
Remote Real-Time Trajectory Simplification

Ralph Lange Tobias Farrell Frank Dürr Kurt Rothermel
Institute of Parallel and Distributed Systems

Universität Stuttgart, Germany

Email: <firstname.lastname>@ipvs.uni-stuttgart.de

Abstract—Moving objects databases (MODs) have been pro-
posed for managing trajectory data, an important kind of
information for pervasive applications. To save storage capacity,
a MOD generally stores simplified trajectories only. A simplified
trajectory approximates the actual trajectory of the mobile object
according to a certain accuracy bound.

In order to minimize the costs of communicating position
information between mobile object and MOD, the trajectory
simplification should be performed by the mobile object. To
assure that the MOD always has a valid simplified trajectory
of the remote object, we propose the generic remote trajectory
simplification protocol (GRTS) allowing for computing and man-
aging a simplified trajectory in such a system in real-time.

We show how to combine GRTS with existing line simplifi-
cation algorithms for computing the simplified trajectory and
analyze trade-offs between the different algorithms. Our evalua-
tions show that GRTS outperforms the two existing approaches
by a factor of two and more in terms of reduction efficiency.
Moreover, on average, the reduction efficiency of GRTS is only
12% worse compared to optimal offline simplification.

I. INTRODUCTION

Driven by the rapid advances in wireless communication and

sensing technologies, context-awareness has become one of

the most important characteristics of pervasive computing.

Besides time and identity, the location of objects has been

identified as primary context, cf. [1] and [2]. Many applica-

tions rely on real-time location information of a potentially

large number of mobile objects. Application scenarios include

asset tracking, traffic monitoring, emergency operations, as

well as context-aware service provisioning.

Many of those applications not only require information on

an object’s current position but also on its locations in the past.

In other words, they are interested in the object’s trajectory,

allowing them to retrieve the object’s location at the current

or some previous time. Also trajectories are used to determine

the set of objects that were located in a certain area at a

certain time. Consequently, maintaining trajectory information

is a prerequisite for supporting the above mentioned primary

contexts time, location, and identity.

Moving objects databases (MODs) have been proposed for

managing trajectories of mobile objects, like people, vehi-

cles, or containers. Mobile objects carry devices, like mobile

phones, PDAs, or embedded systems, which are equipped

with wireless communication capabilities and a positioning

sensor, like a GPS receiver. Therefore, mobile objects can

locally determine their location and inform MODs about their

movements via wireless links.

Generally, a MOD represents an object’s trajectory by a

polyline in time and space where the vertices are the time-

stamped positions acquired by the object’s positioning sensor

[3]–[10]. However, storing every sensed position as vertex of

the trajectory causes high processing cost at the MOD and

generally consumes too much storage capacity. For example,

an ordinary GPS receiver may generate more than 30 million

position data records per year, and applications might require

millions of objects to be tracked. Therefore, data reduction

by simplifying the trajectory is a crucial issue for MODs.

This simplification aims at minimizing the number of the

trajectory’s vertices such that the simplified trajectory does

not deviate by more than a certain accuracy bound from the

actual one.

A straight-forward approach for trajectory simplification is

to transfer the sensed position data from the tracked objects

to the MOD and peform the simplification entirely on the

MOD. However, this solution has an obvious drawback as also

those data are transferred over the wireless communication

network that are dropped later by simplification, which may

cause a substantial waste of bandwidth. Therefore, a number of

solutions have been proposed that instead do the simplification

at the mobile object and only transfer the reduced data to the

MOD. We will refer to this approach as Remote Trajectory

Simplification (RTS) because simplification is performed re-

motely from the MOD’s perspective.

The RTS approaches proposed in [7], [9], and [10] are

based on dead reckoning, a technique originally designed for

efficiently tracking the current location of mobile objects. With

this technique, each tracked object initially transfers a function

predicting its future movement to the MOD. This prediction

function is updated at the MOD only if the object’s locally

sensed position deviates from the predicted one by more

than some accuracy bound. Consequently, only those sensing

operations that require an adjustment of the prediction cause

an update message to be sent. This property has been exploited

by the schemes in [7], [9], and [10] to perform trajectory

simplification. They use the information included in update

messages to build the simplified trajectory and add a new ver-

tex only when an update arrives at the MOD. Consequently, the

three schemes use dead reckoning for two different problems,

object tracking and trajectory simplification. While this leads

to simple solutions, the efficiency of simplification depends

on the quality of dead reckoning, which has been designed

for tracking rather than trajectory simplification. On the other

hand, there exist a variety of efficient line simplification

Published in Proceedings of the 7th Annual IEEE International Conference on Pervasive Computing and

Communications (PerCom '09), pp. 184-193. Galveston, TX, USA. March 2009.

© IEEE 2009.

http://dx.doi.org/10.1109/PERCOM.2009.4912767

algorithms that could be used for that purpose.
In this paper, we propose an RTS scheme, called Generic

Remote Trajectory Simplification (GRTS), which clearly sep-

arates tracking from simplification. GRTS also applies dead

reckoning for tracking to minimize the messages to be sent

over the wireless link. However, the scheme is generic in the

sense that it can be combined with any line simplification

algorithm suited for trajectories. For line simplification there

exist different solutions, which vary in reduction efficiency

and computational overhead. For example, an optimal line

simplification algorithm provides the best reduction efficiency

but causes the highest overhead, while solutions based on

heuristics lower the computational overhead at the cost of

reduced reduction rates. This flexibility allows applications

to trade computational complexity off against reduction ef-

ficiency. Note that the latter not only influences the storage

consumption of the trajectory data to be maintained at the

MOD but also the amount of data to be communicated over

the wireless link.
We investigate two variants of GRTS: With GRTSOpt the

optimal line simplification algorithm introduced in [11] is

applied on a trajectory segment whenever an update is sent,

while GRTSSec is based on an efficient simplification heuristic

[4], which is processed after each sensing operation. Moreover,

we optimize this heuristic to reduce the memory requirements

at mobile objects.
Our evaluations show that GRTSOpt and GRTSSec outper-

form all the existing RTS algorithms at least by a factor of

two in terms of reduction efficiency. They also show that the

number of vertices of the simplified trajectory obtained by

GRTSSec is only 12% greater than the number of vertices of

the optimal trajectory simplification computed by an optimal

offline algorithm.
To summarize, the contributions of this paper are as follows:

1) We propose a generic RTS scheme (GRTS) that can be

combined with any suitable line simplification mecha-

nism. To the best of our knowledge this the first RTS

scheme that provides this flexibility.

2) We combine GRTS with an optimal [11] and heuristic

[4] line simplification algorithm and show that both

combinations increase the reduction efficiency by at least

a factor of two compared to the existing RTS schemes,

without increasing the message overhead.

3) We propose an optimization of the line simplification

heuristic in [4] which reduces its space requirements by

three-fourths on average.

The remainder of the paper is structured as follows: In

Section II we describe our assumptions and the problem of

remote trajectory simplification in detail, before we discuss

related work in Section III. In Section IV we present GRTS

and prove its correctness. Then, we present the two variants

GRTSOpt and GRTSSec and propose an optimization of the

line simplification heuristic used in GRTSSec in Section V. In

Section VI we show the efficiency of GRTSOpt and GRTSSec

by comparing them to the existing RTS approaches as well

as to well-known offline algorithms for line simplification and

we discuss experiences with a prototypical implementation of

GRTSSec. Finally, the paper is concluded in Section VII with

a summary.

II. ASSUMPTIONS AND PROBLEM DESCRIPTION

We consider a collection of mobile objects with embedded

positioning sensors (e.g., GPS receivers) whose trajectories are

managed by a remote MOD. The overall number of trajectories

stored by the MOD is of no relevance here.

An object’s movement over time describes a continuous

spatiotemporal function �a : R �→ R
d from time to plane

(d = 2) or space (d = 3) called the object’s actual trajectory.

Let tC denote the current time, then �a(t) is defined up to tC
and �a(tC) is the object’s current actual position.

The positioning sensor periodically senses the object’s cur-

rent position with period TS, resulting in a sequence of sensed
positions (s1, s2, . . . , sR), where s1 denotes the first and sR

the most recent sensed position. Each si is a data record

consisting of the sensing time t and the sensed position �p.

The sensed positions define the sensed trajectory �s(t), a

continuous, piecewise linear function, as follows: Two con-

secutive positions si and si+1 define a spatiotemporal line
section si si+1 on the domain [si.t, si+1.t] as

si si+1 : t �→ (si+1.t− t) si.�p + (t− si.t) si+1.�p

si+1.t− si.t
.

Then, �s(t) is defined by the sequence (s1, s2, . . . , sR) on the

domain [s1.t, sR.t] as

�s : t �→ si si+1(t) where si.t ≤ t ≤ si+1.t .

Geometrically, �s(t) is a time-monotonous polyline in R
1+d

given by the sequence of vertices (s1, s2, . . . , sR).
Note that the domain [s1.t, sR.t] does not continuously

increase over time but periodically by TS with each sensing

operation. For current time tC, it holds tC − TS < sR.t ≤ tC.

�s(t) generally deviates from �a(t) due to inaccuracies of

the positioning sensor and the time-discrete sensing. In the

following, we assume that this deviation is bound by a certain

maximum sensing deviation δ, i.e. ∀ t′ ∈ [s1.t, sR.t] it holds

|�s(t′)−�a(t′)| ≤ δ. See [12] for a discussion how to determine

the possible actual movement between two sensed positions

by means of physical constraints like the maximum velocity

or acceleration. In general, δ may be a statistical value only,

which holds with high probability. Deviations beyond δ are

considered as sensing errors – not in scope of this paper.

The MOD describes the object’s trajectory by a continuous,

piecewise linear function �u : t �→ R
d called simplified

trajectory. Geometrically, �u(t) is a time-monotonous polyline

in R
1+d given by a sequence of vertices (u1, u2, . . . , um) like

�s(t). Each vertex uj is a data record with attributes t and �p,

just as a sensed position.

We refer to any clipping of �a(t), �s(t), or �u(t) given by

an arbitrary time interval or a subsequence of vertices as

trajectory segment.
The algorithmic problem of remote trajectory simplification

is to minimize the number of vertices m of the simplified

trajectory �u(t) under the following two constraints, where tC
denotes the current time:

1) Simplification constraint: For a certain accuracy bound
ε known by the mobile object and the MOD, it holds

∀ t ∈ [s1.t, tC] : |�u(t)− �a(t)| ≤ ε .

2) Real-time constraint: At tC, position �u(t) is available at

the MOD for each t ∈ [s1.t, tC].
The simplification constraint corresponds to the well-known

line simplification problem, i.e. given a polyline and a certain

accuracy bound, determining another polyline, that approxi-

mates the given one according to this bound with a minimal

number of vertices. As mentioned above, for line simplification

there exist various solutions, which vary in reduction efficiency

and computational overhead.

The real-time constraint requires both the current and past

position data to be available at the MOD in time. Therefore,

a tracking mechanism is needed that efficiently transfers the

current and past position data to the MOD. Of course, tracking

and simplification need to be synchronized to ensure that the

data is reduced on the mobile object so that it arrives in time

at the MOD. We will see later that different simplification

algorithms might need different types of synchronization.

The goal is to develop an RTS scheme that meets the

both constraints stated above. In addition, it should have the

following properties:

1) Flexibility: Due to a clear separation of tracking and

simplification concerns it should be possible to combine

the RTS scheme with a variety of line simplification

algorithms to be able to trade-off between complexity

and efficiency of simplification.

2) High reduction efficiency: The reduction efficiency im-

pacts both the storage capacity needed at the MOD as

well as the amount of data transferred over the wireless

network. Hence, it should be possible to achieve high

reduction rates for a reasonable computational overhead.

3) Low communication overhead: The amount of data ex-

changed between mobile objects and the MOD depends

on both simplification and tracking. This communication

should be minimized due to bandwidth limitations of

wireless networks and energy constraints of mobile

devices.

4) Low space requirements: Since memory on mobile de-

vices is often a scarce resource, the space demand of

the scheme is critical.

III. RELATED WORK

In this section, we briefly discuss existing work on line

simplification and position tracking as foundation of our work.

Then, we address existing approaches for remote trajectory

simplification, which support both tracking and simplification.

Line simplification refers to a multitude of algorithmic

problems on approximating a given polyline by a simplified

one with fewer vertices [11], [13]. Here, we always refer to the

min-# problem defined as minimizing the number of vertices

of the simplified polyline according to a given accuracy

bound. Further, to limit the computational complexity, we

only consider strong simplification, where the vertices of the

simplified polyline are a subset of the vertices of the original

polyline.

The Douglas-Peucker algorithm [14] probably is the best-

known heuristic for line simplification and has been also

proposed for trajectories [5], [8]. Although it is an offline

algorithm, our online approach GRTS achieves better reduction

rates.

In [11], Imai and Iri give the first optimal algorithm for

line simplification. They reduce the simplification problem to

computing a shortest path between two nodes in a directed

acyclic graph. We combine our generic approach for remote

trajectory simplification with this algorithm, cf. Section V-A.

Furthermore, we use it as reference in our evaluations.

Meratnia and de By propose the Opening-Window algo-

rithm for trajectory simplification [4]. Variants of this online

algorithm have been also proposed in [13] and [15] with

different names. We refer to this algorithm as section heuristic
and combine our approach GRTS with it, cf. Section V-B.

Threshold-guided Sampling is an online heuristic for tra-

jectory simplification [6]. However, its condition for adding a

new vertex to the simplified trajectory generally does not limit

the deviation from the actual trajectory.

In [15], a mechanism for preprocessing position data of

mobile objects is presented. The component aims at reducing

the position data to be stored by a database according to

a given accuracy bound. The authors propose five different

reduction algorithms, where only one – the above-mentioned

section heuristic – yields a connected simplified trajectory.

None of the above works considers the remote trajectory

simplification problem.

The most efficient tracking protocols are based on dead

reckoning [16]–[18]. Using dead reckoning, the object initially

transmits its current position and a prediction on its future

movement to the MOD. While the object’s actual position

and the predicted one do not deviate by more than a certain

accuracy bound, no update message is required. Otherwise, if

the object impends to reach the accuracy bound, it determines

a new prediction using the last sensed positions and transmits

it to the MOD. The most simple but nevertheless efficient

variant is linear dead reckoning (LDR) [16], [17]. It uses

a linear prediction given by a timestamped position and a

velocity vector. Dead reckoning does not perform trajectory

simplification since it describes the object’s movement by a

discontinuous function in time.

In [9], Tiešytė and Jensen present an approach for re-

mote trajectory simplification based on LDR. They propose

an algorithm for computing a connected trajectory on the

basis of the linear predictions which approximates the actual

trajectory according to the same accuracy bound used with

LDR. However, their findings only apply to pre-known routes

like bus lines, i.e movement in R
1.

Now, we address the two existing RTS approaches for

arbitrary movement in R
2 or R

3. In [7], Trajcevski et al.

prove that the simplified trajectory given by the origins of the

linear predictions of LDR with accuracy bound ε approximates

the actual trajectory by 2ε [7]. Correspondingly, LDR with
1
2ε (LDR 1

2
) allows for remote trajectory simplification with

accuracy bound ε.

In [10], we propose Connection-preserving Dead Reckoning

(CDR) which outperforms LDR 1
2
. CDR exploits the obser-

vation, that the simplified trajectory given by the prediction

origins of LDR with bound ε approximates the actual trajectory

according to ε most of time. Therefore, CDR is based on LDR

with accuracy bound ε using an additional update condition for

LDR which guarantees the desired accuracy bound.

In both schemes simplification is solely based on LDR.

GRTS proposed in this paper clearly separates tracking from

simplification and outperforms CDR at least by a factor of two

and LDR 1
2

by a factor of three regarding reduction efficiency.

IV. GENERIC REMOTE TRAJECTORY SIMPLIFICATION

In this section, we present our Generic Remote Trajectory

Simplification protocol (GRTS) and prove its correctness.

A. GRTS Protocol

As motivated above, it is a good idea to separate tracking

from simplification issues as far as possible to gain flexibility.

However, the simplification process must be synchronized with

tracking to make sure that the simplified data arrives in time

at the MOD. The GRTS protocol proposed in this section

follows a synchronization pattern, which we call per-update
simplification.

With this pattern, simplification is performed whenever the

tracking mechanism decides to send an update message. For

that purpose the mobile object stores a partial history of sensed

positions which serves as input for the simplification process.

Based on this input, the simplification algorithm generates

a sequence of vertices of the simplified trajectory, which

then is included in the update message. In most cases, the

generated sequence only includes one vertex or is even empty.

Therefore, GRTS has a better reduction efficiency than the

RTS approaches LDR 1
2

[7] and CDR [10], which always

generate one vertex per update. The advantage of per-update

simplification is that it can be combined with both online

and offline line simplification algorithms. In Section V-B we

will describe a per-sense simplification pattern that optimizes

GRTS for online algorithms.

Now we will describe GRTS in more detail. GRTS uses

linear dead reckoning (LDR) for position tracking since this

is the most efficient, general applicable position tracking pro-

tocol [16]–[18]. With LDR, the MOD has a linear prediction

function �l(t) for determining the object’s current position. �l(t)
is defined by a sensed position lO called prediction origin and

a vector �lV called velocity vector as

�l(t) : t �→ lO.�p + (t− lO.t)�lV .

For a given accuracy bound ε, the LDR protocol guarantees,

that �l(t) known by the MOD approximates the objects’ current

actual position by ε. Formally, at current time tC, it guarantees

|�l(tC)−�a(tC)| ≤ ε. For this purpose, LDR has to send a new

prediction to the MOD as soon as |�l(tC)−�a(tC)| impends to

reach ε, taking into account the inaccuracy of the positioning

sensor, the possible movement within the sensing period TS,

and the time for transmitting an update message (for details

see [17] and [12]).

The mobile object stores the current prediction and the

sensing history S, which includes all sensed positions since

the most recent vertex um of the simplified trajectory re-

ported to the MOD. More precisely, the sensing history

is the sequence of chronologically ordered sensed positions

S := (si : si.t ≥ um.t), with first(S) = um and last(S) = sR,

respectively. Once LDR causes a new prediction to be sent

to the MOD, the simplification algorithm takes the stored

sensing history as input and provides the sequence of vertices

U := (um+1, . . . um+k) to be appended to the simplified

trajectory managed by the MOD, where k = |U| mostly equals

0 or 1.

The MOD stores the simplified trajectory �u(t), which con-

sists of the following of three parts:

• The spatiotemporal polyline given by the vertices

(u1, . . . , um) composes the first part.

• The current prediction, given by the prediction origin lO
and the velocity vector �lV, composes the third part.

• The line section um lO in-between um and lO composes

the second part.

Figure 1 illustrates those three parts. While the second and

third part change with each update message, the first one is

created in an append-only fashion.

u1 = s1

u2
u3 u4 = um

lO �lV

part 1 part 2 part 3

Fig. 1. Three parts of �u(t), managed by the MOD.

Figure 2 shows the pseudo code of the generic GRTS algo-

rithm executed by the mobile object. For the sake of simplicity,

we assume that once the tracking has been started, the mobile

object will be tracked forever. Extensions to switch tracking

on and off are straightforward.

Initially, the mobile object transmits its most recent sensed

position sR = s1 as first vertex u1 to the MOD, together with

a prediction with origin lO = sR (line 4). Then, it executes an

infinite loop (lines 7 to 20).

Within each iteration it first senses its current position

(line 8) and appends it to the sensing history (line 9). Then, it

checks whether it has to send an update message to the MOD

according to LDR (line 10).

The update message not only has to contain a new prediction

for the third part of �u(t) but also the vertices to add to the first

part, which together also updates the second part. Therefore,

the object computes a simplified trajectory segment for the

movement between the last vertex um known to the MOD and

the new prediction origin lO = sR. As the sensed trajectory

1: sR ← sense position � Most recent sensed position.

2: U ← (sR) � New vertices to transmit to MOD.

3: (lO,�lV) ← (sR, 0) � Current prediction.

4: send update message (lO,�lV, U) to MOD

5: S ← (sR) � Sensing history.

6: U ← ()
7: while true do
8: sR ← sense position

9: S ← S ‖ (sR) � Append sR to sensing history.

10: if LDR causes update then
11: U

′ ← line simplification with bound μ on S

12: U ← U
′ \ (first(U′), last(U′))

13: (lO,�lV) ← compute new prediction (sR, . . .)
14: send update message (lO,�lV, U) to MOD

15: if |U| > 0 then
16: S ← (si ∈ S : si.t ≥ last(U).t)
17: U ← ()
18: end if
19: end if
20: end while

Fig. 2. GRTS with per-update simplification executed by the mobile object.

segment given by S deviates from the actual trajectory �a(t) not

more than the maximum sensing deviation δ, it executes the

line simplification algorithm with the simplification bound μ =
ε−δ and stores the resulting vertices of the simplified segment

in U
′ (line 11). Therefore, the simplified segment given by

U
′ approximates �a(t) on the respective domain [um.t, sR.t]

according to the accuracy bound ε.

For U
′, it holds first(U′) = first(S) = um, which is already

known to the MOD, and last(U′) = last(S) = sR, which is

going to be the new prediction origin. Therefore, these two

vertices are removed from U
′ resulting in U, which may be

empty (line 12).1 Next, a new prediction is determined and

transmitted to the MOD together with U. Finally, if U is

not empty, the sensed positions before the new last vertex

um stored by the MOD are removed from S (line 16) since

the respective segment now is approximated by the first part

of �u(t).
The algorithm executed by the MOD is rather simple. On

receiving a message (lO,�lV, U), it appends the k vertices given

in U to (u1, . . . , um) as (um+1, . . . , um+k), sets m to m+k,

and replaces the current prediction with the new one.

Now, let us see how the MOD can use the stored information

to find out about an object’s position at time t′:
1) t′ ≤ um.t : The MOD calculates �u(t′) by linear

interpolation between the vertices uj and uj+1 with

uj .t ≤ t′ ≤ uj+1.t as described in Section II.

2) um.t ≤ t′ ≤ lO.t : The MOD calculates �u(t′) by linear

interpolation between um and lO.

3) t′ ≥ lO.t : The MOD calculates �u(t′) by means of the

prediction function �l(t) given by lO and �lV.

1Actually, U
′ and U can be one and the same data structure. U

′ is introduced
for readability only. It always holds that U

′ = (um) ‖U ‖ (sR).

B. Correctness of GRTS

To show the correctness of GRTS, we prove that GRTS

satisfies the simplification and the real-time constraint, cf. Sec-

tion II. Both constraints are to be fulfilled within the time

interval [s1.t, tC], where tC denotes the current time.

Clearly, the simplified trajectory �u(t) always is defined on

[s1.t, tC] since the domain of �u(t) actually is [s1.t,∞].
However, to show that GRTS satisfies the simplification con-

straint and real-time constraint, we now prove, that for every

t′ ∈ [s1.t, tC] the MOD knows �u(t′) with |�u(t) − �a(t)| ≤ ε.

For that purpose, we consider the three parts of �u(t) illustrated

in Figure 1:

• Part 1: It is s1.t ≤ t′ ≤ um.t. Let si and si+1 be the

sensed positions that enclose t′, i.e. si.t ≤ t′ ≤ si+1.t.
According to line simplification (line 11), it holds that

|si si+1(t′) − �u(t′)| ≤ μ. Using the maximum sensing

deviation δ defined in Section II we conclude the trian-

gle inequality |�u(t′) − �a(t′)| ≤ |�u(t′) − si si+1(t′)| +
|si si+1(t′)− �a(t′)| ≤ μ + δ = ε.

• Part 2: It is um.t < t′ < lO.t. At the time of the

most recent execution of the line simplification algorithm

the current prediction origin lO was equal to last(S).
Therefore, um and lO were the last two vertices in U

′. If

|U| = 0, they even were the only two vertices in U
′.

In any case, the line section um lO is a simplification of

the segment given by the sensed positions within the time

interval [um.t, lO.t] according to the bound μ. Analogous

to part 1, we conclude |um lO(t′) − �a(t′)| ≤ ε using

triangle inequality.

• Part 3: It is lO.t ≤ t′ ≤ tC. As explained above, the

LDR protocol guarantees |�l(tC) − �a(tC)| ≤ ε for �l(t)
given by lO and �lV known to the MOD. As the MOD

has not received a new prediction up to current time tC,

we conclude that ∀ t′ ∈ [lO.t, tC] : |�l(t′)− �a(t′)| ≤ ε. �

V. COMBINING GRTS WITH LINE SIMPLIFICATION

ALGORITHMS

In this section, we present two combinations of GRTS with

different line simplification algorithms. First, we describe how

to combine GRTS with the optimal offline line simplification

algorithm by Imai and Iri [11]. Then, we present combining

GRTS with the section heuristic [4]. Finally, we propose a

novel optimization of the section heuristic.

A. GRTS with Optimal Line Simplification

Here, we describe GRTSOpt which combines GRTS with the

optimal simplification algorithm introduced in [11]. Although

this algorithm has originally been designed for offline usage,

we apply it online following the per-update simplification

pattern. That is, whenever LDR decides to send a new up-

date, the algorithm is initiated with input S. It computes the

(possibly empty) set of new vertices U, which then is included

in the update message. Consequently, LDR divides the sensed

trajectory �s(t) into a set of segments, which are simplified

independently from each other.

um

um+1 (A) um+1 (B)

sR

μ

Fig. 3. Two possible simplified trajectories (A) and (B) with minimal number
of vertices U

′ = (um, um+1, sR) for the sensed positions illustrated by small
crosses. Here, (B) is the better choice.

In detail, the algorithm first considers the sensed positions in

history S as vertices of an unweighted, directed graph and adds

an edge for each pair of sensed positions (si, si+x), where

the line section si si+x approximates the sensed positions

(si, . . . , si+x) by the simplification bound μ. This particularly

applies to every pair (si, si+1). Second, it computes a shortest

path between the first vertex first(S) = um and the last vertex

last(S) = sR. The vertices U
′ of the shortest path compose a

simplified trajectory which approximates S by μ and thus �a(t)
within the time interval [um.t, sR.t] by the accuracy bound ε.

Due to the segment-wise simplification, GRTSOpt generally

does not achieve the optimal, best possible reduction rate

as it would be achieved with the optimal line simplification

algorithm being applied offline to the overall sequence of

sensed positions. The fundamental reason for that is, that there

may exist several possible simplifications with a minimum

number of vertices U
′ if GRTSOpt simplifies a segment given

by S. Figure 3 gives an example of two possible sequences

of vertices U
′ = (um, um+1, sR) implying two possible

sequences of vertices U = (um+1) to be sent to the MOD.

Generally, choosing U with maximum last(U).t – here (B) – is

a good heuristic as it minimizes the size of S in the subsequent

execution of the line simplification algorithm. Nevertheless,

there may be also cases, where choosing another U would

yield a better overall reduction efficiency.

It is important to notice that the segmentation itself is

determined by LDR. Consequently, the reduction efficiency

is still influenced by LDR, however to a much lower degree

than with the existing approaches LDR 1
2

[7] and CDR [10].

B. GRTS with Section Heuristic

The section heuristic is a simple online line simplification

algorithm which has been proposed in [4]2, [13], and [15].

For simplifying a sequence of sensed positions (s1, s2, . . .)
by bound μ, the section heuristic works as follows: First,

it sets s1 as vertex u1 of the simplified trajectory. Then,

it iteratively probes the line sections s1 s2, s1 s3, . . . until it

finds the first section s1 sx that would violate μ, i.e. where

∃ si ∈ (s1, . . . , sx) : |si.�p− s1 sx(si.t)| > μ. In this case, the

section heuristic adds the previous line section s1 sx−1 to the

simplified trajectory by storing u2 := sx−1. Next, it repeats

the above procedure starting at sx−1, and so on.

Since this online algorithm processes the sensed positions

iteratively, it allows for per-sense simplification. Figure 4

2The authors of [4] refer to the section heuristic as Opening-Window
algorithm (OPW) and distinguish two variants with different distance metrics.
The one with the better reduction efficiency which corresponds to the section
heuristic as explained here is called BOPW-TR.

shows the corresponding pseudocode of the resulting combina-

tion GRTSSec. For each sensed position sR, GRTSSec checks

whether the line section first(S) sR approximates the sensed

positions in-between by simplification bound μ or not (line 9).

If not, then it appends the last sensed position – the one before

sR – to U (line 10) and reduces the sensing history accordingly

(line 11). Thus, in contrast to the general GRTS algorithm, the

sensing history only comprises the sensed positions between

the last vertex um+k known by the mobile object and sR.

When LDR causes a new update message to be sent, GRTSSec

simply includes the (possibly empty) set of vertices U into the

message and then resets U to the empty sequence.

The advantage of per-sense simplification is that simplifica-

tion is performed as early as possible, resulting in a smaller

sensing history S on average. Moreover, the computing time

for line simplification is distributed over all iterations of

GRTS.

C. Optimization of the Section Heuristic

The average size of the sensing history |S| can be further

reduced by a novel optimization of the section heuristic. The

basic idea of this optimization is the following: Each sensed

position si ∈ S poses a constraint on the next line section

um um+1 that is going to approximate S. If the constraint given

by another sensed position si+x completely encloses the one

given by si, then si can be removed from S without affecting

the simplification. This reduces the space consumption of the

section heuristic by three-fourths on average, cf. Section VI.

The constraint defined by a si ∈ S requires the distance

|si.�p − um um+1(si.t)| to not exceed μ. The GRTSSec algo-

rithm checks this constraint for every potential line section

um sR = first(S) sR (line 9). Geometrically, for each si, the

line section has to pass the circle with center si.�p and radius

μ at time si.t as illustrated in Figure 5. As the line section’s

1: sR ← sense position � Most recent sensed position.

2: U ← (sR) � New vertices to transmit to MOD.

3: (lO,�lV) ← (sR, 0) � Current prediction.

4: send update message (lO,�lV, U) to MOD

5: S ← (sR) � Sensing history.

6: U ← ()
7: while true do
8: sR ← sense position

9: if ∃ si ∈ S : |si.�p− first(S) sR(si.t)| > ε then
10: U ← U ‖ (last(S)) � Append last sensed position.

11: S ← (last(S))
12: end if
13: S ← S ‖ (sR) � Append sR to sensing history.

14: if LDR causes update then
15: (lO,�lV) ← compute new prediction (sR, . . .)
16: send update message (lO,�lV, U) to MOD

17: U ← ()
18: end if
19: end while

Fig. 4. GRTSSec algorithm with per-sense simplification.

μ

x

y

t

um

si

si+x

um.t

si.t

si+x.t

Fig. 5. The line section starting at um has to pass the circles at si and
si+x. Here, the constraint by si+x encloses the one by si.

first vertex is known, the circles of two sensed positions si

and si+x can be normalized regarding time and compared with

each other: The circle of si+x poses the same constraint like

the circle with center first(S) si+x(si.t) and radius

μ
si.t− first(S).t

si+x.t− first(S).t

at time si.t. Now, if this circle is contained by the circle of

si as pictured in Figure 5, then si can be removed from S

accordingly. Thus, for each sensed position sR, GRTSSec can

remove every si from S whose circle contains the normalized

circle of sR at si.t – except si = first(S). In Figure 4 this

removal should be included between line 12 and 13.

VI. EVALUATION

We evaluated GRTS in two ways: For significant results on

its performance, we simulated and analyzed GRTSSec and

GRTSOpt with hundreds of real trajectories and compared it

to the existing RTS approaches as well as to offline simplifi-

cation. For practical experiences, we conducted experiments

with a prototypical implementation of GRTSSec and an in-

memory MOD allowing for tracking trajectories of multiple

mobile objects in Google-Earth in real-time.

In the following, we first discuss the simulation-based

analysis followed by the experiences with the prototype.

A. Simulation-based Analysis

For analyzing the performance of GRTS, we implemented a

simulation software for GRTSSec and GRTSOpt, the existing

RTS approaches LDR 1
2

[7] and CDR [10], as well as the

optimal line simplification algorithm (RefOpt) by Imai and Iri

[11] and the Douglas-Peucker algorithm (RefDP) [14] in the

C programming language. We selected RefOpt as a reference

for comparing our results to the best possible reduction rate,

while RefDP is a commonly used offline heuristic.

For simulating these algorithms with realistic data, we

downloaded hundreds of GPS trajectories (GPS traces) each

containing more than 1000 recorded positions from the Open-

StreetMap website [19]. In several processing steps, we filtered

those trajectories, that provide distinct position fixes for each

second – i.e. that have not undergone any previous data

reduction – and that could be clearly classified according to

their means of transportation into foot, bicycle, and motor

vehicle. For classifying a trajectory, we not only relied upon its

velocity characteristics but also on representative tags specified

on the OpenStreetMap website.

Then, we simulated the execution of LDR 1
2
, CDR, GRTSSec,

and GRTSOpt by sequentially feeding the algorithms with the

recorded positions given in the GPS trajectories. For each

algorithm, we measured the number of vertices of the resulting

simplified trajectories, the number of update messages, and the

amount of transmitted data, depending on ε varying from 50 to

500 m. Further, we measured the space requirements and the

computational effort for each algorithm. In accordance with

the GPS trajectories, we used a sensing period of TS = 1 s and

a maximum sensing deviation of δ = 20 m in our simulations.

The latter value takes into account a GPS inaccuracy of up to

10 m and a maximum movement deviation of 10 m from the

line section between two sensing operations, given by 1
2TSvmax

with vmax = 20 m/s as explained in [12].

Also, we applied the offline algorithms RefOpt and RefDP

with bound μ = ε− δ to the entire trajectories and measured

the number of vertices of the resulting simplified trajectories.

All experiments were performed on an AMD Opteron Linux

Server with 2.8 GHz and 4 GB RAM.

The different velocities of the means of transportation do

not yield any significant differences when comparing the

simplification approaches with each other, but only when

considering the absolute values for reduction efficiency and

communication. Therefore, we give the average results of the

3×100 largest trajectories of the three means of transportation

and refer to the individual means of transportation where

necessary. Each of the 300 trajectories comprises 1400 to

16500 GPS positions, i.e. spans about 20 min to 5 h.

Next, we give the results on data reduction, followed by the

results on communication and computational cost.

1) Reduction Efficiency: The reduction efficiency of tra-

jectory simplification is measured by the reduction rate
defined as the number of sensed positions divided by

the number of vertices of the simplified trajectory �u(t),
i.e. |(s1, . . . , sn)| / |(u1, . . . , um)|.

Figure 6 shows the reduction rates of the RTS algorithms

and the two reference algorithms RefOpt and RefDP. As ex-

pected, the reduction rates increase with increasing ε.

Both combinations of GRTS outperform the existing RTS

approaches by a factor of two and more. More precisely, on

average, the reduction rate of GRTSOpt is 2.9 times greater

 0

 100

 200

 300

 400

 500

 600

 700

 800

50 70 100 200 500

R
ed

u
ct

io
n
 r

at
e

Accuracy bound ε [m]

Ref
Opt

GRTS
Opt

GRTS
Sec

Ref
DP

CDR
LDR1/2

Fig. 6. Reduction rate depending on ε.

than the rate of CDR and 5.2 times greater than the rate of

LDR 1
2
. GRTSSec outperforms CDR by 2.8 and LDR 1

2
by 5.1

on average. The reason is, that line simplification with GRTS

is largely or completely independent of LDR as explained in

Section V, while CDR and LDR 1
2

add a new vertex to �u(t)
with each update message. For example, for ε = 100 m CDR

sends about 84 update messages within one hour and hence

generates a simplified trajectory comprising 84 vertices for that

span of time. GRTSOpt and GRTSSec likewise send 84 update

messages but only generate about 35 vertices, respectively.

Both combinations of GRTS achieve similar reduction rates.

Nevertheless, the reduction rate of GRTSOpt is always slightly

greater or equal to the rate of GRTSSec. More precisely,

GRTSOpt outperforms GRTSSec by 3% on average.

We can see that both GRTSOpt and GRTSSec always outper-

form RefDP. With GRTSSec the reduction rate is 15% greater

than with RefDP. With GRTSOpt it even is 19% greater than

with the Douglas-Peucker heuristic. This is a surprising result

given the fact, that RefDP is performed offline on the entire

GPS trajectories. Moreover, on average, the reduction rate of

GRTSSec is only 12% worse than the best possible reduction

rate by the optimal algorithm RefOpt. With GRTSOpt it is 9%

worse than the reduction rate of RefOpt due to the segmentation

by LDR.

All these values similarly hold for the individual means

of transportation. For example, with motor vehicles GRTSOpt

and GRTSSec outperform CDR by a factor of 3.0 and 2.9

respectively, and by foot they outperform CDR by a factor

of 3.1 and 3.0. However, the absolute reduction rates depend

on the mean of transportation due to the different ratio between

the corresponding velocity and ε. For instance, for ε = 100m
the reduction rate of GRTSOpt is 62.3 for motor vehicles, 128.5

for the bicycle, and 330.6 for walking by foot.

Figure 7 renders these differences more precisely by show-

ing the reduction rate depending on the velocity. For that

purpose we grouped the GPS trajectories by their average

velocities and then computed the average reduction rate for

each group and simplification algorithm for ε = 100m.

Clearly, the reduction rate of each algorithm decreases with

increasing velocity. For example, with GRTSOpt and GRTSSec it

is about 360 for an average velocity of 1.2 m/s, but only about

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 5 10 20

R
ed

u
ct

io
n
 r

at
e

Average velocity [m/s]

Ref
Opt

GRTS
Opt

GRTS
Sec

Ref
DP

CDR
LDR1/2

Fig. 7. Reduction rate depending on the average velocity.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

50 70 100 200 500

N
u
m

b
er

 o
f

u
p
d
at

e
m

es
sa

g
es

 [
1
/h

]

Accuracy bound ε [m]

LDR1/2

CDR

GRTS
Opt

GRTS
Sec

Fig. 8. Number of update messages per hour depending on ε.

 0

 5

 10

 15

 20

 25

 30

 35

 40

50 70 100 200 500

A
m

o
u
n
t

o
f

tr
an

sm
it

te
d
 d

at
a

[k
B

/h
]

Accuracy bound ε [m]

LDR1/2

GRTS
Sec

GRTS
Opt

CDR

Fig. 9. Amount of data transmitted to MOD per hour depending on ε.

55 for 15 m/s. The results further show, that the ratios between

the reduction rates of the different algorithms widely are

independent of the velocity. In particular, the average reduction

rates of GRTSOpt and GRTSSec of the different groups always

are only 8 to 11% and 10 to 14% worse than the reduction

rates of RefOpt, not correlated with the average velocity.

2) Communication Cost: Figure 8 shows the number of

update messages generated by GRTS, CDR, and LDR 1
2

per

hour depending on ε. Clearly, both GRTS variants cause the

same numbers since they use the same LDR mechanism. The

message overhead of CDR is marginally greater compared

to GRTS since CDR extends LDR by an additional update

condition, cf. Section III. LDR 1
2

causes about 60 to 260%

more messages than CDR and GRTS, depending on ε. With

all algorithms the number of messages per hour significantly

increases for ε < 70 m towards 50 m since the mobile object

frequently impends to reach the accuracy bound causing LDR

to send an update. This particularly applies to LDR 1
2

as it uses

the accuracy bound 1
2ε.

While with LDR 1
2

and CDR each update message only

contains a prediction whose origin represents a vertex of

�u(t), GRTS may additionally insert a sequence of vertices.

Obviously, this causes GRTS to transmit a higher amount

of data than CDR as illustrated in Figure 9. However, the

additional amount of transmitted data is small compared to

the higher reduction rates of the GRTS variants of more

than a factor of two. For example, assuming a header size

0.01

0.1

1

10

100

10
3

10
4

10
5

10
6

50 70 100 200 500

S
p
ac

e
co

n
su

m
p
ti

o
n
 [

k
B

]

Accuracy bound ε [m]

GRTS
Opt

Basic GRTS
Sec

GRTS
Sec

CDR
LDR1/2

Fig. 10. Space consumption on the mobile object depending on ε.

100

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

50 70 100 200 500

10
-4

10
-3

0.01

0.1

1

10

100

10
3

C
o
m

p
u
ti

n
g
 t

im
e

[#
ti

ck
s]

C
o
m

p
u
ti

n
g
 t

im
e

at
 2

.8
 G

H
z

[m
s]

Accuracy bound ε [m]

GRTS
Opt

Basic GRTS
Sec

GRTS
Sec

CDR
LDR1/2

Fig. 11. Maximal computing time per position fix depending on ε.

of 28 byte (UDP/IP), it is only about 11%. Clearly, LDR 1
2

transmits significantly higher amounts of data due to the larger

number of update messages. The amount of data transmitted

by GRTSOpt is 0.3% smaller compared to GRTSSec due to the

higher reduction efficiency.

3) Computational Cost: We now analyze the maximum

space consumption and computing time per sensed position

of LDR 1
2
, CDR, GRTSOpt, and GRTSSec on the mobile object.

The space consumption is measured in bytes by summing up

the space consumption of the different variables and arrays,

particularly of the sensing history S. The maximum computing

time for processing a new sensed position is measured in

processor ticks using the processor time stamp counter. To

filter out interrupts of the process under test, we simulated

the RTS algorithms without other user processes and repeated

each measurement ten times.

Figure 10 shows the maximum space consumption of the

RTS algorithms depending on ε. The space consumption of

LDR 1
2

is constant, since it does not store a sensing history.

For all other algorithms it increases with ε as the sensing

history generally contains more sensed positions. With CDR

and GRTSSec the space consumption is significant smaller than

100 kB which seems acceptable for most mobile devices. On

the other hand, GRTSOpt may consume more than 10 MB,

which may exceed the available memory of some devices.

Basic GRTSSec refers to GRTSSec without the optimization

of the section heuristic given in Section V-C. Clearly, this

optimization saves valuable memory capacity. On average,

it reduces the space consumption by 70 to 78%, slightly

increasing with ε. Moreover, it also reduces the maximum

computing time per sensed position as shown in Figure 11.

The computing times of LDR 1
2
, CDR, and GRTSSec are

all below 1 ms, while GRTSOpt takes up to about 100 ms.
Analogous to the space consumption, this may be unacceptable

for some mobile devices. Given the fact that the reduction rate

of GRTSOpt is only a few percent greater than the reduction

rate of GRTSSec, we argue that GRTSOpt should be preferred to

GRTSSec only if the mobile object has sufficient computational

resources and reduction efficiency is of highest priority.

B. Experiences with GRTS-based Tracking System

To gather practical experiences with GRTS, we implemented

a prototypical tracking system for multiple mobile objects

using GRTSSec. Figure 13 depicts the system architecture with

the major software components MobileApp, ServerApp, and

KMLClient.
MobileApp is executed by each mobile object being

tracked. It is implemented in the Java programming lan-

guage and consists of three sub-components: GPSUnit parses

the NMEA output of the object’s GPS receiver. GRTSAlg
implements GRTSSec with per-sense simplification as given

in Figure 4. UpdateSender implements ordered, reliable, en-

crypted message passing with ServerApp based on UDP over

UMTS/GPRS. Moreover, MobileApp offers a GUI plotting the

sensed trajectory and the simplified trajectory with the current

prediction as shown in Figure 12. The large circle illustrates ε
while the small circle depicts the maximum sensing deviation

δ depending on the current DOP value.

ServerApp is implemented in Java and realizes a simple

in-memory MOD storing the vertices (u1, . . . , um) and the

current prediction (lO,�lV) of each mobile object. Furthermore,

it implements a simple HTTP server which provides the

simplified trajectories of the mobile objects in the Keyhole
Markup Language (KML).

Clients can display the simplified trajectories in real-time

by using Google Earth querying ServerApp for the current

trajectories every second.

Fig. 12. Screenshot of MobileApp executed on the mobile objects.

GPS

GPS
Unit

GRTS
Alg

Update
Sender

MobileApp

Updates

Acks

Update
Receiver DB

HTTP
Server

ServerApp

HTTP Req.

KML

Google
Earth

KML file

KMLClient

Fig. 13. Architecture of prototypical GRTS-based tracking system.

We conducted several experiments driving a car equipped

with an OQO model 01+ subnotebook [20] and a Wintec

WBT-300 GPS receiver [21] providing four position fixes

per second. This update rate particularly allows for tracking

fast objects with small ε. During our experiments, we used

ε = 25 m. Besides four network outages lasting several

minutes, the prototypical tracking system successfully allowed

for tracking the car and its trajectory for more than nine hours

from several home computers.

During this experiment, we measured a reduction rate of 70.

Per hour, only 60 kB of data were transmitted to ServerApp

including all communication overhead such as retransmissions

due to lost UDP packets. These experimental results coincide

with the results of our simulations.

In rural areas, not covered by UMTS but only GPRS, we

observed latencies between 500 and 1500 ms for sending an

update message. Depending on ε such latencies may be too

long for remote trajectory simplification. However, they may

be significantly reduced by suitable network protocols.

VII. CONCLUSIONS

In this paper we studied the problem of remote trajectory

simplification for MODs, managing the trajectories of a col-

lection of mobile objects with embedded positioning sensors.

With such a system, the trajectory simplification has to be

performed on the mobile objects to also minimize wireless

communication costs besides the ultimate goal of reducing the

trajectory data according to a certain accuracy bound to save

storage capacity of the MOD.

Therefore, remote trajectory simplification involves posi-

tion tracking as well as line simplification. We proposed a

novel generic remote trajectory simplification protocol (GRTS)

which separates tracking from simplification issues as far as

possible. GRTS can be combined with any line simplification

algorithm suited for trajectories. We presented two combi-

nations with an optimal simplification algorithm [11] and

the section heuristic [4] which allow to trade computational

complexity off against reduction efficiency. Both variants

outperform all existing RTS approaches at least by a factor

of two in terms of reduction efficiency.

Furthermore, we presented an optimization of the section

heuristic which reduces its space requirements by three-fourths

on average.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by

the German Research Foundation (DFG) within the Collabo-

rative Research Center (SFB) 627.

REFERENCES

[1] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context
than location,” Computers & Graphics Journal, vol. 36, no. 6, pp. 893–
902, Dec. 1998.

[2] A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” in Proc. of the CHI 2000 Workshop on the
What, Who, Where, When and How of Context-Awareness, The Hague,
Netherlands, Apr. 2000.

[3] R. H. Güting and M. Schneider, Moving Objects Databases. San
Francisco, CA, USA: Morgan Kaufmann Publishers, 2005.

[4] N. Meratnia and R. A. de By, “Spatiotemporal compression techniques
for moving point objects,” in Proc. of the 9th Int’l Conf. on Extending
Database Technology, Heraklion, Crete, Mar. 2004, pp. 765–782.

[5] H. Cao, O. Wolfson, and G. Trajcevski, “Spatio-temporal data reduction
with deterministic error bounds,” VLDB Journal, vol. 15, no. 3, pp.
211–228, Sep. 2006.

[6] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams
with spatiotemporal criteria,” in Proc. of the 18th Int’l Conf. on Scientific
and Statistical Database Management, Vienna, Austria, Jul. 2006, pp.
275–284.

[7] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro,
“Online data reduction and the quality of history in moving objects
databases,” in Proc. of the 5th ACM Int’l Workshop on Data Engineering
for Wireless and Mobile Access, Chicago, IL, USA, Jun. 2006.

[8] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle,
“Compressing spatio-temporal trajectories,” in Proc. of the 18th Int’l
Symp. on Algorithms and Computation, Sendai, Japan, Dec. 2007, pp.
763–775.

[9] D. Tiešytė and C. S. Jensen, “Recovery of vehicle trajectories from
tracking data for analysis purposes,” in Proc. of the 6th European
Congress and Exhibition on Intelligent Transport Systems and Services,
Aalborg, Denmark, Jun. 2007.

[10] R. Lange, F. Dürr, and K. Rothermel, “Online trajectory data reduction
using connection-preserving dead reckoning,” in Proc. of the 5th Int’l
Conf. on Mobile and Ubiquitous Systems: Computing, Networking and
Services, Dublin, Ireland, Jul. 2008.

[11] M. Iri and H. Imai, Computational Morphology. North-Holland
Publishing Company, 1988, ch. Polygonal Approximations of a Curve
– Formulations and Algorithms, pp. 71–86.

[12] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-object
representations,” in Proc. of the 6th Int’l Symp. on Advances in Spatial
Databases, Hong Kong, China, May 1999, pp. 111–131.

[13] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang, “Near-linear
time approximation algorithms for curve simplification,” Algorithmica,
vol. 42, no. 3–4, pp. 203–219, Jul. 2005.

[14] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Canadian Cartographer, vol. 10, no. 2, pp. 112–122, Dec. 1973.

[15] N. Hönle, M. Großmann, D. Nicklas, and B. Mitschang, “Preprocessing
position data of mobile objects,” in Proc. of 9th Int’l Conf. on Mobile
Data Management, Beijing, China, Apr. 2008.

[16] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and
querying databases that track mobile units,” Distributed and Parallel
Databases, vol. 7, no. 3, pp. 257–287, Jul. 1999.

[17] A. Leonhardi and K. Rothermel, “A comparison of protocols for updat-
ing location information,” Cluster Computing: The Journal of Networks,
Software Tools and Applications, vol. 4, no. 4, pp. 355–367, Oct. 2001.

[18] A. Čivilis, C. S. Jensen, and S. Pakalnis, “Techniques for efficient road-
network-based tracking of moving objects,” IEEE Trans. on Knowledge
and Data Engineering, vol. 17, no. 5, pp. 698–712, May 2005.

[19] OpenStreetMap Project. [Online]. Available: www.openstreetmap.org
[20] OQO, Inc. [Online]. Available: www.oqo.com
[21] Wintecronics Ltd. [Online]. Available: www.wintec.com.tw

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

