Remote Real-Time Trajectory Simplification

Ralph Lange Tobias Farrell

Frank Diirr Kurt Rothermel

Institute of Parallel and Distributed Systems
Universitdt Stuttgart, Germany
Email: <firstname.lastname> @ipvs.uni-stuttgart.de

Abstract—Moving objects databases (MODs) have been pro-
posed for managing trajectory data, an important kind of
information for pervasive applications. To save storage capacity,
a MOD generally stores simplified trajectories only. A simplified
trajectory approximates the actual trajectory of the mobile object
according to a certain accuracy bound.

In order to minimize the costs of communicating position
information between mobile object and MOD, the trajectory
simplification should be performed by the mobile object. To
assure that the MOD always has a valid simplified trajectory
of the remote object, we propose the generic remote trajectory
simplification protocol (GRTS) allowing for computing and man-
aging a simplified trajectory in such a system in real-time.

We show how to combine GRTS with existing line simplifi-
cation algorithms for computing the simplified trajectory and
analyze trade-offs between the different algorithms. Our evalua-
tions show that GRTS outperforms the two existing approaches
by a factor of two and more in terms of reduction efficiency.
Moreover, on average, the reduction efficiency of GRTS is only
12% worse compared to optimal offline simplification.

I. INTRODUCTION

Driven by the rapid advances in wireless communication and
sensing technologies, context-awareness has become one of
the most important characteristics of pervasive computing.
Besides time and identity, the location of objects has been
identified as primary context, cf. [1] and [2]. Many applica-
tions rely on real-time location information of a potentially
large number of mobile objects. Application scenarios include
asset tracking, traffic monitoring, emergency operations, as
well as context-aware service provisioning.

Many of those applications not only require information on
an object’s current position but also on its locations in the past.
In other words, they are interested in the object’s trajectory,
allowing them to retrieve the object’s location at the current
or some previous time. Also trajectories are used to determine
the set of objects that were located in a certain area at a
certain time. Consequently, maintaining trajectory information
is a prerequisite for supporting the above mentioned primary
contexts time, location, and identity.

Moving objects databases (MODs) have been proposed for
managing trajectories of mobile objects, like people, vehi-
cles, or containers. Mobile objects carry devices, like mobile
phones, PDAs, or embedded systems, which are equipped
with wireless communication capabilities and a positioning
sensor, like a GPS receiver. Therefore, mobile objects can
locally determine their location and inform MODs about their
movements via wireless links.

Generally, a MOD represents an object’s trajectory by a
polyline in time and space where the vertices are the time-
stamped positions acquired by the object’s positioning sensor
[3]-[10]. However, storing every sensed position as vertex of
the trajectory causes high processing cost at the MOD and
generally consumes too much storage capacity. For example,
an ordinary GPS receiver may generate more than 30 million
position data records per year, and applications might require
millions of objects to be tracked. Therefore, data reduction
by simplifying the trajectory is a crucial issue for MODs.
This simplification aims at minimizing the number of the
trajectory’s vertices such that the simplified trajectory does
not deviate by more than a certain accuracy bound from the
actual one.

A straight-forward approach for trajectory simplification is
to transfer the sensed position data from the tracked objects
to the MOD and peform the simplification entirely on the
MOD. Howeyver, this solution has an obvious drawback as also
those data are transferred over the wireless communication
network that are dropped later by simplification, which may
cause a substantial waste of bandwidth. Therefore, a number of
solutions have been proposed that instead do the simplification
at the mobile object and only transfer the reduced data to the
MOD. We will refer to this approach as Remote Trajectory
Simplification (RTS) because simplification is performed re-
motely from the MOD’s perspective.

The RTS approaches proposed in [7], [9], and [10] are
based on dead reckoning, a technique originally designed for
efficiently tracking the current location of mobile objects. With
this technique, each tracked object initially transfers a function
predicting its future movement to the MOD. This prediction
function is updated at the MOD only if the object’s locally
sensed position deviates from the predicted one by more
than some accuracy bound. Consequently, only those sensing
operations that require an adjustment of the prediction cause
an update message to be sent. This property has been exploited
by the schemes in [7], [9], and [10] to perform trajectory
simplification. They use the information included in update
messages to build the simplified trajectory and add a new ver-
tex only when an update arrives at the MOD. Consequently, the
three schemes use dead reckoning for two different problems,
object tracking and trajectory simplification. While this leads
to simple solutions, the efficiency of simplification depends
on the quality of dead reckoning, which has been designed
for tracking rather than trajectory simplification. On the other
hand, there exist a variety of efficient line simplification

Communications 184-193.
© IEEE 2009.

http://dx.doi.org/10.1109/PERCOM.2009.4912767

(PerCom '09), pp. Galveston,

Published in Proceedings of the 7th Annual IEEE International Conference on Pervasive Computing and
TX, USA. March 2009.




algorithms that could be used for that purpose.

In this paper, we propose an RTS scheme, called Generic
Remote Trajectory Simplification (GRTS), which clearly sep-
arates tracking from simplification. GRTS also applies dead
reckoning for tracking to minimize the messages to be sent
over the wireless link. However, the scheme is generic in the
sense that it can be combined with any line simplification
algorithm suited for trajectories. For line simplification there
exist different solutions, which vary in reduction efficiency
and computational overhead. For example, an optimal line
simplification algorithm provides the best reduction efficiency
but causes the highest overhead, while solutions based on
heuristics lower the computational overhead at the cost of
reduced reduction rates. This flexibility allows applications
to trade computational complexity off against reduction ef-
ficiency. Note that the latter not only influences the storage
consumption of the trajectory data to be maintained at the
MOD but also the amount of data to be communicated over
the wireless link.

We investigate two variants of GRTS: With GRTSOpt the
optimal line simplification algorithm introduced in [11] is
applied on a trajectory segment whenever an update is sent,
while GRTSSec is based on an efficient simplification heuristic
[4], which is processed after each sensing operation. Moreover,
we optimize this heuristic to reduce the memory requirements
at mobile objects.

Our evaluations show that GRTSOpt and GRTSSec outper-
form all the existing RTS algorithms at least by a factor of
two in terms of reduction efficiency. They also show that the
number of vertices of the simplified trajectory obtained by
GRTSSec is only 12% greater than the number of vertices of
the optimal trajectory simplification computed by an optimal
offline algorithm.

To summarize, the contributions of this paper are as follows:

1) We propose a generic RTS scheme (GRTS) that can be
combined with any suitable line simplification mecha-
nism. To the best of our knowledge this the first RTS
scheme that provides this flexibility.

2) We combine GRTS with an optimal [11] and heuristic
[4] line simplification algorithm and show that both
combinations increase the reduction efficiency by at least
a factor of two compared to the existing RTS schemes,
without increasing the message overhead.

3) We propose an optimization of the line simplification
heuristic in [4] which reduces its space requirements by
three-fourths on average.

The remainder of the paper is structured as follows: In
Section II we describe our assumptions and the problem of
remote trajectory simplification in detail, before we discuss
related work in Section III. In Section IV we present GRTS
and prove its correctness. Then, we present the two variants
GRTSOrt and GRTSSec and propose an optimization of the
line simplification heuristic used in GRTSSec in Section V. In
Section VI we show the efficiency of GRTSOpt and GRTSSec
by comparing them to the existing RTS approaches as well
as to well-known offline algorithms for line simplification and

we discuss experiences with a prototypical implementation of
GRTSSec. Finally, the paper is concluded in Section VII with
a summary.

II. ASSUMPTIONS AND PROBLEM DESCRIPTION

We consider a collection of mobile objects with embedded
positioning sensors (e.g., GPS receivers) whose trajectories are
managed by a remote MOD. The overall number of trajectories
stored by the MOD is of no relevance here.

An object’s movement over time describes a continuous
spatiotemporal function @ : R — R? from time to plane
(d = 2) or space (d = 3) called the object’s actual trajectory.
Let tc denote the current time, then a@(t) is defined up to tc
and d(tc) is the object’s current actual position.

The positioning sensor periodically senses the object’s cur-
rent position with period T§g, resulting in a sequence of sensed
positions (s1, Sa,...,Sr), where s; denotes the first and sy
the most recent sensed position. Each s; is a data record
consisting of the sensing time ¢ and the sensed position p.

The sensed positions define the sensed trajectory 3(t), a
continuous, piecewise linear function, as follows: Two con-
secutive positions s; and s;;; define a spatiotemporal line
section $; S;11 on the domain [s;.t, s;41.t] as

(six1.t —1t)sip+ (t —8it) six1.0
8i+1.t — Si.t '

SiSit1:t—
Then, 5(t) is defined by the sequence (si, S2,...,sr) on the
domain [s1.t, sg.t] as

§:t 57 8551(t) where s;.t <t < s;41.t.

Geometrically, 5(t) is a time-monotonous polyline in R*+9
given by the sequence of vertices (s1, $2,. - ., SR).

Note that the domain [s;.t,sg.t] does not continuously
increase over time but periodically by 7g with each sensing
operation. For current time ¢, it holds tc — T < sgr.t < tc.

3(t) generally deviates from @(t) due to inaccuracies of
the positioning sensor and the time-discrete sensing. In the
following, we assume that this deviation is bound by a certain
maximum sensing deviation 9, i.e. Vt' € [s1.t, sg.t] it holds
|5(t") —a(t")| < 4. See [12] for a discussion how to determine
the possible actual movement between two sensed positions
by means of physical constraints like the maximum velocity
or acceleration. In general, § may be a statistical value only,
which holds with high probability. Deviations beyond § are
considered as sensing errors — not in scope of this paper.

The MOD describes the object’s trajectory by a continuous,
piecewise linear function @ : t + R< called simplified
trajectory. Geometrically, %(t) is a time-monotonous polyline
in R!*¥ given by a sequence of vertices (uy, us, .. ., un,) like
5(t). Each vertex u; is a data record with attributes ¢ and p,
just as a sensed position.

We refer to any clipping of a(t), 5(t), or @(t) given by
an arbitrary time interval or a subsequence of vertices as
trajectory segment.

The algorithmic problem of remote trajectory simplification
is to minimize the number of vertices m of the simplified



trajectory (t) under the following two constraints, where t¢
denotes the current time:

1) Simplification constraint: For a certain accuracy bound
€ known by the mobile object and the MOD, it holds

Vit e st to] : |a(t) —at)| <e.

2) Real-time constraint: At tc, position @(t) is available at
the MOD for each t € [s1.t, t¢].

The simplification constraint corresponds to the well-known
line simplification problem, i.e. given a polyline and a certain
accuracy bound, determining another polyline, that approxi-
mates the given one according to this bound with a minimal
number of vertices. As mentioned above, for line simplification
there exist various solutions, which vary in reduction efficiency
and computational overhead.

The real-time constraint requires both the current and past
position data to be available at the MOD in time. Therefore,
a tracking mechanism is needed that efficiently transfers the
current and past position data to the MOD. Of course, tracking
and simplification need to be synchronized to ensure that the
data is reduced on the mobile object so that it arrives in time
at the MOD. We will see later that different simplification
algorithms might need different types of synchronization.

The goal is to develop an RTS scheme that meets the
both constraints stated above. In addition, it should have the
following properties:

1) Flexibility: Due to a clear separation of tracking and
simplification concerns it should be possible to combine
the RTS scheme with a variety of line simplification
algorithms to be able to trade-off between complexity
and efficiency of simplification.

2) High reduction efficiency: The reduction efficiency im-
pacts both the storage capacity needed at the MOD as
well as the amount of data transferred over the wireless
network. Hence, it should be possible to achieve high
reduction rates for a reasonable computational overhead.

3) Low communication overhead: The amount of data ex-
changed between mobile objects and the MOD depends
on both simplification and tracking. This communication
should be minimized due to bandwidth limitations of
wireless networks and energy constraints of mobile
devices.

4) Low space requirements: Since memory on mobile de-
vices is often a scarce resource, the space demand of
the scheme is critical.

III. RELATED WORK

In this section, we briefly discuss existing work on line
simplification and position tracking as foundation of our work.
Then, we address existing approaches for remote trajectory
simplification, which support both tracking and simplification.

Line simplification refers to a multitude of algorithmic
problems on approximating a given polyline by a simplified
one with fewer vertices [11], [13]. Here, we always refer to the
min-# problem defined as minimizing the number of vertices

of the simplified polyline according to a given accuracy
bound. Further, to limit the computational complexity, we
only consider strong simplification, where the vertices of the
simplified polyline are a subset of the vertices of the original
polyline.

The Douglas-Peucker algorithm [14] probably is the best-
known heuristic for line simplification and has been also
proposed for trajectories [5], [8]. Although it is an offline
algorithm, our online approach GRTS achieves better reduction
rates.

In [11], Imai and Iri give the first optimal algorithm for
line simplification. They reduce the simplification problem to
computing a shortest path between two nodes in a directed
acyclic graph. We combine our generic approach for remote
trajectory simplification with this algorithm, cf. Section V-A.
Furthermore, we use it as reference in our evaluations.

Meratnia and de By propose the Opening-Window algo-
rithm for trajectory simplification [4]. Variants of this online
algorithm have been also proposed in [13] and [15] with
different names. We refer to this algorithm as section heuristic
and combine our approach GRTS with it, cf. Section V-B.

Threshold-guided Sampling is an online heuristic for tra-
jectory simplification [6]. However, its condition for adding a
new vertex to the simplified trajectory generally does not limit
the deviation from the actual trajectory.

In [15], a mechanism for preprocessing position data of
mobile objects is presented. The component aims at reducing
the position data to be stored by a database according to
a given accuracy bound. The authors propose five different
reduction algorithms, where only one — the above-mentioned
section heuristic — yields a connected simplified trajectory.

None of the above works considers the remote trajectory
simplification problem.

The most efficient tracking protocols are based on dead
reckoning [16]-[18]. Using dead reckoning, the object initially
transmits its current position and a prediction on its future
movement to the MOD. While the object’s actual position
and the predicted one do not deviate by more than a certain
accuracy bound, no update message is required. Otherwise, if
the object impends to reach the accuracy bound, it determines
a new prediction using the last sensed positions and transmits
it to the MOD. The most simple but nevertheless efficient
variant is linear dead reckoning (LDR) [16], [17]. It uses
a linear prediction given by a timestamped position and a
velocity vector. Dead reckoning does not perform trajectory
simplification since it describes the object’s movement by a
discontinuous function in time.

In [9], TieSyt¢é and Jensen present an approach for re-
mote trajectory simplification based on LDR. They propose
an algorithm for computing a connected trajectory on the
basis of the linear predictions which approximates the actual
trajectory according to the same accuracy bound used with
LDR. However, their findings only apply to pre-known routes
like bus lines, i.e movement in R!.

Now, we address the two existing RTS approaches for
arbitrary movement in R? or R3. In [7], Trajcevski et al.



prove that the simplified trajectory given by the origins of the
linear predictions of LDR with accuracy bound e approximates
the actual trajectory by 2e [7]. Correspondingly, LDR with
%e (LDR1) allows for remote trajectory simplification with
accuracy bound e.

In [10], we propose Connection-preserving Dead Reckoning
(CDR) which outperforms LDRL. CDR exploits the obser-
vation, that the simplified trajectory given by the prediction
origins of LDR with bound e approximates the actual trajectory
according to € most of time. Therefore, CDR is based on LDR
with accuracy bound € using an additional update condition for
LDR which guarantees the desired accuracy bound.

In both schemes simplification is solely based on LDR.
GRTS proposed in this paper clearly separates tracking from
simplification and outperforms CDR at least by a factor of two
and LDR1 by a factor of three regarding reduction efficiency.

IV. GENERIC REMOTE TRAJECTORY SIMPLIFICATION

In this section, we present our Generic Remote Trajectory
Simplification protocol (GRTS) and prove its correctness.

A. GRTS Protocol

As motivated above, it is a good idea to separate tracking
from simplification issues as far as possible to gain flexibility.
However, the simplification process must be synchronized with
tracking to make sure that the simplified data arrives in time
at the MOD. The GRTS protocol proposed in this section
follows a synchronization pattern, which we call per-update
simplification.

With this pattern, simplification is performed whenever the
tracking mechanism decides to send an update message. For
that purpose the mobile object stores a partial history of sensed
positions which serves as input for the simplification process.
Based on this input, the simplification algorithm generates
a sequence of vertices of the simplified trajectory, which
then is included in the update message. In most cases, the
generated sequence only includes one vertex or is even empty.
Therefore, GRTS has a better reduction efficiency than the
RTS approaches LDR1 [7] and CDR [10], which always
generate one vertex per update. The advantage of per-update
simplification is that it can be combined with both online
and offline line simplification algorithms. In Section V-B we
will describe a per-sense simplification pattern that optimizes
GRTS for online algorithms.

Now we will describe GRTS in more detail. GRTS uses
linear dead reckoning (LDR) for position tracking since this
is the most efficient, general applicable position tracking pro-
tocol [16]-[18]. With LDR, the MOD has a linear prediction
function f(t) for determining the object’s current position. f(t)
is defined by a sensed position lg called prediction origin and
a vector fv called velocity vector as

1) t—lof+ (t—lot)y .

For a given accuracy bound €, the LDR protocol guarantees,

-

that [(¢) known by the MOD approximates the objects’ current
actual position by e. Formally, at current time tc, it guarantees

—

|I(tc) — d(tc)| < e. For this purpose, LDR has to send a new
prediction to the MOD as soon as |I(tc) — a@(tc)| impends to
reach ¢, taking into account the inaccuracy of the positioning
sensor, the possible movement within the sensing period Tg,
and the time for transmitting an update message (for details
see [17] and [12]).

The mobile object stores the current prediction and the
sensing history S, which includes all sensed positions since
the most recent vertex w,, of the simplified trajectory re-
ported to the MOD. More precisely, the sensing history
is the sequence of chronologically ordered sensed positions
S:=(s; : 8;-t > Up,.t), with first(S) = u,, and last(S) = sg,
respectively. Once LDR causes a new prediction to be sent
to the MOD, the simplification algorithm takes the stored
sensing history as input and provides the sequence of vertices
U := (uUm+1,---Um+k) to be appended to the simplified
trajectory managed by the MOD, where k& = |U| mostly equals
0 or 1.

The MOD stores the simplified trajectory (t), which con-
sists of the following of three parts:

o The spatiotemporal polyline given by the vertices
(uq,...,uy) composes the first part.

o The current prediction, given by the prediction origin o
and the velocity vector fv, composes the third part.

o The line section u,, [p in-between u,, and [ composes
the second part.

Figure 1 illustrates those three parts. While the second and
third part change with each update message, the first one is
created in an append-only fashion.

------------------- —
_- us = - 5
_-- Uz Uy = Um ZO ZV
Uy = S1
-
part 1 part 2 part 3

Fig. 1. Three parts of @(t), managed by the MOD.

Figure 2 shows the pseudo code of the generic GRTS algo-
rithm executed by the mobile object. For the sake of simplicity,
we assume that once the tracking has been started, the mobile
object will be tracked forever. Extensions to switch tracking
on and off are straightforward.

Initially, the mobile object transmits its most recent sensed
position sg = s7 as first vertex u; to the MOD, together with
a prediction with origin o = sg (line 4). Then, it executes an
infinite loop (lines 7 to 20).

Within each iteration it first senses its current position
(line 8) and appends it to the sensing history (line 9). Then, it
checks whether it has to send an update message to the MOD
according to LDR (line 10).

The update message not only has to contain a new prediction
for the third part of @(¢) but also the vertices to add to the first
part, which together also updates the second part. Therefore,
the object computes a simplified trajectory segment for the
movement between the last vertex u,, known to the MOD and
the new prediction origin o = sg. As the sensed trajectory



1: SR «— sense position > Most recent sensed position.
2: U« (sR) > New vertices to transmit to MOD.
3 (lo, ly) < (sgr,0) > Current prediction.
4: send update message (1o, Iy, U) to MOD

5:S « (sr) > Sensing history.
6: U« ()

7: while true do

8: SR «— sense position

9: S S| (sr) > Append sr to sensing history.
10:  if LDR causes update then

11: U’ « line simplification with bound p on S

12: U« U\ (first(U’), last(U"))

13: (lo,1v) < compute new prediction (sg, ...)

14: send update message (lo, Iy, U) to MOD

15: if [U| > 0 then

16: S «— (s; €S:s;.t > last(U).t)

17: U—()

18: end if

19:  end if

20: end while

Fig. 2. GRTS with per-update simplification executed by the mobile object.

segment given by S deviates from the actual trajectory @(t) not
more than the maximum sensing deviation 4, it executes the
line simplification algorithm with the simplification bound 1 =
€— 4 and stores the resulting vertices of the simplified segment
in U’ (line 11). Therefore, the simplified segment given by
U’ approximates d@(t) on the respective domain [ty,.t, Sg.t]
according to the accuracy bound e.

For U, it holds first(U’) = first(S) = u,,, which is already
known to the MOD, and last(U’) = last(S) = sgr, which is
going to be the new prediction origin. Therefore, these two
vertices are removed from U’ resulting in U, which may be
empty (line 12)." Next, a new prediction is determined and
transmitted to the MOD together with U. Finally, if U is
not empty, the sensed positions before the new last vertex
Uy, stored by the MOD are removed from S (line 16) since
the respective segment now is approximated by the first part
of (t).

The algorithm executed by the MOD is rather simple. On
receiving a message (o, fv, U), it appends the k vertices given
inUto (ur,...,Um) as (Umt1,-- -, Umtk), SEtS M to m+k,
and replaces the current prediction with the new one.

Now, let us see how the MOD can use the stored information
to find out about an object’s position at time ¢’:

1) ¢ < wupm.t : The MOD calculates #(¢') by linear
interpolation between the vertices w; and u;y; with
uj.t <t <w;yq.t as described in Section IL

2) Up.t <t' <lp.t : The MOD calculates #(t') by linear
interpolation between wu,, and lo.

3) ' > lo.t : The MOD calculates (') by means of the

-

prediction function I(t) given by o and ly.

! Actually, U’ and U can be one and the same data structure. U’ is introduced
for readability only. It always holds that U’ = (um) || U || (sr)-

B. Correctness of GRTS

To show the correctness of GRTS, we prove that GRTS
satisfies the simplification and the real-time constraint, cf. Sec-
tion II. Both constraints are to be fulfilled within the time
interval [s1.t, tc], where {c denotes the current time.

Clearly, the simplified trajectory w(t) always is defined on
[s1.t,tc] since the domain of #@(t) actually is [s;.t, 00].

However, to show that GRTS satisfies the simplification con-
straint and real-time constraint, we now prove, that for every
t' € [s1.t,tc] the MOD knows @(t') with |@(t) — d(t)| < e.
For that purpose, we consider the three parts of @(t) illustrated
in Figure 1:

o Part 1: Tt is s1.t <t/ < wp,.t. Let s; and s;11 be the
sensed positions that enclose ¢, i.e. s;.t <t < s;41.1.
According to line simplification (line 11), it holds that
[si5i71(t') — @(t')] < p. Using the maximum sensing
deviation § defined in Section II we conclude the trian-
le inequality () — a(t)] < |a(t)) — 57Tt +
[Sisia(t) —alt')| <p+d=e

o Part 2: It is um.t < t' < lo.t. At the time of the

most recent execution of the line simplification algorithm
the current prediction origin lo was equal to last(S).
Therefore, u,, and lo were the last two vertices in U’. If
|U| = 0, they even were the only two vertices in U’.
In any case, the line section u,, lo is a simplification of
the segment given by the sensed positions within the time
interval [u,,.t,lo.t] according to the bound p. Analogous
to part 1, we conclude |u,,lo(t') — @(t')] < e using
triangle inequality.

e Part 3: It is lo.t < t' < tc. As explained above, the
LDR protocol guarantees |I(tc) — a@(tc)| < e for I(t)
given by lp and Iy known to the MOD. As the MOD
has not received a new prediction up to current time tc,

>

we conclude that V' € [lo.t, tc] : |I(t') —ad(t')| <e O

V. COMBINING GRTS WITH LINE SIMPLIFICATION
ALGORITHMS

In this section, we present two combinations of GRTS with
different line simplification algorithms. First, we describe how
to combine GRTS with the optimal offline line simplification
algorithm by Imai and Iri [11]. Then, we present combining
GRTS with the section heuristic [4]. Finally, we propose a
novel optimization of the section heuristic.

A. GRTS with Optimal Line Simplification

Here, we describe GRTSOpt which combines GRTS with the
optimal simplification algorithm introduced in [11]. Although
this algorithm has originally been designed for offline usage,
we apply it online following the per-update simplification
pattern. That is, whenever LDR decides to send a new up-
date, the algorithm is initiated with input S. It computes the
(possibly empty) set of new vertices U, which then is included
in the update message. Consequently, LDR divides the sensed
trajectory 5(t) into a set of segments, which are simplified
independently from each other.



Xmgsoy .- "TIRCSR
SR - . - =
T X IR S
e =X
U1 (A) U1 (B) H

Fig. 3. Two possible simplified trajectories (A) and (B) with minimal number
of vertices U’ = (um,, um—+1, sr) for the sensed positions illustrated by small
crosses. Here, (B) is the better choice.

In detail, the algorithm first considers the sensed positions in
history S as vertices of an unweighted, directed graph and adds
an edge for each pair of sensed positions (s;, s;1.), where
the line section 5;S;y, approximates the sensed positions
(Siy-- -, 8i+e) by the simplification bound p. This particularly
applies to every pair (s;, s;+1). Second, it computes a shortest
path between the first vertex first(S) = w,,, and the last vertex
last(S) = sg. The vertices U’ of the shortest path compose a
simplified trajectory which approximates S by p and thus @(t)
within the time interval [u,,.t, sg.t] by the accuracy bound e.

Due to the segment-wise simplification, GRTSOpt generally
does not achieve the optimal, best possible reduction rate
as it would be achieved with the optimal line simplification
algorithm being applied offline to the overall sequence of
sensed positions. The fundamental reason for that is, that there
may exist several possible simplifications with a minimum
number of vertices U’ if GRTSOpt simplifies a segment given
by S. Figure 3 gives an example of two possible sequences
of vertices U = (um,um+1,Sr) implying two possible
sequences of vertices U = (u,+1) to be sent to the MOD.
Generally, choosing U with maximum last(U).t — here (B) — is
a good heuristic as it minimizes the size of S in the subsequent
execution of the line simplification algorithm. Nevertheless,
there may be also cases, where choosing another U would
yield a better overall reduction efficiency.

It is important to notice that the segmentation itself is
determined by LDR. Consequently, the reduction efficiency
is still influenced by LDR, however to a much lower degree
than with the existing approaches LDRZ [7] and CDR [10].

B. GRTS with Section Heuristic

The section heuristic is a simple online line simplification
algorithm which has been proposed in [4]3, [13], and [15].

For simplifying a sequence of sensed positions (s, S, . . .)
by bound p, the section heuristic works as follows: First,
it sets s; as vertex u; of the simplified trajectory. Then,
it iteratively probes the line sections sy Sg, 357 S3, ... until it
finds the first section s7 s, that would violate p, i.e. where
Is; € (81,.++,8z) 1 |0 — 51 8z(si-t)| > p. In this case, the
section heuristic adds the previous line section s1 S,_1 to the
simplified trajectory by storing uy := s,_;. Next, it repeats
the above procedure starting at s,_1, and so on.

Since this online algorithm processes the sensed positions
iteratively, it allows for per-sense simplification. Figure 4

>The authors of [4] refer to the section heuristic as Opening-Window
algorithm (OPW) and distinguish two variants with different distance metrics.
The one with the better reduction efficiency which corresponds to the section
heuristic as explained here is called BOPW-TR.

shows the corresponding pseudocode of the resulting combina-
tion GRTSSec. For each sensed position sg, GRTSSec checks
whether the line section first(S) sg approximates the sensed
positions in-between by simplification bound g or not (line 9).
If not, then it appends the last sensed position — the one before
sgr —to U (line 10) and reduces the sensing history accordingly
(line 11). Thus, in contrast to the general GRTS algorithm, the
sensing history only comprises the sensed positions between
the last vertex wu,,+r known by the mobile object and sg.
When LDR causes a new update message to be sent, GRTSSec
simply includes the (possibly empty) set of vertices U into the
message and then resets U to the empty sequence.

The advantage of per-sense simplification is that simplifica-
tion is performed as early as possible, resulting in a smaller
sensing history S on average. Moreover, the computing time
for line simplification is distributed over all iterations of
GRTS.

C. Optimization of the Section Heuristic

The average size of the sensing history |S| can be further
reduced by a novel optimization of the section heuristic. The
basic idea of this optimization is the following: Each sensed
position s; € S poses a constraint on the next line section
U, U1 that is going to approximate S. If the constraint given
by another sensed position s;, completely encloses the one
given by s;, then s; can be removed from S without affecting
the simplification. This reduces the space consumption of the
section heuristic by three-fourths on average, cf. Section VI.

The constraint defined by a s; € S requires the distance
|8;-0 — Wpm Wmt1(si-t)| to not exceed p. The GRTSSec algo-
rithm checks this constraint for every potential line section
Uy, sg = first(S) sg (line 9). Geometrically, for each s;, the
line section has to pass the circle with center s;.p" and radius
[ at time s;.t as illustrated in Figure 5. As the line section’s

1: SR «— sense position > Most recent sensed position.
2: U« (sg) > New vertices to transmit to MOD.
3: (lo, fv) — (sRr,0) > Current prediction.
4: send update message (lo, Iy, U) to MOD

5:S « (sr) > Sensing history.
6: U« ()

7: while true do

8: SR «— sense position

9:  if 3s;, €S:|s;.p— first(S) sgr(s;.t)| > € then

10: U « U|| (last(S)) > Append last sensed position.
11 S «— (last(S))

12 end if

13 S S| (sr) > Append sy to sensing history.
14:  if LDR causes update then

15: (lo,lv) «— compute new prediction (sg, ...)

16: send update message (lo, Iy, U) to MOD

17: U~ ()

18:  end if

19: end while

Fig. 4. GRTSS algorithm with per-sense simplification.



t \
Sitaz-t ‘

Si.t
-‘\“um
Uy, .t T
m T \
Fig. 5. The line section starting at wu,, has to pass the circles at s; and

Si4+. Here, the constraint by s;4, encloses the one by s;.

first vertex is known, the circles of two sensed positions s;
and s;, can be normalized regarding time and compared with
each other: The circle of s;;, poses the same constraint like
the circle with center first(S) s;4.,(s;.t) and radius

s;.t — first(S).t
s Sita-t — first(S).t

at time s;.t. Now, if this circle is contained by the circle of
s; as pictured in Figure 5, then s; can be removed from S
accordingly. Thus, for each sensed position sg, GRTSSec can
remove every s; from S whose circle contains the normalized
circle of sg at s;.t — except s; = first(S). In Figure 4 this
removal should be included between line 12 and 13.

VI. EVALUATION

We evaluated GRTS in two ways: For significant results on
its performance, we simulated and analyzed GRTSSec and
GRTSOrt with hundreds of real trajectories and compared it
to the existing RTS approaches as well as to offline simplifi-
cation. For practical experiences, we conducted experiments
with a prototypical implementation of GRTSSec and an in-
memory MOD allowing for tracking trajectories of multiple
mobile objects in Google-Earth in real-time.

In the following, we first discuss the simulation-based
analysis followed by the experiences with the prototype.

A. Simulation-based Analysis

For analyzing the performance of GRTS, we implemented a
simulation software for GRTSSec and GRTSOrt, the existing
RTS approaches LDRZ [7] and CDR [10], as well as the
optimal line simplification algorithm (RefOrt) by Imai and Iri
[11] and the Douglas-Peucker algorithm (RefPP) [14] in the
C programming language. We selected RefOpt as a reference
for comparing our results to the best possible reduction rate,
while RefPP is a commonly used offline heuristic.

For simulating these algorithms with realistic data, we
downloaded hundreds of GPS trajectories (GPS traces) each
containing more than 1000 recorded positions from the Open-
StreetMap website [19]. In several processing steps, we filtered
those trajectories, that provide distinct position fixes for each
second — i.e. that have not undergone any previous data
reduction — and that could be clearly classified according to
their means of transportation into foot, bicycle, and motor
vehicle. For classifying a trajectory, we not only relied upon its
velocity characteristics but also on representative tags specified
on the OpenStreetMap website.

Then, we simulated the execution of LDR1, CDR, GRTSSec,
and GRTSOpt by sequentially feeding the algorithms with the
recorded positions given in the GPS trajectories. For each
algorithm, we measured the number of vertices of the resulting
simplified trajectories, the number of update messages, and the
amount of transmitted data, depending on € varying from 50 to
500 m. Further, we measured the space requirements and the
computational effort for each algorithm. In accordance with
the GPS trajectories, we used a sensing period of Ts = 1s and
a maximum sensing deviation of § = 20 m in our simulations.
The latter value takes into account a GPS inaccuracy of up to
10m and a maximum movement deviation of 10 m from the
line section between two sensing operations, given by %Tsvmax
with vm,x = 20m/s as explained in [12].

Also, we applied the offline algorithms RefOpt and RefDPP
with bound ;1 = € — § to the entire trajectories and measured
the number of vertices of the resulting simplified trajectories.

All experiments were performed on an AMD Opteron Linux
Server with 2.8 GHz and 4 GB RAM.

The different velocities of the means of transportation do
not yield any significant differences when comparing the
simplification approaches with each other, but only when
considering the absolute values for reduction efficiency and
communication. Therefore, we give the average results of the
3 x 100 largest trajectories of the three means of transportation
and refer to the individual means of transportation where
necessary. Each of the 300 trajectories comprises 1400 to
16500 GPS positions, i.e. spans about 20 min to 5 h.

Next, we give the results on data reduction, followed by the
results on communication and computational cost.

1) Reduction Efficiency: The reduction efficiency of tra-
jectory simplification is measured by the reduction rate
defined as the number of sensed positions divided by
the number of vertices of the simplified trajectory u(t),
ie. (81, 58n)|/ [(ury ooy um)l.

Figure 6 shows the reduction rates of the RTS algorithms
and the two reference algorithms RefOpt and RefPP. As ex-
pected, the reduction rates increase with increasing e.

Both combinations of GRTS outperform the existing RTS
approaches by a factor of two and more. More precisely, on
average, the reduction rate of GRTSOpt is 2.9 times greater

800
700
600
500
400
300
200
100 g=#

0

Reduction rate

50 70 100
Accuracy bound € [m]

Fig. 6. Reduction rate depending on e.



than the rate of CDR and 5.2 times greater than the rate of
LDR1. GRTSSe outperforms CDR by 2.8 and LDR1 by 5.1
on average. The reason is, that line simplification with GRTS
is largely or completely independent of LDR as explained in
Section V, while CDR and LDR1 add a new vertex to (t)
with each update message. For example, for ¢ = 100m CDR
sends about 84 update messages within one hour and hence
generates a simplified trajectory comprising 84 vertices for that
span of time. GRTSOpt and GRTSSec likewise send 84 update
messages but only generate about 35 vertices, respectively.

Both combinations of GRTS achieve similar reduction rates.
Nevertheless, the reduction rate of GRTSOpt is always slightly
greater or equal to the rate of GRTSSec. More precisely,
GRTSOpt outperforms GRTSSec by 3% on average.

We can see that both GRTSOpt and GRTSSec always outper-
form RefDP. With GRTSSec the reduction rate is 15% greater
than with RefPP. With GRTSOrt it even is 19% greater than
with the Douglas-Peucker heuristic. This is a surprising result
given the fact, that RefPP is performed offline on the entire
GPS trajectories. Moreover, on average, the reduction rate of
GRTSSec is only 12% worse than the best possible reduction
rate by the optimal algorithm RefOpt. With GRTSO»t it is 9%
worse than the reduction rate of RefOrt due to the segmentation
by LDR.

All these values similarly hold for the individual means
of transportation. For example, with motor vehicles GRTSOpt
and GRTSSec outperform CDR by a factor of 3.0 and 2.9
respectively, and by foot they outperform CDR by a factor
of 3.1 and 3.0. However, the absolute reduction rates depend
on the mean of transportation due to the different ratio between
the corresponding velocity and e. For instance, for e = 100 m
the reduction rate of GRTSOpt is 62.3 for motor vehicles, 128.5
for the bicycle, and 330.6 for walking by foot.

Figure 7 renders these differences more precisely by show-
ing the reduction rate depending on the velocity. For that
purpose we grouped the GPS trajectories by their average
velocities and then computed the average reduction rate for
each group and simplification algorithm for € = 100 m.

Clearly, the reduction rate of each algorithm decreases with
increasing velocity. For example, with GRTSOpt and GRTSSec it
is about 360 for an average velocity of 1.2m/s, but only about

400
350 | &,
300
250
200 |
150 |
100
50 F

Reduction rate

Average velocity [m/s]

Fig. 7. Reduction rate depending on the average velocity.

1000 ————1 . . .
= 900 T~ LDR;j, ---x-- |
% Lx CDR o |
& el GRTSOP' ——-o-—

2 700 - % GRTSSec e A
g 600 i
g ; -
3 s

g 400 R i
5 300 %% |
Eo20f %, s |
E ol et sy, 1
< 0 T R R T ﬂﬂﬂﬂﬂ%‘ﬁ'ﬁ:ﬁ'—ﬁr’i—iﬁi—ﬁ—##

50 70 100 200

Accuracy bound € [m]

500

Fig. 8.  Number of update messages per hour depending on e.

g 4’0 T T T T T LD]{I]/Z ””’:””

2 35 1\){ GRTSSCC T
g 30F GRTSOP! e
S x CDR ---&---

B 25+ .
e 20& 8
£ i X

g 151, 4
s N

= 10| i B
g 5\\-‘\ %*

2 5| e R S E
£ ER-E e T

< 0 T T N B B ﬁé:ié'é’é'ifﬁ-ééﬁrﬁ‘-ﬁ’ﬁ:ﬁ;ﬁ;ﬁ;

50 70 100 200 500
Accuracy bound € [m]

Fig. 9. Amount of data transmitted to MOD per hour depending on e.

55 for 15 m/s. The results further show, that the ratios between
the reduction rates of the different algorithms widely are
independent of the velocity. In particular, the average reduction
rates of GRTSOpt and GRTSSec of the different groups always
are only 8 to 11% and 10 to 14% worse than the reduction
rates of RefOpt, not correlated with the average velocity.

2) Communication Cost: Figure 8 shows the number of
update messages generated by GRTS, CDR, and LDR1 per
hour depending on e. Clearly, both GRTS variants cause the
same numbers since they use the same LDR mechanism. The
message overhead of CDR is marginally greater compared
to GRTS since CDR extends LDR by an additional update
condition, cf. Section III. LDRy causes about 60 to 260%
more messages than CDR and GRTS, depending on e. With
all algorithms the number of messages per hour significantly
increases for € < 70m towards 50 m since the mobile object
frequently impends to reach the accuracy bound causing LDR
to send an update. This particularly applies to LDR1 as it uses
the accuracy bound Ze.

While with LDR1 and CDR each update message only
contains a prediction whose origin represents a vertex of
i(t), GRTS may additionally insert a sequence of vertices.
Obviously, this causes GRTS to transmit a higher amount
of data than CDR as illustrated in Figure 9. However, the
additional amount of transmitted data is small compared to
the higher reduction rates of the GRTS variants of more
than a factor of two. For example, assuming a header size



10 T T Opt T T T
5 GRTSOP! - CDR ----&---
107 I Bagic GRTSS®® = LDR,, =
10* GRTSS® ——-a-- ees e

_e-0-0-0-0-
3 oo P i o-e
3 g-0-0-0-0-0-

—-m-a R R R

»»»»» .
10 P"l»l»l*.«.—l—l—l—l—l—}{—l—l— --n-n-N N @;BTE,E
j‘ﬂ»‘«B’B’Bfﬂ‘ﬂ"B‘ﬁ‘-EFﬁrﬁﬁ’ﬂ'ﬂ-‘ﬂ’ﬁfﬂfﬁ"ﬂ’ﬁ"ﬂfﬁ"ﬁﬁﬁﬁ

Space consumption [kB]
>
S

0.01 L 1 1 1
50 70 100 200 500

Accuracy bound € [m]

Fig. 10. Space consumption on the mobile object depending on e.

10

10 T T T T T T 3 .

10° GRTS? - CDR o110’
- | Basi S LDR,,, ----*--- ] =
',&A g Basic GRTS e . ’._.lf%,.airw 100 E
S 10° GRTS Paiirrer-o R S B u
£ L ooooooe® 110 o}
E 7 )
g 10 r 1 ¢
= 10° a 5
.| 105 an -w-m-wmwm-E-m-E- 227 0.1 g
=t R iyl i - Sir i  i  S S ekl pnt A =
= 4 tﬁﬁﬁﬁfﬁﬁ-ﬁﬁﬁﬁfaaBE-B-BBBE-B-BBE goB8a 0] 0.01 %0
g 10'F ] g
O 410° &

10° ] 2

SK KKK KKK K K K- K K K K KK K K KKK K K K K- K K K K= 10‘4 8
100 1 1 1 11 1
50 70 100 200 500
Accuracy bound € [m]

Fig. 11. Maximal computing time per position fix depending on e.

of 28 byte (UDP/IP), it is only about 11%. Clearly, LDR1
transmits significantly higher amounts of data due to the larger
number of update messages. The amount of data transmitted
by GRTSOrt is 0.3% smaller compared to GRTSSec due to the
higher reduction efficiency.

3) Computational Cost: We now analyze the maximum
space consumption and computing time per sensed position
of LDR1, CDR, GRTSOrt, and GRTSSec on the mobile object.
The space consumption is measured in bytes by summing up
the space consumption of the different variables and arrays,
particularly of the sensing history S. The maximum computing
time for processing a new sensed position is measured in
processor ticks using the processor time stamp counter. To
filter out interrupts of the process under test, we simulated
the RTS algorithms without other user processes and repeated
each measurement ten times.

Figure 10 shows the maximum space consumption of the
RTS algorithms depending on e. The space consumption of
LDR1! is constant, since it does not store a sensing history.
For all other algorithms it increases with e as the sensing
history generally contains more sensed positions. With CDR
and GRTSSec the space consumption is significant smaller than
100 kB which seems acceptable for most mobile devices. On
the other hand, GRTSOrt may consume more than 10 MB,
which may exceed the available memory of some devices.

Basic GRTSSec refers to GRTSSec without the optimization
of the section heuristic given in Section V-C. Clearly, this

optimization saves valuable memory capacity. On average,
it reduces the space consumption by 70 to 78%, slightly
increasing with e. Moreover, it also reduces the maximum
computing time per sensed position as shown in Figure 11.
The computing times of LDRL, CDR, and GRTSSec are
all below 1ms, while GRTSOpt takes up to about 100 ms.
Analogous to the space consumption, this may be unacceptable
for some mobile devices. Given the fact that the reduction rate
of GRTSOrt is only a few percent greater than the reduction
rate of GRTSSec, we argue that GRTSOrt should be preferred to
GRTSSec only if the mobile object has sufficient computational
resources and reduction efficiency is of highest priority.

B. Experiences with GRTS-based Tracking System

To gather practical experiences with GRTS, we implemented
a prototypical tracking system for multiple mobile objects
using GRTSSec. Figure 13 depicts the system architecture with
the major software components MobileApp, ServerApp, and
KMLClient.

MobileApp is executed by each mobile object being
tracked. It is implemented in the Java programming lan-
guage and consists of three sub-components: GPSUnit parses
the NMEA output of the object’s GPS receiver. GRTSAlg
implements GRTSSec with per-sense simplification as given
in Figure 4. UpdateSender implements ordered, reliable, en-
crypted message passing with ServerApp based on UDP over
UMTS/GPRS. Moreover, MobileApp offers a GUI plotting the
sensed trajectory and the simplified trajectory with the current
prediction as shown in Figure 12. The large circle illustrates e
while the small circle depicts the maximum sensing deviation
0 depending on the current DOP value.

ServerApp is implemented in Java and realizes a simple
in-memory MOD storing the vertices (uq,...,u,;) and the
current prediction (I, fv) of each mobile object. Furthermore,
it implements a simple HTTP server which provides the
simplified trajectories of the mobile objects in the Keyhole
Markup Language (KML).

Clients can display the simplified trajectories in real-time
by using Google Earth querying ServerApp for the current
trajectories every second.

GPS [ RTS | Updates
Plot Log
T =

Processed: (20081011-124416.000,9.404540°,48.|
Processed: (20081011-124417.000,9.404433",48.|
o {Undate: N_1230537854_[_(20081011-124417.00(
= Processed: (20081011-124418.000,9.404327°,48.]
2 | [Processed: (20081011-124419.000,9.404220" 48.|
S Processed: (20081011-124420.000,9.404112° 48

806700
orig: 434 simp: 21

806800 806300 807000

Processed: (20081011-124421.000,9.404007° 48

=| |Processed: (20081011-124422.000,9.403902°,48.|
Processed: (20081011-124423.000,9.403800° 48
Processed: (20081011-124424.000,9.403700° 48
Update: N_1230537854_[(20081011-124418.000,§
Processed: (20081011-124425.000,9.403607" 48.]
Processed: (20081011-124426.000,9.403517° 48|
Processed: (20081011-124427.000,9.403432° 48.|
Processed: (20081011-124428.000,9.403350° 48.] |
Processed: (20081011-124429.000,9.403273° 48|
Processed: (20081011-124430.000,9.403202° 48,
Update: N_1230537854_[1_(20081011-124430.00(
Processed: (20081011-124431.000,9.403140° 48.|=|
Processed: (20081011-124432.000,9.403092° 48,
Processed: (20081011-124433.000,9.403052° 48.]
- [Processed: (20081011-124434.000,9.403015° 48.] |

~| Fitmer ]u\ ] » = "

00199€9-

00099€9-

Fig. 12.  Screenshot of MobileApp executed on the mobile objects.



Updates —— HTTP Req.
C:\ GPS GRTS Update | - - - - - - P »| Update HTTP |« d Google ]
Unit Alg Sender [~~~ "~~~ N - ]; """" IReceiver| Server KML > Earth
GPS xS KML file
MobileApp ServerApp KMLClient
Fig. 13.  Architecture of prototypical GRTS-based tracking system.
We conducted several experiments driving a car equipped REFERENCES

with an OQO model 01+ subnotebook [20] and a Wintec
WBT-300 GPS receiver [21] providing four position fixes
per second. This update rate particularly allows for tracking
fast objects with small e. During our experiments, we used
25m. Besides four network outages lasting several
minutes, the prototypical tracking system successfully allowed
for tracking the car and its trajectory for more than nine hours
from several home computers.

During this experiment, we measured a reduction rate of 70.
Per hour, only 60kB of data were transmitted to ServerApp
including all communication overhead such as retransmissions
due to lost UDP packets. These experimental results coincide
with the results of our simulations.

In rural areas, not covered by UMTS but only GPRS, we
observed latencies between 500 and 1500 ms for sending an
update message. Depending on e such latencies may be too
long for remote trajectory simplification. However, they may
be significantly reduced by suitable network protocols.

€E =

VII. CONCLUSIONS

In this paper we studied the problem of remote trajectory
simplification for MODs, managing the trajectories of a col-
lection of mobile objects with embedded positioning sensors.
With such a system, the trajectory simplification has to be
performed on the mobile objects to also minimize wireless
communication costs besides the ultimate goal of reducing the
trajectory data according to a certain accuracy bound to save
storage capacity of the MOD.

Therefore, remote trajectory simplification involves posi-
tion tracking as well as line simplification. We proposed a
novel generic remote trajectory simplification protocol (GRTS)
which separates tracking from simplification issues as far as
possible. GRTS can be combined with any line simplification
algorithm suited for trajectories. We presented two combi-
nations with an optimal simplification algorithm [11] and
the section heuristic [4] which allow to trade computational
complexity off against reduction efficiency. Both variants
outperform all existing RTS approaches at least by a factor
of two in terms of reduction efficiency.

Furthermore, we presented an optimization of the section
heuristic which reduces its space requirements by three-fourths
on average.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by
the German Research Foundation (DFG) within the Collabo-
rative Research Center (SFB) 627.

[1] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context
than location,” Computers & Graphics Journal, vol. 36, no. 6, pp. 893—
902, Dec. 1998.

[2] A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” in Proc. of the CHI 2000 Workshop on the
What, Who, Where, When and How of Context-Awareness, The Hague,
Netherlands, Apr. 2000.

[3] R. H. Giiting and M. Schneider, Moving Objects Databases.  San
Francisco, CA, USA: Morgan Kaufmann Publishers, 2005.

[4] N. Meratnia and R. A. de By, “Spatiotemporal compression techniques
for moving point objects,” in Proc. of the 9th Int’l Conf. on Extending
Database Technology, Heraklion, Crete, Mar. 2004, pp. 765-782.

[5] H. Cao, O. Wolfson, and G. Trajcevski, “Spatio-temporal data reduction
with deterministic error bounds,” VLDB Journal, vol. 15, no. 3, pp.
211-228, Sep. 2006.

[6] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams
with spatiotemporal criteria,” in Proc. of the 18th Int’l Conf. on Scientific
and Statistical Database Management, Vienna, Austria, Jul. 2006, pp.
275-284.

[71 G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro,
“Online data reduction and the quality of history in moving objects
databases,” in Proc. of the 5Sth ACM Int’l Workshop on Data Engineering
for Wireless and Mobile Access, Chicago, IL, USA, Jun. 2006.

[8] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle,
“Compressing spatio-temporal trajectories,” in Proc. of the 18th Int’l
Symp. on Algorithms and Computation, Sendai, Japan, Dec. 2007, pp.
763-775.

[9] D. TieSyt¢ and C. S. Jensen, “Recovery of vehicle trajectories from
tracking data for analysis purposes,” in Proc. of the 6th European
Congress and Exhibition on Intelligent Transport Systems and Services,
Aalborg, Denmark, Jun. 2007.

[10] R. Lange, F. Diirr, and K. Rothermel, “Online trajectory data reduction
using connection-preserving dead reckoning,” in Proc. of the 5th Int’l
Conf. on Mobile and Ubiquitous Systems: Computing, Networking and
Services, Dublin, Ireland, Jul. 2008.

[11] M. Iri and H. Imai, Computational Morphology. North-Holland
Publishing Company, 1988, ch. Polygonal Approximations of a Curve
— Formulations and Algorithms, pp. 71-86.

[12] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-object
representations,” in Proc. of the 6th Int’l Symp. on Advances in Spatial
Databases, Hong Kong, China, May 1999, pp. 111-131.

[13] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, and Y. Wang, “Near-linear
time approximation algorithms for curve simplification,” Algorithmica,
vol. 42, no. 34, pp. 203-219, Jul. 2005.

[14] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Canadian Cartographer, vol. 10, no. 2, pp. 112-122, Dec. 1973.

[15] N. Honle, M. GroBmann, D. Nicklas, and B. Mitschang, “Preprocessing
position data of mobile objects,” in Proc. of 9th Int’l Conf. on Mobile
Data Management, Beijing, China, Apr. 2008.

[16] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and
querying databases that track mobile units,” Distributed and Parallel
Databases, vol. 7, no. 3, pp. 257-287, Jul. 1999.

[17] A. Leonhardi and K. Rothermel, “A comparison of protocols for updat-
ing location information,” Cluster Computing: The Journal of Networks,
Software Tools and Applications, vol. 4, no. 4, pp. 355-367, Oct. 2001.

[18] A. Civilis, C. S. Jensen, and S. Pakalnis, “Techniques for efficient road-
network-based tracking of moving objects,” IEEE Trans. on Knowledge
and Data Engineering, vol. 17, no. 5, pp. 698-712, May 2005.

[19] OpenStreetMap Project. [Online]. Available: www.openstreetmap.org

[20] OQO, Inc. [Online]. Available: www.oqo.com

[21] Wintecronics Ltd. [Online]. Available: www.wintec.com.tw




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


