5] and
leads to the following Equation 2 for the combined
weight weomp-

1
Weomy = ——— * (T1-WBA + T2 WrA + T3 - wpT) (2)

> T
i=1

In this equation, x;1 to z3 are balancing parameters
with 0 < x; < 1 which allow a different weighting
of the different strategies. If only some of the above
strategies should be considered, the corresponding pa-
rameters x; of the other strategies have to be set to
zero. Naturally, this strategy can be extended with
additional strategies which simply have to be added as
weighted additional summands to Equation 2.

The Cluster Context provides methods for the transmis-
sion of messages to adjacent nodes and manages the group
membership of adjacent nodes. Furthermore, the Cluster
Context stores strategy-dependent node properties and the
current internal state of the group formation. The possi-
ble states are cluster creation (while the cluster head is be-
ing elected), and cluster maintenance. In the maintenance
state, the cluster head updates the cluster state if a new
device appears or a previously available device disappears.
Reclustering is only necessary if the current cluster head is
no longer present, or in case of a newly available device that
is assigned the highest weight.

5.4 Selector abstraction

As mentioned in the motivation for this work, adapting
the distribution of automatic application configuration re-
quires a mechanism to allow the automatic selection of an
assembler suited for application configuration in a specific
environment. Therefore, we introduce the Selector abstrac-
tion that enables the automatic selection of arbitrary as-
semblers on any container. We introduced three different
strategies:

e DefaultSelector: This strategy uses a preassigned
assembler and starts it. Its behavior is equivalent to
the previous PCOM implementation and is particu-
larly suited for use in Peer-to-Peer Environments.

e HeadSelector: In this variant, a preassigned assem-
bler is always started on the current cluster head. This
selector is particularly useful in Smart Environments.

e InfSelector: Using this strategy, the selector at first
verifies if the chosen cluster head is a stationary infras-
tructure device. In this case, the MCA is executed on
the cluster head. Otherwise, GDA is used for appli-
cation configuration. Thus, this selector is suited for
both types of environments.

Of course, the implementation of additional strategies,
e.g., for hybrid application configuration, is possible. This
represents a flexible solution for supporting various homo-
geneous as well as heterogeneous pervasive computing sce-
narios.

5.5 Mobile Code Accessor Framework

In order to allow the loading of remote classes via mobile
code, we realized a framework to access the required classes.
The main part of this Mobile Code Accessor Framework are
various so-called Accessors to allow different access methods.

Those parts of the original Allocators and Factories which
are relevant for configuration processes were outsourced into
new serializable configuration classes. This enables their
transmission to the cluster head which then can locally cal-
culate a valid configuration. As resources typically are lim-
ited, changes in the state of remote resources have to be
transmitted to the cluster head. This happens by the previ-
ously described BASE FEvent Service that represents a dis-
tributed event listener. Every configurator has to report
changes in its state by events. To enable access to con-
text objects on remote containers for the cluster head, we
introduced the Virtual Container concept described in Sec-
tion 5.1, where every configuration class is administrated
within its own virtual container.

Following, we focus on the realized access methods. We
implemented four different accessors which represent several
strategies for obtaining the required configuration logic.

e Remote Accessor: This accessor simply delegates
requests by Remote Invocation to remote containers
and does not use mobile code. Thus, an assembler
that uses this access method behaves exactly like the
previous PCOM assemblers.

e Eager Mobile Code Accessor: This accessor loads
configuration classes from cluster members in advance,
as soon as they are in communication range. Thus, it
implements the pre-configuration process presented in
Section 4. In case a cluster head changes, the old head
unloads all classes to deallocate memory, as they are no
longer needed. This yields the advantage that the sys-
tem performs proactive class loading to reduce the la-
tency in a possibly following application configuration.
One drawback arises for highly dynamic scenarios, or if
the cluster head frequently changes which leads to in-
creased communication overhead. This drawback can
be reduced by choosing a suitable cluster strategy such
as the DTStrategy (compare Section 5.3) or the use of
the Handover Mobile Code Accessor (see below).

e Lazy Mobile Code Accessor: In this method, the
required classes are not loaded until the time they are
needed. This complements with eager class loading
and implicates that the cluster head’s resources are
conserved. Furthermore, the traffic load of the network
is reduced. A disadvantage of this method is the in-
creased configuration latency for the user, as the class
loading happens during the user interaction period.

e Handover Mobile Code Accessor: Frequent clus-
ter head changes can significantly burden the network
in case of eager class loading. To reduce this network
load, we have implemented an additional Handover
Mobile Code Accessor which performs eager class load-
ing. In case the cluster head changes, this accessor im-
mediately transmits the previous cluster head’s state
to the new cluster head. Consequently, the new cluster
head does not need to inquire the configuration classes
from the involved devices. This helps to decrease con-
figuration latency, as the evaluation section will show.

Table 1:

Survey of the devices used for evaluation

Device Type CPU RAM HD WLAN OSs Java VM
Notebook Pentium M 1.6 GHz | 1.0 GB | 120 GB | 802.11g | WinXP SP 2 | Sun J2SE with JVM v1.6
Smart phone PXA 270 (520 MHz) | 48 MB | 44 MB | 802.11b | WinCE 5.1 IBM J9 v2.2, Found. 10 Profile
PDA PXA 255 (400 MHz) | 128 MB | 17 MB | 802.11b | WinCE 4.2 IBM J9 v2.2, Found. 10 Profile

5.6 Mobile Code Assembler

The Mobile Code Assembler (MCA) represents a part of
the presented Virtual Container concept. It is an assembler
that uses mobile code to get the needed configuration logic.

A component is configured if it finds all required resources
or additional components. The participating configuration
classes contain a configure() method that is recursively
called for every element of the tree. Each class of the appli-
cation tree configures itself and then calls the configure()
method of its child components. Finally, the obtained con-
figuration is serialized into a particular object which then
can be transmitted to other assemblers.

6. EVALUATION

The evaluation section particularly deals with the question
if the virtual container concept really enables the reduction
of configuration latencies that are noticeable for the user,
and in which scenarios this is the case. After presenting the
evaluation setup, we show the results of a Smart Environ-
ment and an ad hoc scenario.

6.1 Experimental Setup

To obtain the following results, we used a laptop, four
smart phones, and a PDA with the specifications as denoted
in Table 1. The Java VMs on the smart phones and the PDA
support the class loading feature, which enables the use of
the Mobile Code Accessors on these devices.

The exemplary PCOM application represents a binary
tree of depth 3, i.e. the application consists of 2% — 1 = 15
components. Therefore, at least 15 resources have to be
present on the available n devices. Thus, we put an amount
of R(n) = [12] resources on every device to guarantee that
a valid configuration exists. According to the motivation
of the work, we evaluated the new Mobile Code Assembler
in comparison to the previously used Greedy Distributed As-
sembler both in an infrastructure and an ad hoc environment
to show the efficient support of both types of scenarios.

The ad hoc scenario consisted of the PDA and up to four
smart phones. One of smart phones was elected cluster head,
as they have a CPU with a higher clock frequency than
the PDA. In the infrastructure scenario, we used the laptop
instead of one of the smart phones to represent a resource-
rich device. Hence, the notebook became cluster head there.
In both scenarios, we used the 802.11 WLAN Ad Hoc mode
to connect the involved devices with each other. The test
application was started on the PDA, respectively, as this
represents the resource-weakest device.

In the Smart Environment, the laptop became cluster
head. We did not consider latencies due to reclustering pro-
cesses there as they are very unlikely due to the continu-
ous presence of the stationary devices and the implemented
clustering strategies that guarantee almost fixed weights for
stationary devices. Thus, reclustering latencies would falsify
the evaluation results in Smart Environments.

Table 2: Message sizes

Message / Class Type Size [byte]

RequestInfo Clustering (DMAC) | 335
Join Clustering (DMAC) | 285
AcquireHead Clustering (DMAC) | 292

ComponentConfig | Configuration Class | 8.767

Capability Config Configuration Class | 5.123
Subscribe EventService Mess. | 399
Unsubscribe EventService Mess. | 401
Event EventService Mess. | 335

6.2 Evaluation results

In the following, we present our evaluation results, begin-
ning with space and communication overheads. Then, we fo-
cus on the emerging latencies for cluster formation and class
loading. This is followed by configuration latency measure-
ments in an infrastructure-based Smart Environment and in
an infrastructure-less Peer-to-Peer Environment. To obtain
the following evaluation results, we took 20 measurements
at each scenario. The values shown in the figures represent
the mean values of these measurements, respectively.

6.2.1 Message and code overhead

A significant requirement to the framework was the gen-
tle use of the limited system resources on mobile devices.
The total space overhead of our framework on the devices is
131 kB. This overhead is acceptable, compared to the avail-
able space on the used mobile devices presented in Table 1.

Regarding communication overhead, the message sizes of
the distinct clustering and event service messages and the
configuration classes are specified in Table 2. Usually, the
cluster head loads the configuration classes of its (n—1) clus-
ter members and registers at the Event Service of the clus-
ter members for two events that notify about changed total
and free resources on this device, respectively. As we used
802.11b radio technology, the maximum effective data rate is
about 50 % of 11 Mbit/s. Since the required configuration
classes have a size of around 14 kB, the actual process of
transmitting this amount of data requires only few millisec-
onds and represents a small fraction compared to the hard-
ware and software latencies arising during the class loading
process, as it will be seen. This retains applicability of the
Mobile Code concept. Furthermore, regarding the message
and class sizes, the transmitting medium has enough capac-
ity for the required communication between cluster head and
cluster members. Correspondingly, the cluster head’s CPU
is the restrictive factor for application configuration.

6.2.2 Initialization

As the realized configuration process uses the presented
Virtual Container concept, the required classes have to be
loaded via mobile code which causes additional latencies.
This has to happen initially, and also after environmental

Class loading in Peer-to-Peer —¥—
Handover in Peer-to-Peer

Class loading in Smart Environment —S—

3000 Handover in Smart Environment

3500

2500

2000

Time [ms]

1500

1000

3
Number of involved devices

Figure 7: Class loading latencies

changes, e.g. the presence of new devices, have taken place.
These latencies are presented in Figure 7.

The figure states that class loading in the Smart Envi-
ronment compared to the ad hoc environment is performed
faster by 33 % in case of two devices, and up to 55 % if
five devices are involved. This figure also displays that the
use of a handover mechanism like the implemented Han-
dover Mobile Code Accessor reduces class loading latencies
up to 33 % in an ad hoc environment with five involved de-
vices, and around 31 % in the corresponding infrastructure
scenario. Thus, the use of a handover mechanism can sig-
nificantly reduce class loading times, particularly when the
number of involved devices rises.

6.2.3 Configuration in Smart Environment

Figure 8 shows the configuration latencies in Smart En-
vironments. We compared the new Mobile Code Assembler
(MCA) with the Greedy Distributed Assembler (GDA). Re-
garding MCA, we distinguished between two cases:

e [f the required configuration classes have already been
loaded in advance, only configuration of the applica-
tion is necessary. This represents the best case for
MCA configuration.

e In case of lazy class loading or if an environmental
change has just taken place when a configuration pro-
cess is initiated, MCA additionally needs to obtain the
corresponding configuration logic. Thus, the configu-
ration process comprehends class loading and the con-
figuration itself. This is the worst case for the MCA.

It can be seen that in every single measurement, the MCA
calculated a valid configuration much faster than the GDA.
Regarding the best case measurements for MCA, configu-
ration latency added up to only a small fraction of GDA
latency, as it is almost independent from the number of
involved devices. MCA outperforms GDA by up to 89 %
in case of five devices. This is founded in the fact that
MCA configuration can be performed completely local by
the cluster head, as the required configuration logic was ob-
tained before and, hence, the cluster head’s CPU can be
used efficiently as it does not have to wait for I/O opera-
tions. If the Eager Mobile Code Accessor is used, this sig-
nificant advantage is really achievable, as the cluster head
can immediately calculate and validate a suitable configura-
tion completely locally as the required classes were loaded

3000
Configuration with GDA —¥—
Configuration with MCA (best case)
2500 Configuration with MCA (worse case) ———

2000

1500

Time [ms]

1000

500

Number of involved devices

Figure 8: Latencies in Smart Environment

in advance. Furthermore, as the configuration logic only has
to be updated in case of environmental changes, MCA’s ad-
vantage is particularly large in scenarios with a low degree of
dynamics. Comparing GDA configuration with MCA config-
uration’s worst case measurements, the latency of the MCA
was still lower by 10 % up to 22 %. This means that even in
highly dynamic scenarios with fluctuating availability of de-
vices which necessitates class loading before configuration,
MCA outperforms GDA. Hence, MCA should be prefered
over GDA configuration whenever a resource-rich device is
available as this leads to considerable performance gains.

6.2.4 Configuration in Peer-to-Peer Environment

Besides the Smart Environment measurements, we eval-
uated our framework in an ad hoc scenario where we also
compared GDA configuration with both best case and worst
case MCA configuration. Here, the worst case latencies also
comprise the reclustering process, as it is more likely that
the cluster head changes in a Peer-to-Peer Environment due
to the higher degree of dynamics in this scenario. The re-
sults concerning configuration latencies are displayed in Fig-
ure 9. The figure states that best case MCA configuration
is between 52 % and 61 % faster than GDA configuration.
If the classes still need to be loaded before the configura-
tion, MCA performs worse than GDA by 10 % up to 23 %
regarding configuration latencies, and even by 19 % up to
33 % in the worst case, when an additional reclustering is
necessary. The reduced advantage of MCA in ad hoc envi-
ronments can be explained by the fact that the cluster head
was much resource-weaker than in the Smart Environment
measurements. Consequently, the calculation of a valid con-
figuration needed more time in this scenario.

Recapitulating, MCA configuration in Peer-to-Peer envi-
ronments only makes sense if class loadings are scarce as the
sum of class loading and configuration process takes more
time than GDA configuration. Reclustering even increases
latencies. In case of dynamic scenarios which involve many
class loading processes, configuration with GDA should be
prefered for obtaining minimum latencies. Thus, we suggest
using the InfSelector strategy (compare Section 5.4) which
causes configuration with MCA in infrastructure scenarios
and configuration with GDA in Peer-to-Peer environments.

4000

Configuration with GDA —¥—
Configuration with MCA (best case)
Configuration with MCA (worst case) —=—

3500

3000

2500

2000

Time [ms]

1500

1000

500

Number of involved devices

Figure 9: Latencies in Peer-to-Peer Environment

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach that enables
the efficient support of automatic application configuration
both in infrastructure-based and in ad hoc pervasive envi-
ronments. Main component of this approach is a Clustering
Framework that enables cluster formation and the election
of a cluster head according to typical criteria like resource-
awareness or energy-awareness of the devices. We developed
the new Virtual Container concept that supports the use
of Mobile Code to load configuration-specific classes to the
cluster head and, hence, enables efficient centralized applica-
tion configuration on resource-rich devices. Class loading in
advance and handovers between changing cluster heads for
further decrease of the configuration latency are provided
by Accessors. The actual configuration is performed by the
new Mobile Code Assembler which integrates the obtained
Virtual Containers and avoids any communication latencies
during configuration process. In the evaluation section, we
proved that our framework can reduce configuration laten-
cies significantly, particularly in Smart Environments and
when eager class loading is used. This enables the desired
efficient support of various environments.

Our next step is the design of an advanced Hybrid Assem-
bler which enables configuration on arbitrary subsets of the
available devices and, thus, in various environments. Main
goal of this assembler is the optimized use of the available
computation power spread on the present devices to mini-
mize configuration delays. The framework we presented in
this paper is an important step towards efficient hybrid ap-
plication configuration in pervasive computing scenarios and
will be used by this Hybrid Assembler.

8. ACKNOWLEDGEMENT

This work is funded by the German Research Foundation
within DFG Priority Programme 1140 - Middleware for Self-
organizing Infrastructures in Networked Mobile Systems.

9. REFERENCES

[1] S. Basagni. Distributed clustering for ad hoc networks.
In ISPAN °99: Proceedings of the 1999 International
Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN ’99), page 310, Washington, DC,
USA, 1999. IEEE Computer Society.

[2] C. Becker, M. Handte, G. Schiele, and K. Rothermel.
PCOM - a component system for pervasive

8]

[4]

[5]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

computing. In Proceedings of the 2"* IEEE
Conference on Pervasive Computing and
Communications (PerCom 2004), pages 6776, 2004.
C. Becker, G. Schiele, H. Gubbels, and K. Rothermel.
BASE - A Micro-Broker-Based Middleware for
Pervasive Computing. In Proceedings of the 1°¢ IEEE
International Conference on Pervasive Computing and
Communications (PerCom 2008), Washington, DC,
USA, 2003. IEEE Computer Society.

A. Carzaniga, G. Picco, and G. Vigna. Designing
distributed applications with mobile code paradigms.
In Proceedings of the 19" International Conference on
Software Engineering, pages 22-32, 1997.

M. Chatterjee, S. Das, and D. Turgut. WCA: A
weighted clustering algorithm for mobile ad hoc
networks. Journal of Cluster Computing, Special Issue
on Mobile Ad hoc Networks, 5, April 2002.

A. Ferscha, M. Hechinger, R. Mayrhofer, and

R. Oberhauser. A light-weight component model for
peer-to-peer applications. In Proceedings of the 24"
International Conference on Distributed Computing
Systems Workshops, pages 520-527, 2004.

M. Handte, C. Becker, and K. Rothermel. Peer-based
automatic configuration of pervasive applications. In
Proceedings of the International Conference on
Pervasive Services, pages 249-260, July 2005.

M. Handte, S. Urbanski, C. Becker, P. Reinhard,

M. Engel, and M. Smith. 3PC/MarNET Pervasive
Presenter. Demonstration at the 4'™ Int.’l Conference
on Pervasive Computing and Communications
(PerCom 2006), Pisa, Italy, July 2006.

B. Johanson, A. Fox, and T. Winograd. The
interactive workspaces project: Experiences with
ubiquitous computing rooms. IEEE Pervasive
Computing, 1(2):67-74, April-June 2002.

C. Lee, D. Nordstedt, and S. Helal. Enabling smart
spaces with OSGi. IEEE Pervasive Computing,
2(3):89-94, July—Sept. 2003.

S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Conference on Object-
oriented programming, systems, languages, and
applications (OOPSLA’98), pages 36-44, 1998.

M. Romaén, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. A middleware
infrastructure for active spaces. IEFE Pervasive
Computing, 1(4):74-83, Oct.—Dec. 2002.

J. P. Sousa and D. Garlan. Aura: an Architectural
Framework for User Mobility in Ubiquitous
Computing Environments. In Proceedings of the 3™
Working IEEE/IFIP Conference on Software
Architecture, pages 29-43, August 2002.

Sun Microsystems. Connected Limited Device
Configuration (CLDC) Specification, Vers. 1.1, 2003.
M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673-685,
Sept.—Oct. 1998.

J. Y. Yu and P. H. J. Chong. A survey on clustering in
schemes for mobile ad hoc networks. In
Communications Surveys and Tutorials, IEFEE,
volume 7, pages 32-48. IEEE, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

