Providing Probabilistic Latency Bounds for Dynamic
Publish/Subscribe Systems

M. Adnan Tarig, Boris Koldehofe, Gerald G. Koch, and Kurt Rothermel

IPVS — Distributed Systems, Universitdt Stuttgart
{firstname.lastname } @ipvs.uni-stuttgart.de

Abstract. In the context of large decentralized many-to-many communication
systems it is impractical to provide realistic and hard bounds for certain QoS
metrics including latency bounds. Nevertheless, many applications can yield bet-
ter performance if such bounds hold with a given probability. In this paper we
show how probabilistic latency bounds can be applied in the context of pub-
lish/subscribe. We present an algorithm for maintaining individual probabilis-
tic latency bounds in a highly dynamic environment for a large number of sub-
scribers. The algorithm consists of an adaptive dissemination algorithm as well as
a cluster partitioning scheme. Together they ensure i) adaptation to the individual
latency requirements of subscribers under dynamically changing system proper-
ties, and ii) scalability by determining appropriate clusters according to available
publishers in the system.

1 Introduction

Publish/subscribe is a well-known and popular communication paradigm for building
distributed applications such as stock exchange, traffic monitoring or person tracking. It
provides a decoupling of producers of information, called publishers, from consumers
of information, called subscribers. Without knowledge of the actual source of infor-
mation, subscribers specify their interests in the form of subscriptions and are notified
about the corresponding published events.

In the past, most research has focused on providing expressive and scalable pub-
lish/subscribe systems. However, innovative Internet applications such as distributed
online games have other requirements like time bounded processing and delivery of
events. Moreover, in business applications, complex event processing [13] may be used
to perform the transition from basic events, e.g. sensor readings, to complex events that
match the semantics of the application, e.g. the detection of a fire. If such transitions
need to be performed in a timely manner, delayed events may not only be useless, but
also lead to wrong computations by the application.

Reserving resources along the communication links can guarantee end-to-end QoS
between subscribers and publishers [5]. However, this is not always viable since reser-
vation protocols are typically not available on a global scale and reservation in the
context of heterogeneous network environments is even harder.

An alternative approach is to observe the behavior of the underlay and then provide
a QoS bound with a probabilistic reliability derived from the observations. This relia-
bility depends on the value chosen for the QoS bound and its probability distribution.
Klaus David and Kurt Geihs (Eds.): Kommunikation in Verteilten Systemen (KiVS), LNCS 1431-472X, pp. 155-166, 2009.

© Springer-Verlag 2009
The original publication is available at www.springerlink.com: http://www.springerlink.com/content/978-3-540-92666-5

Although the characteristics of the underlay may change dynamically over time and so
affect the probabilistic reliability, providing probabilistic bounds is still useful in three
ways. First, the end-to-end latency distribution can be fairly stable, e.g. in the Internet
it can be modeled with a certain probability distribution with small variation [8,17].
Second, probabilistic reliability allows the system to overstep a given QoS bound to a
determined extent while not violating the agreement with the user. Third, even a small
reduction of the demanded probabilistic reliability yields a better probabilistic bound
and, with this, a significant performance improvement. For instance, assuming that the
probability distribution of message latency is stable, one can derive that an event will be
propagated within 200mswith a probability of 95%, while a more useful latency bound
of 100ms can be achieved with a probability of 90%.

In this paper we address how end-to-end latency requirements of individual sub-
scribers in a content-based publish/subscribe context can be satisfied by accounting for
the latency distribution of communication links. We propose an algorithm that adapts
to the requirements of subscribers and maximizes the set of subscribers and publish-
ers it can support. First, we introduce an event dissemination algorithm in a restricted
content-based model with constraints on the set of publishers that adapts to dynamic
changes in the underlay (cf. Section 3). Then we show how to generalize the algorithm
to match the content-based publish/subscribe model by providing a clustering scheme
(cf. Section 4). We also present an experimental evaluation (cf . Section 5) of the algo-
rithm performance under dynamic behavior.

2 Probabilistic latency bounds in content-based publish/subscribe

We consider the content-based publish/subscribe model of communication in a dis-
tributed system consisting of an unbounded and dynamic set of peers. We assume that
peers can leave or join arbitrarily often and they can fail temporarily or permanently.
Furthermore, we assume that the underlying communication environment is heteroge-
neous with different link properties related to delay and bandwidth; however each peer
is connected to the network through a single interface. Each peer is assumed to have
a unique identity, which can be used to establish a logical point-to-point connection,
forming an overlay network. Logical links are created and maintained by a probabilis-
tic membership service such as [16], which helps peers to bootstrap and prevents the
partitioning of the network. On top of the membership service, peers are organized in a
single spanning tree, where the links of the spanning tree are embedded within the links
of the membership service overlay.

Peers contribute in the publish/subscribe system in one of two roles: publishers or
subscribers. Publishers serve as information sources and the publish/subscribe over-
lay needs to ensure that subscribers receive all the relevant messages. According to
the content-based publish/subscribe model, an event consists of a set of attributes and
associated values. We use € to denote the set of all attributes that exist in the sys-
tem. Each publisher p periodically propagates an advertisement Adv(p) C Q. Thereby
p announces potential future events with any desired attribute set taken from the set
Psxg’v(p) = PSaqv(p) — {0}, with PSagy(p) being the power set of Adv(p). For exam-
ple, a publisher pwith Adv(p) = {temperature, humidity} can publish events consisting

of {temperature}, { humidity} or {temperature, humidity}. Subscribers issue subscrip-
tions which are expressed as a conjunction over ranges of attribute values, e.g. (color =
red Atemperature € [20, 25]). Beyond typical content-based publish/subscribe systems,
subscribers can specify upper latency bounds with their subscriptions, together with a
minimum probability that these bounds are met.

Peers observe two QoS metrics: traffic (in terms of bandwidth) and latency. Each
peer maintains a traffic specification of its network interface, which specifies the num-
ber of event messages that can be propagated per time unit. Traffic specifications place
constraints on the creation of overlay links. Let Ts(n) and Tc(n) denote the traffic spec-
ification and the current traffic characteristics of peer n, respectively, and let r(n,s)
specify the message rate for any new connection to peer s. Then, peer n will accept the
new connection only if Tc(n) +r(n,s) < Ts(n) is satisfied. Latency is modeled proba-
bilistically in our system: each peer maintains information about the latency distribution
for each of its overlay links, assuming that all messages are of similar size. In practice,
information about the latency distribution and traffic characteristics can be collected by
relying on cross-layer sampling services [15].

In addition to latency characteristics of overlay links to neighbors, each subscriber
peer also maintains information about the latency distribution of end-to-end paths to
distant peers, which we call path latency characteristics (plc). Subscribers maintain
their plc recursively: after receiving the plc of a direct predecessor n in the spanning
tree, a subscriber s combines it with latency characteristics of the overlay link between
nand s, and notifies its successors on the tree about its updated plc.

A subscriber can use the path latency characteristics to determine the validity of its
latency specification (i.e. probabilistic upper latency bound) for an end-to-end path to a
publisher, like the one shown in Figure 1. If the latency characteristics fail to match the
individual latency specification, the subscriber has to take steps to increase the plc. Our
approach fulfills the individual latency specifications of subscribers by placing them at
an appropriate position with respect to relevant publishers in the overlay network.

Satisfaction of latency specifications in content-based publish/subscribe in a scal-
able manner is highly challenging. First, providing an optimal solution to satisfy the
QoS demands of all subscribers with the same interest in the presence of traffic con-
straints is NP hard and is known as “delay-constraint minimum cost routing” prob-
lem [14]. Second, in publish/subscribe systems, the selectivity of subscriptions (i.e. the
ratio of the total number of events that match the subscription) can vary widely. Less
selective subscribers should obviously be placed before more selective ones, but at the
same time peers with low traffic specifications should be behind subscribers with high
specifications. A trade-off is necessary if subscribers with high traffic specifications
are highly selective or subscribers with low specifications are less selective. Third, one
must also consider that multiple publishers’ trees may be embedded in the same overlay
network and hence a subscriber may need to consider placement with respect to many
publishers.

In this paper we approach these challenges by looking first at the constraints on
subscriber selectivity by extending Siena’s content-based routing [6]. We propose adap-
tation mechanisms that maximize the number of satisfied subscribers. In a first step, we
impose constraints on the advertisements of publishers in order to reduce the multiple-

/=2~
S SN

characteristics P
Probability distribution

of a link latency

N !
Sampling
d Service Neighbors on membership service
Probability distribution Dissemination tree of Gp,
of end-to-end latency 77 Dissemination tree of G,

Fig. 1. QoS Model Fig. 2. Spanning trees created on top of membership service
with embedded dissemination trees

publisher problem. Finally, we release these constraints and propose an approach to
group publishers in clusters according to their advertisements and this way tackle the
multiple-publisher problem.

3 Adaptation to probabilistic latency requirements

In a first approach to adapt publish/subscribes system to probabilistic latency specifi-
cations we introduce the constraint that publishers have either completely overlapping
or disjoint advertisements, i.e., the set of publishers can be partitioned into disjoint
groups of publishers Gp = {p1, p2,..., Pm} so that Vp;, p; € Gp : Adv(pi) C Adv(pj)V
Adv(pj) € Adv(p;). Hence, publications that match a subscription s are issued by a
single group of publishers further denoted as Gp(s). We write s < Gp(s) to denote that
s can be satisfied by Gp(s). We assume that each subscriber has only one subscription
and hence will not differentiate between the terms subscriber and subscription.

We now present an adaptive algorithm that maximizes the number of subscribers
whose latency specifications can be satisfied without violating their traffic constraints.
The algorithm, on top of the spanning tree, maintains a separate dissemination tree for
each group of publishers G, (cf. Figure 2). To construct the dissemination tree and to
match events with subscriptions, we extend Siena [6] approach to take into account
the path latency characteristics (plc) for a publisher. A dissemination tree is created
by a publisher flooding its advertisement along the spanning tree. Each advertisement
includes the plc with respect to the publisher. A peer that receives an advertisement sets
up the path for the dissemination tree, updates the plc and forwards the advertisement
along with the updated plc down the dissemination tree.

In the following we show how to adapt the dissemination trees by relying on two
strategies. The reactive adaption uses local adaptations, to find an appropriate position
for each subscriber in its relevant dissemination tree such that its individual latency
specification is met. The proactive adaptation periodically runs an optimization algo-
rithm and tries to enhance the dissemination trees, so that a large number of subscribers
can be satisfied.

Algorithm 1 Placement Strategies

Require: A subscriber swhose latency specification | (s) should be satisfied
Ensure: Peer nwhich can satisfy the latency specification of s.

1: noOfTries «— 0 // Number of tries to find a suitable position
2: childForinsertion [] < 0
3: for all ne N(s) do// N(s) = {n € Neighbors | (s,n) ¢ SpanningTree}
if (Ts(n) —Tc(n) >r(n,s)) A (I(s) = satisfied) then
create link (n,s) on spanning tree and remove existing link.
break
for all 7 € {zy, Zm-1, .. .2|2Zm = Grandparent(s) \Y; z_, = parent(z) Az € Gp} do
if 1(s) = satisfied then
if Ts(z) —Tc(z) > r(z,s) then
connect to z
else// Try to insert s between z and one of its children
for all ks € K do// K = {ki|k € child(z)}
if ~(k < Gp(s)) A—(subtree(k) < Gp(s)) then
childForinsertion < k; // insertion is always possible
elseif k < Gp(s) A —~(subtree(k) < Gp(s)) then
if subscription of k; is not violated then childForInsertion < k;
else// subtree(k) < Gp(s)
childForlinsertion < k (insert with probability)
if |childForInsertion| > 0 then // more than one child can be used for insertion
Select child with more selective subscription and low traffic specs (Ts(ki))
add links (z,s) and (s, k) and remove (z,k;)
If Tc(s) +r(s,k) > Ts(s) then swill leave one of its children to the existing parent
break
24: if 1(s) # satisfied then
25: noOfTries++
26: backoff for noOfTries *AT seconds
27: Start from random location

NNNNRPRPRPRRRR R R R
PNRQOONOUEWNEOORNDN R

3.1 Reactiveand proactive adaptations

A new subscriber sarriving in the system, or an existing subscriber (because of dynamic
behavior such as the crash or departure of a parent node, or changes in the plc), triggers
the reactive algorithm to find a new position within the dissemination tree of Gp(s). The
reactive algorithm uses the following placement strategies (cf. Algorithm 1):

Local transformation (lines 3-6): If changes to the underlying QoS violate the latency
specification, peers first try to connect to another parent among their neighbors of the
member service overlay.

Bottom-up strategy (lines 7-22): If the local transformation is unsuccessful, then the
subscriber needs to connect to a suitable parent higher in the dissemination tree, i.e.
closer to the publishers. The subscriber s follows the reverse path formed by the ad-
vertisements. Once a suitable parent z; is found, s will connect directly, if the traffic
specification of z allows. Otherwise, s tries to be inserted between z and one of its
child peers k;.

If the peers in the subtree of k; are subscribed for Gp(s) (lines 17-18), then s is
inserted probabilistically. The reason is that the number and latency specification of the
subscribers are not locally available, so the changes in the link behavior may trigger
a lot of simultaneous adaptations, which may clutter the network. The probability of
insertion decreases with the number of unsuccessful tries performed by s to find an

Algorithm 2 Proactive Algorithm
Require: Peer n performing proactive algorithm.

1: childToPromote [] < 0

2.V ={Gp1,Gp2 - --Gpm| Vi k € child(n) A kissubscriber = Gy(k) eV}

3: for all v €V do

for all kk € K do// K = {k € child(n)A k <v;}
W (ki) = Assign weight according to selectivity of subscription and traffic specs Tg(ki)
if vkiEKAj<i W(kl) >W(kj) then

: childToPromote[v] = ki

. for all k e childToPromote do

promoteToParent(k,z) // Performs bottom-up strategy (Algorithm 1) to connect to parent

eodoahs

appropriate position and with the level of node k; in the dissemination tree (details are
in Section 3.2).

Random Connect (lines 23-26): If the latency specification of s cannot be satisfied after
reaching one of the publishers, it will perform an exponential backoff and tries to find
its position by connecting to a random peer. However, s leaves the existing parent only
when a suitable peer is found that can satisfy its latency specifications.

The proactive algorithm runs periodically and pushes the subscribers with good
traffic specifications and less selective subscriptions near the publishers. The goal is
to improve the overall quality of the dissemination tree so that more subscribers with
their individual latency specifications can be satisfied. The algorithm is performed by
every non-leaf peer for the immediate child subscribers on each dissemination tree (cf.
Algorithm 2).

3.2 Algorithm properties

The algorithm design addresses two issues: compliance to individual latency specifica-
tions and scalability.

Clearly, latency specifications can only be fulfilled if there exists a suitable position
for the peer in the overlay. In cases where an individual subscription can be fulfilled
by a large number of neighbors there is a high chance to find an appropriate posi-
tion by performing the local adaptation strategy. If such neighbors are not at hand, the
bottom-up strategy is of benefit, since peers closer to the publishers can satisfy higher
requirements. Nevertheless, it is possible that a subscriber will not be able to satisfy its
latency specification. In this case the random selection ensures that it will eventually
find a suitable position.

Scalability is related to the number of satisfied subscribers, the overhead of message
forwarding and finally the cost of performing adaptations. Latency specifications of a
large number of subscribers can be satisfied because the proactive maintenance yields
fat trees, where subscribers with good traffic specifications are pushed close to the pub-
lishers. Furthermore, the notification forwarding overhead is reduced by the placing
subscribers near their relevant publishers, saving intermediate peers from forwarding
irrelevant notifications. The subscription forwarding overhead is reduced by placing
less selective subscriptions close to the relevant publishers.

Cluster C, Cluster C, Cluster C,
{{at{ar{aa}}y {{ash{aadt {{a}{aa}}

Fig.3. Cluster management for a system with four attributes Q = {a;,a,as,a4} and three publishers. PS;[‘,”V(pg) =
{{a2},{as},{az.as}}, so p, publishes notifications with attribute {a, } in C; and with attributes {{as},{az,a3}} in C,.

Another important aspect is the cost of performing adaptations. The application of
a bottom-up strategy and local transformation reduce the management overhead of the
peers higher in the dissemination tree. Furthermore, the algorithm reduces the number
of concurrent adaptations during failures: a subscriber s whose latency specification is
violated first tries to find a position satisfying also all the relevant subscribers in its
subtree. A probabilistic approach is used, which balances two factors—the position of
the subscriber in the dissemination tree and the number of unsuccessful attempts and
is given by e!evel(s)«noOfTries/(Normalizationparameter) The higher the subscriber is located
in the tree, the higher is the probability to move to a position that satisfies all peers in its
subtree and prevents the start of many simultaneous adaptation algorithms. However,
simulation results have shown that due to saturation near the publishers the subscriber
higher in the tree may not be successful, so the number of tries should be limited.

4 Cluster management

In this section, we extend the adaptive dissemination algorithm of Section 3 to match the
requirements of a generic publish/subscribe system without constraints on publishers.
This implies that the advertisements of different publishers overlap, and a subscription
can be satisfied by more than one publisher’s group (the multi-publisher problem). In
the following we present how clustering of publishers leads to an appropriate number
of groups with which publishers as well as subscribers need to be associated.

Let C be a cluster of publishers and let CSc denote the set of all attribute sets that
are published in the cluster. CS: determines the potential subscribers of the cluster. In
Figure 3, for example, cluster C1 has C&, = {{a1},{az},{a1,a>}}, and subscribers
with subscriptions consisting of either of these attribute sets will join C;.

The basic idea is to prevent the presence of these attribute sets in additional clus-
ters, so that subscribers will not have to be associated with multiple clusters and thus
preserve scalability for subscribers. Therefore, the cluster management algorithm has to
consider the intersections of PS;C?V of publishers rather than Adv(p). LetM :={C;,Cy,...}
be the set of all clusters currently in the system. The cluster management algorithm
preserves the invariant that the attribute sets of all clusters C € M are disjoint, i.e.
VGi,Cj e M i # j = C& NCE; = 0. When a publisher p arrives in the system, the
overlap between its PS;gv(p) and all C&; in M is calculated. The following cases are
distinguished:

No overlap with any CS:: The publisher creates a new cluster Cpey With C&, =
PS,,(p) and advertises the cluster.

Psxg’v(p) isincluded in an existing cluster: The publisher merges in the correspond-
ing cluster.

Existing clustersareincludedin PS;gv(p) : The publisher creates a new cluster Cpew
With CSc,, = PSao(P) and advertises the cluster; all clusters whose CSc is a subset of
PS,a,(p) merge in the new cluster.

Partial overlap: The publisher joins every cluster whose CS¢ overlaps with P ;g’v(p),
and for the remaining elements of PS, 2, it creates a new cluster CSc,,, = PSS (p) —
Ui C&;. Joining a cluster C means that p publishes events with an attribute set from
the intersection C& N Psxgv(p) exclusively in cluster C. The publisher with the most
general advertisement (i.e. that has the highest share in the CS¢ of the cluster) becomes
the cluster head.

With the resulting clustering, a subscription can always be satisfied by publishers of
just one single cluster, and we can directly apply the adaptive dissemination algorithm
of Section 3 to each cluster. However, if each publishers p would select the attributes in
Adv(p) uniformly at random from €2, a large set of publishers can create many disjoint
clusters, each cluster only serving a small fraction of the involved publishers’ PS;(?V(p).
This is beneficial for subscribers because clusters publish only a small variety of events
and subscribers receive only a small amount of false positives (i.e. events that do not
match their individual subscription). Publishers, however, might have to be associated
with a high number of small clusters.

In order to preserve scalability of the system, i.e. to avoid that publishers would need
to connect to a number of existing clusters that will grow exponentially with |Adv(p)|,
we use an inherent property of the cluster management algorithm: It merges a pair of
clusters C; and Cy, if C&, s included in Cc, or vice versa. If a publisher p realizes that
it has to connect to a large number of clusters, it generalizes its advertisement by adding
an appropriate attribute to Adv(p) so that another cluster can merge in the newly created
cluster of p. This way, the arrival of a new publisher does not result in a growth of |[M| in
the system. Of course, the effect of this solution has to be balanced with the subscribers’
interest that clusters have a small CX: in order to limit the number of false positives.
This can be achieved with a threshold for the number of clusters that p has to connect,
before the solution is applied, and by changing the number of attributes that p is allowed
to assume in order to generalize its Adv(p). For further scalability, cluster heads do not
advertise C&: which is often a large proper subset of Psggv(p). Instead, the cluster head
advertises its Adv(p) together with the sets that are in PS;(?V(p) but excluded from CSc.
The exclusion of a set amounts to the exclusion of its power set so that the exclusion
information in an advertisement is kept rather small, and the algorithm’s tendency to
merge clusters also prevents the exclusion of too many subsets.

5 Evaluation

This section evaluates the self-adaptation algorithm with respect to convergence and
stability in the presence of failures and churn, using metrics similar to [2]. The evalua-
tions were performed using PeerSim [12], a large-scale P2P simulator.

Convergence

100

60% -‘

O already fulfilled
50% B

90 f

40% Elocal
transformation

O bottom-up connect

X 30%
20%

10% ﬁ O bottom-up insert
0%

Number of Subscriber in

% of satisfied subscribers

w 3-4 3-7 3-12
o 3000 6000 9000 12000 15000 18000 21000
Time in seconds Node degree
Fig. 4. Convergence Fig. 5. Adaptations

No routing protocol was implemented at the underlay level. Instead, latencies be-
tween the routers were assigned based on the King [10] methodology, which estimates
the latency between any pair of Internet hosts by measuring the latency between nearby
authoritative DNS servers. The latencies between the routers are in the range [1, 500]ms
with reliability factor of 90% to 100%.

All the simulations are performed for 1,024 peers. The number of neighbors on
the underlying membership service is assigned randomly between 10 to 15. The ini-
tial delay for the Random Connect strategy is 3 seconds and the delay for proactive
algorithmis 5 seconds. The latency requirements from the subscribers are in the range
[120, 260]ms with low probabilities. For simplicity, the traffic characteristics of a peer
is simulated by the node degree.

5.1 Algorithm convergence

We analyze the algorithm’s behavior to converge in a limited number of adaptations
under static conditions. Convergence means that if the number of subscribers with in-
dividual latency requirements remains constant, the system will eventually converge to
a stable state where a considerably large percentage of the subscribers is satisfied and
no more adaptations are performed. We evaluated the algorithm with different traffic
specifications of peers, i.e with possible node degrees in [3,4], [3,7] and [3,12], with
all other parameters left unchanged. Starting with 10 publishers with disjoint advertise-
ments, a new peer chosen uniformly at random (among the 1024 peers), subscribed with
its individual latency requirements at each simulation step until all 1,024 peers in the
system were either subscribers or publishers. Figure 4 shows the convergence behavior
of the algorithm with respect to traffic specifications of peers. The lower percentage of
satisfied subscribers in the first 1,024 simulation steps is due to the fact that new sub-
scribers are constantly arriving in the system and are not immediately satisfied. Figure 4
also shows the effect of traffic specifications on the satisfaction of subscribers: as peers
with high traffic specifications are pushed up by the proactive algorithm, the dissem-
ination tree becomes fat and hence more subscribers can be satisfied. Figure 5 shows
the percentage of subscribers (out of the total number of satisfied subscribers) satisfied
by each adaptation strategy. Only 8 — 149% of the subscribers are satisfied without any
adaptation, which shows the effectiveness of the algorithm in increasing the number
of satisfied subscribers. Similarly, low traffic specifications result in more insertions
during the bottom-up strategy as visible in the case of a node degree [3,4].

Continuous Churn Standard deviation

% of satisfied subscribers
8 & 8
3
8
885

variance in % of satisfied subscribers

02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
Churn in % churnin %

Fig. 6. Continuous churn Fig. 7. Standard deviation for continuous churn

5.2 Algorithm stability

We have evaluated the algorithm’s reaction to the dynamic changes in the system state
and its convergence to a stable state.

Continuous churn: Simulations were performed with peers having a node degree in
[3,7]. In each simulation, 512 subscribers were pushed into the system and the system
was allowed to converge to a stable state. Afterwards, continuous churn was introduced
in the system. The percentage of churn was relative to the total of all peers in the sys-
tem, e.g. a churn of 1.8% means that at every simulation step, 9 peers subscribed to
and 9 peers unsubscribed from the system. Figure 6 shows the minimum, average and
maximum percentage of satisfied subscribers in the system with increasing churn. Fig-
ure 7 shows the corresponding standard deviation, which gives an indication about the
stability of the system. It is evident from the figures, that at higher churn rate the sys-
tem is more unstable, because a higher number of potential subscribers are looking for
a position. The reason being that the subscribers who canceled their subscriptions are
still in the system occupying their previous positions, which makes it difficult for the
new subscribers to find the position.

Massive churn: This scenario evaluates the behavior of the algorithm in the case of
sudden rapid churn. The simulation settings were the same as in above experiments.
Figure 8 shows that there is no relation between the percentage of churn and the course
of the corresponding curve. For example, a curve with higher rapid churn might con-
verge faster than others. The reason is that the algorithm relies on random interaction
between peers and hence may converge to a different state on different runs. However,
the system can tolerate and recover from massive occurrence of churn gracefully.

Further measurements on continuous and massive failures shows similar results.
These results are omitted due to space constraints.

6 Reated work

Over the last decade many content-based publish/subscribe systems [6,9,11,3] have
evolved. Most systems focus on increased scalability of the system by reducing the
cost of subscription forwarding and event matching. Clustering has also been identified
as a technique to achieve scalability [4,1,7]. Clustering of subscribers can be achieved
in two ways, either based on similarity of subscriptions or by partitioning the event

Massive Churn

% of satisfied subscribers

89
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000
Time in seconds

Fig. 8. Massive churn

space. Kyra [4] partitions the event space into clusters, brokers are assigned to each
cluster and subscriptions are moved to relevant brokers. However, their approach is not
dynamic, and when a broker joins or leaves, the whole partitioning needs to be recom-
puted. Additionally, no event partitioning criteria is specified. In [7], a direct mapping
of the containment graph of subscriptions is mapped to a tree structure. This results in
as many trees as there are subscriptions that are not contained in any other subscrip-
tion. Similarly, [1] builds a tree for every attribute of the event space, and a subscriber
can join any tree for which it has specified an attribute filter. Publishers publish to each
tree with a matching attribute, which results in a huge number of unnecessary messages
on each tree. Apart from the stated drawbacks, none of the approaches address issues
related to QoS fulfillment.

Although it is easy to add QoS semantics into subscriptions [5], only few systems
actually cope with satisfying QoS specifications in a decoupled environment like pub-
lish/subscribe, but rather deal with QoS as a metric for performance comparisons. To
the best of our knowledge only two systems address issues related to satisfying indi-
vidual latency requirements of subscribers. Indigos [5] addresses delay requirements
of individual subscribers, but relies on network reservation protocols, which limits its
scalability. In [17] bounded delays on event delivery by employing message schedul-
ing strategies at each broker are considered. They use a QoS model similar to ours.
However, a static broker topology is assumed.

7 Conclusion

In this paper we have shown, in the context of pub/sub, how to deal with probabilis-
tic latency bounds in large dynamic network environments. In particular, we apply
subscription-centered adaptation to ensure an appropriate arrangement of subscriptions
with various selectivity and to maintain high-capacity dissemination trees. Additionally,
scalability is ensured by a publication centric clustering of the overlay. The evaluation
shows that the algorithm performs well with respect to the fulfillment of individual la-
tency specifications and is robust in a very dynamic setting. The described algorithm is
currently practically applied to support a gaming application, in SpoVNet [15] project.

In the future, we will extend our partitioning schemes to reducing the management
overhead due to advertisements. Moreover, we plan to investigate the impact of further
QoS metrics and possible synergies with the current adaptation schemes.

8

Acknowledgment

This work is partially funded by Landesstiftung Baden-Wiirttemberg under the initiative
BW-FIT. Furthermore, we would like to thank Manuela Antonovic for her contributions
towards the initial ideas of this paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

E. Anceaume, A. K. Datta, M. Gradinariu, G. Simon, and A. Virgillito. Dps: Self-* dynamic
reliable content-based publish/subscribe system. Technical report, IRISA, France, 2004.
Roberto Baldoni, Roberto Beraldi, Leonardo Querzoni, and Antonino Virgillito. Efficient
publish/subscribe through a self-organizing broker overlay and its application to SIENA.
The Computer Journal, 50:444-459, 2007.

Jorge A. Briones, Boris Koldehofe, and Kurt Rothermel. SPINE: Publish/subscribe for Wire-
less Mesh Networks through self-managed intersecting paths. In International Conference
on Innovative Internet Community Systems. IEEE Computer Society, June 2008.

Fengyun Cao and Jaswinder Pal Singh. Efficient event routing in content-based publish-
subscribe service networks. In INFOCOM, 2004.

Nuno Carvalho, Filipe Araujo, and Luis Rodrigues. Scalable QoS-based event routing in
publish-subscribe systems. In Proceedings of the Fourth |EEE International Symposium on
Network Computing and Applications. IEEE Computer Society, 2005.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of
a wide-area event notification service. ACM Transactions on Computer Systems, 2001.
Raphaél Chand and Pascal Felber. Semantic peer-to-peer overlays for publish/subscribe
networks. In Euro-Par, pages 1194-1204, 2005.

A Corlett, D.I. Pullin, and S. Sargood. Statistics of one-way internet packet delays. Presen-
tation at 53rd IETF, March 2002.

Ludger Fiege, Mariano Cilia, Gero Mihl, and Alejandro Buchmann. Publish-subscribe
grows up: Support for management, visibility control, and heterogeneity. |EEE Internet
Computing, 10:48-55, 2006.

Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: estimating latency be-
tween arbitrary internet end hosts. 2002.

Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Meghdoot:
Content-based publish/subscribe over p2p networks. In Intl. Middleware Conference, 2004.
Mark Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. Peersim: A peer-
to-peer simulator. http://peersim.sourceforge.net/.

David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., 2001.
Ariel Orda and Er Sprintson. QoS Routing: the precomputation perspective. In Infocom,
2000.

The SpoVNet Consortium. Spontaneous Virtual Networks: On the road towards the Inter-
net’s Next Generation. it - Information Technology, 50(6), December 2008.

Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. Cyclon: Inexpensive member-
ship management for unstructured P2P overlays. J. Network Syst. Manage., 2005.

Jinling Wang, Jiannong Cao, Jing Li, and Jie Wu. Achieving bounded delay on message
delivery in publish/subscribe systems. In International Conference on Parallel Processing,
2006.

