
Efficient Capturing of Environmental Data with Mobile RFID Readers

Harald Weinschrott, Frank Dürr, and Kurt Rothermel

Institute of Parallel and Distributed Systems

Universitätsstraße 38, 70569 Stuttgart, Germany

<weinschrott|duerr|rothermel>@ipvs.uni-stuttgart.de

Abstract

In this paper we introduce a novel scenario for envi-

ronmental sensing based on the combination of simple and

cheap RFID-based sensors and mobile devices like mobile

phones with integrated RFID readers. We envision a system

that exploits the availability of these devices to cooperatively

read sensors installed in the environment, and transmit the

data to a server infrastructure. To achieve quality require-

ments and efficiency in terms of communication cost and

energy consumption, this paper presents several algorithms

for coordinating update operations. First, mobile nodes

form an ad-hoc network for the cooperative management

of requested update times to meet the desired update inter-

val and to avoid redundant sensor reading and collisions

during read operations. Second, besides this decentralized

coordination algorithm, we also show a complementary

algorithm that exploits infrastructure based coordination. By

extensive simulations we show that our algorithms allow

for autonomous operation and achieve a high quality of

sensor updates where nearly 100% of the possible updates

are performed. Moreover, the algorithms achieve a very

high energy efficiency allowing for several hundred hours

of operation assuming a typical battery of a mobile phone.

1. Introduction

City administrations need statistics to develop a city accord-

ing to the behavior and the needs of its inhabitants. For

example, a noise level map of a city supports decisions on

traffic-reducing measures to increase the quality of living

conditions. Moreover, environmental data allows for a vari-

ety of user-centric applications, e.g., a noise level or real-

time air pollution map allows inhabitants to choose a good

route for a walk. Urban sensing [1] allows for the dynamic

generation of real-time maps and statistics of urban areas,

which are fed by a large number of sensors measuring a

great variety of parameters, such as noise, vibration or air

pollution.

Urban sensing faces several challenges. First, large areas

need to be covered with various kinds of sensors, which

requires simple and cheap means of deployment and it

renders the installation of special infrastructure for sensing

support unfeasible. Second, without infrastructure, commu-

nication and power supply is challenging and conflicts with

long lifetime of sensors. Third, coverage of large areas is

only feasible with cheap sensors. Finally, defined quality of

readings is needed to support applications effectively, i.e.,

fine-grained resolution of readings in time and space.

Two basic technologies are available today for urban sens-

ing: sensor networks [2] and instrumented mobile devices

[3]. The former can provide their readings to mobile sinks.

However, sensor nodes are tailored to monitor and process

environmental data autonomously. Therefore, sensor nodes

provide advanced processing and communication capability,

which affects cost and energy consumption. The latter can

be used to collect readings directly from their surrounding.

These devices provide sufficient resources, good connectiv-

ity to the infrastructure and their battery is easily recharge-

able. However, for technical reasons, only a limited number

of sensors can be integrated into mobile devices, e.g., a

temperature sensor included in a mobile phone senses the

temperature of the pocket rather than the temperature of the

environment.

In this paper we propose a novel approach to urban

sensing that combines the advantages of both technologies

while resolving the disadvantages. We envision a system

where a large number of simple and thus cheap sensors based

on RFID technology [4] are installed at strategic locations in

the urban environment. The functionality of these sensors is

reduced to a minimum, namely sensing and one-hop commu-

nication based on passive long-range RFID technology [5].

In particular, we consider tags according to the EPC Class

3 standard. Due to passive RFID technology, sensors draw

their energy for communication from the electromagnetical

field of the reader, which reduces the power consumption to

a minimum and extends their lifetime significantly compared

to full-fledged sensor network nodes. Without this complex

radio interface and without powerful processing capability

these sensors can be much cheaper. Even simple battery-

less sensors are conceivable. Without the need to form a

complex multi-hop sensor network, these sensors need to

be placed only at points of interest. The transmission of

readings to infrastructure-based servers uses mobile devices

with an integrated RFID reader, as mobile “relays”, and the

readily available mobile communication infrastructure. With

the ongoing development to integrate RFID readers into

Published in Proceedings of the Tenth International Conference on Mobile Data Management:
Systems, Services and Middleware (MDM'09), pp. 41-51. Taipei, Taiwan, May 2009.
© IEEE 2009
http://doi.ieeecomputersociety.org/10.1109/MDM.2009.15

mobile devices [6], these devices become a universal tool for

inexpensive and autonomous collection of arbitrary sensor

data wherever people move. The sensors are provided either

by inhabitants in private areas or by the city administration

in public areas.

To the best of our knowledge, this work is the first to

propose a system that combines cheap RFID-based sensors

and mobile devices with an integrated RFID reader for

autonomous urban sensing. This novel approach rises a

number of interesting challenges that we tackle in this

paper: significant energy consumption of read operations and

communication of readings, and quality of sensor values in

terms of freshness. We address these challenges using three

different optimizations. First, we coordinate read operations

such that the given update interval is met, but sensors are

not read again when they have been recently read. We

propose two approaches to coordinate reading: a proactive

approach where nodes form an ad-hoc network to manage

cooperatively recent update times of sensors, and a reactive

approach where the infrastructure schedules read operations.

Second, we avoid reading while no sensor is in read range of

a mobile node by making nodes aware of the the positions of

sensors. Third, we propose an algorithm to avoid collisions

due to concurrent reading. At the same time this algorithm

optimizes the probability of reading a sensor successfully.

We show that our algorithms are effective and perform

almost 100% of the possible updates, and they are efficient

and require only as little as 10 J/h per node.

The rest of this paper is structured as follows. In Section 2

we present our system model before we provide our algo-

rithms in Section 3. Moreover, in Section 4, we propose an

adaptation strategy for adapting the algorithms to different

reader densities. In the detailed evaluation in Section 5 we

show the feasibility of this approach.

2. System Model

Our system consists of three individual components: RFID-

based sensors, reader network, and context server. Readers

forward readings of the sensors to the network of context

servers where these readings are stored. Next, we describe

these components and the underlying assumptions in detail.

2.1. RFID-based Sensors

We assume RFID-based sensors Ri that provide dynamic

sensor values. The energy for sensing operations [4] is either

provided by the reader through the electromagnetic field

(passive RFID tags) during read operations or by an extra

battery (semi-active RFID tags). We assume the sensors to be

placed statically along the roads of the service area within

read range of passing by mobile readers. In addition, we

assume that the context server stores the positions of the

corresponding sensors.

2.2. Reader Network

The reader network consists of mobile nodes Ni that move

randomly along the roads in the service area. Nodes have

an integrated RFID reader, a GPS device and a wireless

interface for inter-node communication, e.g., an 802.11

interface. The transmission range of the wireless interface

is denoted by rtx. In addition, we assume that nodes can

communicate with the context servers in the infrastructure

using, for instance, GPRS. We assume the clock drift of

the mobile nodes during a period of several minutes to be

insignificant.

We assume the positions of GPS to be inaccurate. A circle

with radius raccuracy, which denotes the maximum deviation

from the actual position, determines a position Apos. We

assume a uniform distribution of the position within Apos.

The communication between sensors and nodes is based

on passive RFID technology [5]. The reader powers a sensor

so that it can transmit its ID and current value. This reduces

the required energy of a sensor to a minimum, however,

also the read range rread is reduced to a maximum of about

5 m assuming UHF RFID technology. A reader can read a

sensor successfully if it is within the area Aread and there

is no reader collision [7], i.e, concurrently reading nodes.

The area Aread is a circle around the sensor with the radius

of the read range rread. We assume the read range rread to

be of the same order of magnitude as the position accuracy

raccuracy, but much smaller than the transmission range rtx

of a node.

2.3. Context Server

A context server is an infrastructure-based node associated

to a service area. It is responsible for managing the read-

ings from the RFID-based sensors in the respective service

area. After a mobile node has read a sensor, the mobile

node sends the value to the responsible context server. The

context server specifies for each sensor an individual update

freshness time δcs of the order of several minutes, which

is derived from application requirements. This time defines

the requested update interval of the respective sensor. In

addition to the δcs values, the context server manages the

position and the time of the last update for each sensor.

3. Algorithms

The main goal of our approach is twofold: First, we want

to provide applications with fresh sensor values. Stated for-

mally, sensor value VR measured by the RFID-based sensor

R shall be updated at the context server every δcs seconds. It

should be clear that we cannot give hard guarantees for the

freshness because it depends on the distribution of mobile

nodes. There might be situations where no node passes

by a sensor while the context server has no fresh update.

while true do
doPositionF ix()
if closeToTag() ∧ needUpdate() then

CROA()
else

sleep(DROA())
end if

end while

Figure 1. Main operation of algorithm

Therefore, we aim for a best effort service where a node

updates VR when the context server has no fresh update and

it is in the read range of R.

Second, we want to achieve the first goal with as little

effort as possible in terms of energy. In particular, we want

to avoid unnecessary read operations and communication

operations, which are not necessary to provide fresh sensor

values. Formally, if RFID sensor R has been read at time t,
then we want to avoid further read operations in the interval

(t, t+δcs). Moreover, to reduce the load on the context server

and on the mobile devices, we aim to reduce the number of

updates, while the context server has a fresh value.

The straight-forward approach to read a sensor reactively

whenever it is queried is not effective since it introduces a

potentially high delay as no node might be in read range

at the query time. In addition, it is not suitable for event-

based interaction paradigms where applications want to get a

notification whenever a value changes in a certain way, e.g.,

when the temperature exceeds a certain value. Therefore, our

algorithms follow a proactive approach to keep sensor values

fresh at all times according to the freshness criteria defined

above. Since this approach decouples query processing from

update processing, we only consider update algorithms in the

following.

Unnecessary read operations are the cause for high energy

consumption of mobile nodes. Such operations can occur in

three situations. First, a node tries to read a sensor without

being in read range. Second, a sensor is read before an

update is required w.r.t. the requested update interval δcs.

Third, concurrent readings lead to collisions. Our solutions

to avoid these three problems make mobile nodes aware

of RFID sensors in their proximity, their respective update

times, and concurrently reading nodes.

Our algorithm consists of two concurrent operations. The

first operation, early read operation avoidance (EROA) runs

concurrently to the second and provides the update time

of sensors. Figure 1 shows the second operation. When

a node is near to a sensor, the algorithm for concurrent

read operation avoidance (CROA) is executed. Otherwise,

the algorithm for distant read operation avoidance (DROA)

is executed. In the following sections we address these

algorithms in detail.

3.1. Early Read Operation Avoidance (EROA)

The idea of Early Read Operation Avoidance (EROA) is

to make the mobile nodes aware of the next time a sensor

value has to be updated to avoid readings while the server

still has a fresh value. To calculate the next update time of a

sensor, the node needs to know the last update time and the

requested update interval δcs. The latter is announced to a

mobile node by the context server when it enters its service

area.

There are two basic approaches to achieve awareness

of the last update time of a sensor. The first – proactive

management – is based on the idea that nodes cooperatively

form an ad-hoc network to manage the update times of

sensors. In contrast, the second – reactive management – is

based on the idea that the context server in the infrastructure

notifies nodes if an update is needed.

3.1.1. Proactive Early Read Operation Avoidance

(EROA/P). The basic principle of this algorithm is to store

the update time of a sensor at least at some nodes in

transmission range rtx of the respective sensor so that nodes

in proximity of the sensor can query the update time when

needed.

At first we explain our proactive algorithm for managing

update times for the case of a single RFID-based sensor R.

Afterwards we describe the details of the general case with

an arbitrary number of sensors. Our mechanism is based

on one hop broadcast messages and on a locally managed

list of sensor entries at each node. An entry consists of an

ID, position pos, requested interval δcs, and update time

tupdate. While the ID is used for mapping the entry to a

certain sensor, tupdate is the time of its most recent update.

When a node enters the service area it announces its

presence to the context server, which replies with a list of

sensors in the service area. From this list, the node initializes

a local list with the static values for ID, pos, and δcs.

When a node successfully reads R it sends an update that

includes the sensor value to the context server. In addition,

it also signals the tupdate to its one-hop neighbors via an

Info message and updates tupdate locally. As the read range

rread is small compared to the transmission range rtx, the

node that sends the update is close to the center of the

disc around R with radius rtx. Thus, the Info message

reaches further nodes outside the read range of the sensor.

All neighbors that receive this Info message locally refresh

tupdate. This mechanism, with minimal cost of one 1-hop

ad-hoc broadcast message, prevents nodes within rtx of the

sensor from performing an update as long as the server has

a fresh update. Therefore, nodes send an Info message along

with every update.

However, due to mobility, two problems may arise. First,

nodes that did not receive the initial Info message because

the distance between sender and node was greater than rtx

will possibly enter Aread of the sensor. At the earliest, this

happens after the time δcover = rtx/vmax, where δcover is

the time a node needs to cover a distance of rtx at maximum

speed vmax. If a node comes into read range before the next

update is due, i.e., δcover < δcs, then it should not read.

Second, a node that received the initial Info message may

move out of transmission range and thereby miss a duplicate

update. Thus, a node needs to check the validity of tupdate.

Our refresh mechanism handles these two problems.

The basic idea of this refresh mechanism is to store and

keep the update time at nodes within transmission range

rtx of the sensor rather than only broadcasting tupdate once

when the sensor is read. Nodes in read range rread of the

sensor then can query the update time with 1-hop broadcast

messages. To assess the validity of the local tupdate and to

decide whether it needs to be refreshed, nodes manage the

time tcom of the last communication related to a sensor.

The anticipated update time taut specifies the earliest

point in time for an update of the sensor, as locally seen

by a node. We define taut as follows:

taut = tupdate + δcs (1)

A node triggers the refresh mechanism before it starts to

read, i.e, when it is close to the sensor (see Section 3.3). A

node verifies if taut is a future value. In addition, the node

checks the length of time δidle since tcom. If δidle < δcover,

the node assumes that its update time is valid because it was

in the transmission range around the sensor for a period of

δcover. Otherwise, the node may have missed a duplicate up-

date while outside transmission range. Therefore, it queries

the 1-hop neighbors for tupdate by sending a Query message.

In the Query message, a node specifies the ID and the

respective local tupdate. All nodes that receive a Query

compare their local entry to the received update time. If

a node has a more recent update time it sets a timer to

send an Info message as reply. The reason to postpone the

reply is twofold. First, a random jitter is need to reduce

collisions through simultaneous replies. Second, the Info

with the most relevant information, i.e., most recent time,

should be sent. Therefore, a node chooses a small random

jitter between [0, j] if it knows that no update is needed.

The value of j is chosen according to the read interval (see

Section 3.3). Otherwise, it chooses a larger random jitter

between]j, 2j]. On receiving an Info, a node cancels its own

timer, if it cannot contribute a more recent update time. With

this mechanism few messages are sent per refresh cycle and

the number of cycles for a specific update interval is limited

by δcs/δcover.

The cost, i.e., the number of messages, to manage tupdate

with our proactive ad-hoc algorithm increases with node

density and with the update interval. In Section 3.1.2 we

present our reactive algorithm for managing tupdate, which

especially suits large δcs values, whereas we address the

problem of high node density in Section 4.

For the case of multiple sensors we now present the

details of the generalized proactive algorithm. Although it

is effective to apply the algorithm described above to each

individual sensor, it is more efficient to bundle multiple

update times into a single Info message to reduce the mes-

sage overhead and outdated information. Instead of replying

immediately, a node that receives a Query for a sensor sets

a timer and adds its reply to a list. If the node then receives

another Query while the timer is already set, it adds the reply

to the list of replies. On receiving an Info message with a

more recent tupdate it removes its own reply from the list.

It only cancels its timer if its list is empty. When the timer

expires, it sends all valid update times with one single Info

message. Since an update time is only valid if the equation

δidle < δcover holds, the size of the reply message is limited

by the number of sensors on the disc centered at the node

with radius rtx.

3.1.2. Reactive Early Read Operation Avoidance

(EROA/R). In contrast to the proactive EROA/P algorithm,

this algorithm relies on the management of update times at

the context server in the infrastructure.

The context server notifies nodes within a maximum

radius of the sensor to perform an update when needed.

It periodically repeats this notification until an update is

performed. With this mechanism nodes ignore sensors as

long as they recently have been notified to read it. In

addition, this algorithm guarantees that no node reads when

the context server has a fresh update. In contrast, EROA/P

may cause early read operations if the time of the last update

is lost.

A notification message Notify includes the ID, the posi-

tion pos, and the notification radius rnotify for the corre-

sponding sensor. A node ignores the Notify message if its

distance to the sensor is larger than rnotify , otherwise the

sensor is marked as active and will be read when the node

enters its read range. We set rnotify = rtx, i.e., the trans-

mission range. In addition, we set the notification interval

δnotify , i.e., the time between two successive notifications,

to the value of δcover. This ensures that a new notification

is only sent when nodes possibly come into read range that

have not been notified already.

A node resets the state of a sensor to inactive, when the

latest Notify was received more than δnotify ago or, when

it detects that its distance to the sensor exceeds rnotify . In

both cases a node assumes that it will be notified again when

it enters the notification area while the sensor still needs to

be updated. Moreover, nodes can ignore the sensor as soon

as they receive an Info message indicating an update.

The cost of this reactive algorithm for management of

update times is independent of the required update interval

δcs. In contrast, the cost of the proactive algorithm presented

in Section 3.1.1 grows with the required update interval. For

details about the energy consumption of both algorithms we

Figure 2. Distance metric dN,R

refer to Section 5 where we present the evaluation results.

3.2. Distant Read Operation Avoidance (DROA)

Next, we tackle the problem of distant read operations that

occur whenever a node tries to read while being outside

the read range. The basic idea is that nodes determine their

position using a GPS device. By comparing this position to

the known positions of sensors, which are sent to a node

by the context server, a node can determine its proximity to

sensors. However, a positioning technology like GPS has two

challenging characteristics (see Section 2 for details): high

energy consumption and inaccurate position. Our algorithm

reduces the number of position fixes by computing the time

a node can deactivate positioning before it may pass by a

sensor. This calculation has to be done carefully such that

nodes may not pass by a sensor unnoticed. In particular, we

have to consider the inaccuracy of node positions.

At first we define the minimum distance a node N has to

cover before passing by the read range of a sensor R as

dN,R = |posGPS(N)− pos(R)|+ rread − raccuracy (2)

posGPS(N) denotes the GPS position of N ; pos(R) is the

real position of R. A node adds rread to the distance to

R, because reading is possible as long as the node is in

read range after passing by a sensor. Moreover, due to the

inaccuracy of GPS, N might actually be raccuracy closer to

R (see Figure 2).

This definition allows for exceptional cases where nodes

are in read range of a sensor but do not notice. This

can happen when nodes turn while they are in read range

of a sensor and when nodes walk past the sensor. While

both cases are only relevant for nodes that almost move at

vmax, the latter is, in addition, unlikely since we assume

sensors to be placed directly where nodes pass by. We show

the insignificance of these effects in the evaluation (see

Section 5).

δ1 = dN,R/vmax (3)

δ1 is the time a node needs to pass the distance of dN,R

at maximum speed. Node N can turn off positioning after

a position fix at tfix until tfix + δ1. If the next reading is

scheduled at taut > tfix + δ1, N can postpone the next fix

even longer. How taut is derived is explained in Section 3.1.

δ2 = max(taut(R)− tnow, 0) (4)

δmin ←∞

for all RFID Sensor R do
δ1 ← dN,R/vmax

δ2 ← max(taut(R)− tnow, 0)
δfix ← max(δ1, δ2)
if δfix < δmin then

δmin ← δfix

end if
end for
return δmin

Figure 3. DROA: Computation of position fix interval

δfix = max(δ1, δ2) (5)

δ2 is the time until the next update is needed. The larger of

these values δfix defines the time span to turn off positioning

for the respective sensor. Note that taut(R) might change

when another node reads R. In this case, a node updates

taut accordingly without performing a position fix.

For multiple sensors, a node can only switch off position-

ing for the minimum δfix (see Figure 3).

When δcs is large, δmin is mainly determined by δ2.

Otherwise, it is mainly determined by δ1. Moreover, the most

restrictive sensor determines the position fix interval. These

considerations influence the CROA algorithm for efficient

reading as presented in Section 3.3.

Due to position inaccuracy, a node cannot definitely deter-

mine whether it is in read area Aread. We define the target

area Atarget of a sensor as the area where the probability of

successfully reading is larger than zero. This area is a disc

centered at R with radius rtarget = rread +raccuracy. When

a node detects to be in Atarget and an update is needed

it switches to the CROA algorithm (see Section 3.3). It

switches to the DROA algorithm when it is outside Atarget.

3.3. Concurrent Read Operation Avoidance

(CROA)

When multiple nodes read concurrently, a read collision

occurs that results in unsuccessful readings. However, high

reader density can be exploited to increase the probability

of successful reading. The basic idea of our approach is to

suppress reading, based on the distributed computation of

the probability of successful reading by letting nodes signal

their read operations to their 1-hop neighbors in the ad-hoc

network.

After each position fix, a node determines the set of

sensors that need to be updated and whose target areas

Atarget cover its position. Then, it checks if any of these

sensors Rj has to participate in reading. Therefore, a node

computes its individual probability psuccess of reading sen-

sor Rj successfully and the probability pgroup of Rj being

read successfully by the group of currently reading nodes. A

node reads if psuccess > pmin and pgroup < pmax is fulfilled

for at least one sensor. A node cyclically performs these

tasks with an interval δread. This interval depends on the

maximum node speed and allows to trade-off effectiveness

and efficiency of reading. When the interval is large, nodes

risk passing through Aread without reading; when the inter-

val is large, nodes read twice at almost the same position.

psuccess is the probability of a node being within rread of

a sensor, i.e, the overlapping zone as indicated in Figure 4.

In Figure 4a, node N has a fairly low probability of suc-

cessfully reading R. Whereas in Figure 4b the probability is

maximal. Note that the maximum may be below 1 according

to the accuracy.

The equation to compute the probability psuccess for a

specific inaccurate position Apos and the reading area of a

sensor Aread is the following:

psuccess =
Apos ∩Aread

Apos

(6)

Although we only consider uniformly distributed posi-

tions, this idea is applicable to more sophisticated models

as well.

To compute the success probability pgroup, a node sends,

directly before each read operation, a Beacon message as

1-hop broadcast to its neighbors. This message includes

the position of the node and, implicitly, the time when the

node reads. By sharing this information, every receiver can

compute psuccess for the respective node. Moreover, a node

can schedule its own reading so that no collisions occur. A

node computes psuccess for all nodes of which it is aware,

and that are closer to the sensor than itself. A node is only

aware of other nodes that recently signaled their reading with

a Beacon message. According to the following equation a

node then computes the probability pfail that none of these

k nodes succeeds in reading:

pfail =
∏

i=1..k

1− psuccess(i) (7)

When the probability pgroup = 1 − pfail is lower than

pmax the node sends a Beacon message and tries to read

the sensor. The full algorithm is listed in Figure 5. A

node switches to the DROA algorithm when an update is

performed or when it leaves Atarget.

The effect of this algorithm is that the number of con-

currently reading nodes is limited and nodes closer to a

Figure 4. Probability of successful reading

while doPositionF ix() ∈ Atarget ∧ needUpdate() do
psuccess ← successProbability(INDIV IDUAL)
pgroup ← successProbability(GROUP)
if psuccess > pmin ∧ pgroup < pmax then

send(BEACON)
if read() = SUCCESS then

sendUpdate()
end if

end if
sleep(δread)

end while

Figure 5. CROA: Concurrent read operation avoidance

sensor, i.e., with higher success probability, are preferred

for reading.

4. Adaptive Early Read Operation Avoidance

(AEROA/P)

The idea of the AEROA/P is to reduce the number of

participating nodes in the reading process to the minimum

needed to fulfill effectively the requested update interval δcs.

Node movement, i.e., the number of nodes passing by

a sensor during a certain period of time fpass, defines the

upper bound for the minimum possible update interval δ
′

cs.

For δcs > δ
′

cs a smaller number of passing nodes would

be sufficient. Since we cannot constrain the physical node

movement, we artificially reduce fpass by assigning only a

subset of all sensors to certain nodes.

EROA/P is effective and efficient for an arbitrary number

of nodes passing a sensor. When fpass is high, a sensor

is updated when needed. This behavior allows to trade off

between timeliness of updates and energy savings. We adapt

EROA/P by monitoring the history of the latest update times

at the context server and by determining the average update

interval δaverage as indicator for the number of passing

nodes.

We reduce the effective value of nodes passing a sensor

and, thus, the overall energy consumption, by allowing nodes

to ignore the respective sensor in the DROA algorithm (see

Section 3.2). Since this algorithm computes the time to

deactivate positioning based on the most restrictive sensor,

ignoring sensors allows for longer periods of deactivated

positioning and, therefore, energy savings.

The initial assignment of sensors to a node (see Sec-

tion 3.1 for details) is the mechanism we use to adapt the

sensor density of a node and thereby the value of fpass. This

mechanism can be used to adapt sustainably but inertly the

number of nodes passing by.

When nodes enter the service area, they request the list of

sensors from the context server (see Section 3.1.1). We now

add to each entry of this list an ignore flag that indicates if

the node may ignore the respective sensor in the DROA

algorithm. We do not remove the sensor from this list

to allow nodes to further participate in the EROA/P and

CROA algorithms, because energy consumption for these

algorithms is fairly low compared to positioning in sparse

sensor environments. This mechanism allows for assigning

different sets of sensors to different nodes. Therefore, each

sensor is assigned an ignore flag at the context server. This

flag specifies whether the corresponding sensor is assigned

to nodes. We set ignore as follows:

ignore =

{
true if δaverage < δcs + delayth,

false else.
(8)

The number of nodes in the service area changes over

time, since nodes continuously enter and leave this area. This

mechanism only affects those entering. Therefore, to adapt

rapidly, all nodes that enter the service area ignore a sensor,

if the ignore flag is set. This is necessary because δcs is

fairly small compared to the average time a node stays in the

service area. The value of delayth specifies the maximum

accepted delay of updates and, thus, allows for saving energy

through extended intervals of deactivated positioning.

5. Experimental Evaluation

In this section we present our simulation model followed by

the results of extensive simulations of our algorithms. We

implemented our algorithms for the network simulator ns-2.

In the following we refer to the following implementations:

• EROA/P: This implementation manages update times

proactively with EROA/P (see Section 3.1.1), detects

proximity to sensors with DROA (see Section 3.2) and

reads sensors efficient with CROA (see Section 3.3).

• EROA/R: In contrast to the EROA/P implementation,

the EROA/R implementation manages update times

reactively (see Section 3.1.2) instead of proactively.

• AEROA/P: In addition to the EROA/P, the AEROA/P

performs adaptation as described in Section 4. The

delayth is set to 20% of δcs. The average time a node

stays in the service area is set to 15 min. The numbers

of nodes leaving and entering the service area are equal.

• Isolated: A simple isolated approach where nodes are

unaware of the required update interval and read when

they are close to a sensor. Moreover, nodes implement

the DROA algorithm (see Section 3.2). After an update

a node skips reading for ten seconds. This implemen-

tation presents the worst case for duplicates.

• Global: The Global approach is implemented to com-

pare our approach with the best case where nodes

access global knowledge to perform only the necessary

updates.

We implemented our algorithms using the 802.11b extension

of ns-2 with the transmission range rtx set to 100 m. The

size of the service area is set to 1000 m x 1000 m, which is

sufficiently large considering the locality of the evaluated

Table 1. Energy Model

Component Energy [mJ]

GPS [10]

Position Fix 75

RFID [9]

Read 80

802.11b at 1 Mbps [11]

(broadcast rate)

Send (1000 Bit) 2

Receive (1000 Bit) 1

GPRS [12]

Send (1000 Bit) 80

Receive (1000 Bit) 40

algorithms. More important is the effect of node density

which we evaluate in a wide range. The nodes move in the

service area according to a graph based mobility model [8]

on the road graph of the city of Stuttgart. Nodes choose

a random speed. By default, the maximum node speed is

3 m/s. 25 sensors are randomly distributed on the service

area. The RFID read range rread is set to 5 m [5]. According

to [9] we set the duration of reading, i.e., the time to transmit

a sensor reading, to δread to 20 ms. The default position

accuracy is set to 5 m. Each simulation is performed 10 times

and lasts 3600 seconds.

To measure the energy consumption of the battery pow-

ered mobile nodes we rely on the energy model given in

Table 1, which also provides references for the different

values.

5.1. Percentage of Duplicates

In this section we evaluate the efficiency of the algorithms

in terms of duplicate updates. An update is valid for the

time δcs. We measure the time δvalid for that the context

server has valid updates during a simulation run. In addition,

we measure the number of updates Umeasure the mobile

nodes performed in order to provide the context server with

valid updates for this time span. We compute the minimum

number Umin of updates to provide valid updates for the

same timespan as follows:

Umin = δvalid/δcs (9)

Based on Umin we define the percentage of duplicates

(POD) as follows:

POD = 1−
Umin

Umeasure

(10)

At first, we plot the percentage of duplicates POD in

Figure 6 for a different numbers of nodes in the network.

In this scenario δcs is set to 4 minutes. EROA/R produces,

independent of the node density, practically no duplicates.

This is caused by the reactive mechanism, which prevents

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
nt

ag
e

of
 D

up
lic

at
es

 [%
]

Number of Nodes

EROA/P
EROA/R

AEROA/P
Isolated

Figure 6. POD for different numbers of nodes

nodes from reading as long as they receive a notifica-

tion. It also shows the effectiveness of the invalidation

of notifications when an update is performed. EROA/P

and AEROA/P behave similarly. However, effectiveness in

suppressing duplicates depends on the node density. With

lower node densities, the cooperative management of update

times is less effective. Thus, nodes sometimes do not know

about previous updates and have to perform redundant

read operations. However, the percentage of duplicates does

not exceed 7% for EROA/P and AEROA/P even with, on

average, only one node within the transmission range rtx of

each sensor (32 nodes: 32∗Pi∗(rtx)2/A = 1). The Isolated

approach fails to prevent duplicate updates, since nodes are

unaware of previous updates. Even for a relatively small

number of 32 nodes the number of duplicates reaches 60%

since still multiple nodes pass by the same sensors shortly

after each other.

Figure 7a depicts the percentage of duplicates for varying

values of the requested update interval tcs. The number

of nodes in the network is 256. EROA/R produces, inde-

pendent of the requested update interval δcs, practically no

duplicates. The POD for EROA/R and AEROA/P increases

slowly with growing values of δcs, since the cooperative

management of update times is less reliable for longer up-

date intervals. Still, Figure 7a indicates that the effectiveness

of our lightweight cooperative approach degrades gracefully.

The absolute number of updates for the Isolated approach is

independent of δcs at a high level and, thus, the percentage

of duplicates grows.

In Figure 7b we present the POD values for different

position accuracies. In this case, EROA/R, EROA/P, and

AEROA/P behave similarly. The increasing POD with high

inaccuracy is caused by the fact that the size of target regions

grows and, therefore, these regions can overlap. While trying

to read a certain sensor, a node may unintentionally read

another sensor, possibly resulting in a duplicate update. The

drop of the POD for the Isolated approach is due to the

increased number of collisions, which prevents nodes from

successfully reading and updating a sensor. For different

sensor densities, the same effect can be observed. However,

the overlapping of target regions is not due to growth in size

but because of growth in the number of the target regions.

In both cases, these duplicates do not put additional load

on the nodes, because they are a byproduct of the requested

reading.

Figure 7c plots the POD for different values of the

maximum node speed vmax. The POD for the EROA/P

and AEROA/P approach increases with growing speed of

the nodes. This is caused by the lower average time nodes

stay in transmission range of a sensor and, therefore, the

probability of losing the most current update time.

The EROA/R algorithm causes almost no duplicates at

all. The only duplicate updates are performed when a node

tries to read a specific sensor and unintentionally succeeds

in reading a different. However, no readings are wasted.

In addition, EROA/P produces duplicates, as the evaluation

shows, due to the loss of the most recent update time. This

effect was expected for large update intervals δcs as well as

for increased node speed. However, only a small number of

duplicates are performed for a wide range of node densities.

This is due to the self-tuning of EROA/P. In the case of

low node density, the POD is small because nodes only

seldomly pass by a sensor. With high node density, the POD
is even lower, because EROA/P profits from an increased

redundancy of nodes that manage tupdate.

5.2. Update Validity

The previous evaluations showed that our update protocols

reduce the number of redundant updates significantly. Now,

we show that despite the reduced number of duplicates, we

still achieve the desired update frequency. We measure the

time δvalid for which the context server has fresh, i.e, valid,

updates during a simulation run δsim.

UV =
δvalid

δsim

(11)

The UV metric allows to compare the effectiveness of our

approaches with the Global approach, which exploits global

knowledge, and, therefore, does not miss any updates. By

comparison we can determine the number of missed updates

of our approaches.

Figure 8a depicts the UV for experiments with varying

number of nodes. The δcs is reduced to 1 min to evaluate

the effectiveness in case of stressing conditions. Since the

EROA/P and EROA/R approaches perform as well as the

Global approach, we can infer that no updates are missed.

The AEROA/P approach performs almost equally well up to

the scenario with 256 nodes. Here, the adaptation mechanism

starts to reduce the number of nodes assigned to specific

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16

P
er

ce
nt

ag
e

of
 D

up
lic

at
es

 [%
]

Requested Update Interval [min]

EROA/P
EROA/R

AEROA/P
Isolated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 7 9 11 13 15 17 19 21

P
er

ce
nt

ag
e

of
 D

up
lic

at
es

 [%
]

Position Accuracy [m]

EROA/P
EROA/R

AEROA/P
Isolated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3 5 7 9

P
er

ce
nt

ag
e

of
 D

up
lic

at
es

 [%
]

Maximum Node Speed [m/s]

EROA/P
EROA/R

AEROA/P
Isolated

a. Update interval δcs b. Position accuracy raccuracy c. Maximum speed vmax

Figure 7. Percentage of Duplicates POD

 0

 20

 40

 60

 80

 100

 32 64 128 256 512 1024 2048 4096 8192

U
pd

at
e

V
al

id
ity

 [%
]

Number of Nodes

EROA/P
EROA/R

AEROA/P
Global

 0

 20

 40

 60

 80

 100

 5 7 9 11 13 15 17 19 21

U
pd

at
e

V
al

id
ity

 [%
]

Position Accuracy [m]

EROA/P
EROA/R

AEROA/P
Global

 0

 20

 40

 60

 80

 100

 3 5 7 9

U
pd

at
e

V
al

id
ity

 [%
]

Maximum Node Speed [m/s]

EROA/P
EROA/R

AEROA/P
Global

a. Number of nodes b. Position accuracy raccuracy c. Maximum speed vmax

Figure 8. Update Validity UV

sensors. Therefore, updates may be delayed, as specified by

delayth, and the UV value slightly degrades.

To evaluate the relation between UV and the position

accuracy we tested with raccuracy ranging from 5 m to 21 m.

Figure 8b shows that AEROA/P performs slightly worse than

the other approaches due to the delayth as explained above.

Moreover, Figure 8b shows a slight decrease of the UV ,

which indicates that few updates are missed. Due to the

large inaccuracy, the success probability psuccess of a node

to read a sensor is limited. However, nodes may skip reading

if psuccess is below a threshold, a trade-off between energy

savings and actual read success probability.

With growing node speed, the frequency of nodes passing

by a sensor is increased. This leads to an increase of the UV
as depicted in Figure 8c. EROA/P and EROA/R do not miss

updates and behave like the Global approach. AEROA/P

performs slightly worse as specified by delayth.

5.3. Energy Consumption

Our optimizations reduce the energy spent by mobile nodes

by reducing the number of read operations, communication

and for position fixes. Next, we quantitatively evaluate the

energy savings achieved.

The average energy consumption (EC) is the energy a

node consumes in an hour; it is measured in Joules. It is the

sum of the energy consumed by GPS, RFID reader, and for

sending and receiving for both 802.11b and GPRS.

In Figure 9 the EC is depicted for scenarios with different

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 32 64 128 256 512 1024 2048 4096 8192

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
N

od
e

[J
/h

]

Number of Nodes

EROA/P
EROA/R

AEROA/P
Isolated

Figure 9. EC for different numbers of nodes

numbers of nodes. The Isolated approach shows the expected

constant energy consumption for small numbers of nodes.

However, the higher the number of nodes, the higher is

the EC, due to the increasing number of collisions. The

EROA/P approach profits from growing numbers of nodes,

because the load is distributed over a larger set of nodes.

The EC for 8192 nodes is only about 33% the EC for 32

nodes. The adaptive AEROA/P approach benefits even more

from high node densities. It only consumes about 15% of the

energy in case of 8192 nodes compared to 32 nodes. This is

because of the adaptive reduction of nodes that participate

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
N

od
e

[J
/h

]

Requested Update Interval [min]

EROA/P
EROA/R

AEROA/P
Isolated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 7 9 11 13 15 17 19 21

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
N

od
e

[J
/h

]

Position Accuracy [m]

EROA/P
EROA/R

AEROA/P
Isolated

 0

 20

 40

 60

 80

 100

 120

 25 50 100 200

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
N

od
e

[J
/h

]

Number of RFID-based Sensors

EROA/P
EROA/R

AEROA/P
Isolated

a. Requested update interval δcs b. Position accuracy raccuracy c. Number of sensors

Figure 10. Energy Consumption EC

in updating a sensor. The EROA/R approach benefits from

higher node density, because the time between notification

and update is reduced. After an update, the node can ignore

the sensor again. Figure 10a depicts the energy consumption

EC with growing requested update interval δcs. The EC
for the reactive and the proactive approaches are roughly

equal. For lower values of δcs, the EROA/P and AEROA/P

approaches have lower EC than EROA/R because of the

high energy consumption of GPRS, which is used to notify

nodes. The EC of EROA/R scales with the number of

updates, while the EC of the EROA/P depends on the length

of δcs (see Section 3.1).

The energy consumption EC of a node also depends on

the position accuracy raccuracy. Figure 10b shows that the

average EC for our approaches is increased by 100% when

raccuracy is incremented from 5 m to 21 m. This is due to

the increased number of unsuccessful readings. The increase

is higher for the Isolated approach because it performs more

updates and, thus, the impact of RFID readings on the EC
is higher compared to our approaches.

The overall number of updates grows with the number

of sensors in the service area. As the EC of the EROA/R

approach scales with the number of updates it shows an

increase with growing number of sensors as depicted in

Figure 10c. For the EROA/P and AEROA/P approaches the

EC increases much slower.

The EC of the EROA/R algorithm is independent of

δcs when considering the energy consumption per update.

However, it depends on the node density. With high node

density, an update can be performed shortly after the noti-

fication, which allows nodes to ignore the respective sensor

again. The EROA/P shows a similar decrease of the EC.

However, the efficiency of EROA/P degrades with growing

requested update interval δcs. The different characteristics

between EROA/P and EROA/R explain the point of balance

between the EC values of the two approaches that we found

in the evaluated scenario to be δcs = 4 min in case of 256

nodes in the network. AEROA/P showed to reduce the EC
up to 50% by allowing for delayed updates.

The most significant energy consuming task of our algo-

rithms is positioning. Mechanisms such as dead reckoning

or map matching could reduce the EC. However, these

optimizations work independently of our algorithms and,

therefore, are outside the scope of this paper.

5.4. Summary

One major goal of this paper is to provide algorithms

that perform all possible requested updates. The evaluation

results indicate this goal is achieved. Only for increased

inaccuracy of position information, are some updates missed.

This is caused by the CROA algorithm, which balances

efficiency and effectiveness. Another goal of this paper is

efficient updating. As the evaluation shows, this goal is

achieved too. The number of duplicates is low and the

energy consumption of the nodes is far beyond the Isolated

approach. Moreover, a typical mobile phone battery allows

for hundreds of hours urban sensing.

6. Related Work

Environmental sensing is currently a very active topic in

different research fields. The research field of sensor net-

works mainly focuses on the autonomous monitoring of

environmental parameters in inaccessible areas. However,

most similar to our scenario are projects such as [2], [13]

that use sensor nodes for environmental sensing. Due to the

high price of sensor nodes and the high density require-

ments, these approaches also imply high cost for large-scale

deployments. In addition, these approaches suffer from the

battery depletion problem.

Another set of approaches is based on instrumented

mobile devices. These approaches exploit the resources of

mobile devices. Gellersen et al. [14] propose the integration

of sensors into mobile devices to achieve direct context

awareness of mobile devices rather than to use mobile

devices for context data collection as [15], [3]. Rudman et

al. [15] attach sensors for monitoring air pollution to a tablet

PC. MobGeoSen [3] is based on the integration of sensors

to mobile phones, which are carried by a large number of

people. Although we agree on the advantages of mobile

phones for environmental sensing, the integration of sensors

has several disadvantages. Due to size, cost and technical

reasons, only a limited number of sensors can be integrated.

Moreover, the need for attaching sensors to a mobile phone

is often too cumbersomely and, thus, restricts the number of

people participating in environment sensing.

In the field of data-centric storage Ratnasamy et al. [16]

propose a geographic hash table (GHT) for dissemination of

data to specific locations. Although we also aim for main-

taining data at specific locations, GHT is proposed for static

environments and, therefore, not applicable to MANETs.

Zahn et al. [17] propose a distributed hash table (DHT) for

MANETs. However, the overhead for maintaining a DHT

in a dynamic environment is too high for the infrequent

data access rates in our scenario. In general, DHTs do not

consider geographic proximity. Early work of us [18] deals

with location based storage and migration mechanisms for

maintaining data at specific locations in MANETs. Although

[18] allows for storing data close to specific locations, it

requires frequent position fixes for geographic routing.

The algorithmic aspects of our paper are also loosely

related to multi-reader coordination in RFID-based sys-

tems [19], [7]. However, these approaches tackle the goal

to increase read throughput instead of optimizing energy

efficiency of read operations. Moreover, they assume a

completely different system model with static readers instead

of mobile readers.

7. Conclusions

In this paper, we presented a novel scenario for environ-

mental sensing based on the combination of simple and

cheap RFID-based sensors and mobile devices such as

mobile phones with integrated long range RFID readers.

In our system, the mobile nodes cooperatively read sensors

installed in the environment as they pass by and transmit the

data to a infrastructure of context servers. We have presented

algorithms to achieve quality requirements in terms of up-

date frequency and efficiency in terms of energy consump-

tion. In our system, mobile nodes form an ad-hoc network

for the cooperative management of update times and the

coordination of reading to avoid redundant readings and col-

lisions. Besides a decentralized algorithm for coordinating

read operations, we have shown a complementary algorithm

that exploits infrastructure based coordination. By extensive

simulations, we have shown the effectiveness as well as the

efficiency of our algorithms. With our approaches, typical

batteries of mobile nodes allow for hundreds of hours of

operation performing nearly 100% of the possible updates.

Acknowledgements

This work is funded by the German Research Foundation

within the Collaborative Research Center 627 (Nexus).

References

[1] D. Cuff, M. Hansen, and J. Kang, “Urban sensing: out of the
woods,” Commun. ACM, vol. 51, no. 3, pp. 24–33, 2008.

[2] C. Chen and J. Ma, “Mobile enabled large scale wireless sen-
sor networks,” Advanced Communication Technology. ICACT
2006. The 8th Intl Conf, vol. 1, pp. 333–338, Feb. 2006.

[3] E. Kanjo, S. Benford, M. Paxton, A. Chamberlain, D. S.
Fraser, D. Woodgate, D. Crellin, and A. Woolard, “Mob-
geosen: facilitating personal geosensor data collection and vi-
sualization using mobile phones,” Personal Ubiquitous Com-
put., vol. 12, no. 8, pp. 599–607, 2008.

[4] H. Deng, M. Varanasi, K. Swigger, O. Garcia, R. Ogan, and
E. Kougianos, “Design of sensor-embedded radio frequency
identification (se-rfid) systems,” in Proc. of the 2006 IEEE
Int. Con. on Mechatronics and Automation, 25-28 June 2006.

[5] M. Beuttner and D. Wetherall, “An Empirical Study of UHF
RFID Performance,” in Proc. of MobiCom 2008, 2008.

[6] NFC Forum, Sep. 2008. [Online]. Available: www.nfc-
forum.org

[7] J. Ho, D. Engels, and S. Sarma, “Hiq: a hierarchical q-
learning algorithm to solve the reader collision problem,” Int.
Symp. on Applications and the Internet Workshops, 2006., pp.
88–91, Jan. 2006.

[8] I. Stepanov, P. J. Marron, and K. Rothermel, “Mobility
modeling of outdoor scenarios for MANETs,” in Proc. of
ANSS 38, San Diego, USA, April 2005, pp. 312–322.

[9] Skyetek, Sep. 2008. [Online]. Available: skyetek.com/Port
als/0/Documents/Products/SkyeModule M9 DataSheet.pdf

[10] Navman, Sep. 2008. [Online]. navman.com/Documents/
OEM docs/Jupiter30/LA000576C Jupiter30 DataSheet.pdf

[11] Summitdatacom, September 2008. [Online]. www.summitdat
acom.com/Documents/sdc-cf10g Product Brief 200803.pdf

[12] B. Gedik and L. Liu, “Mobieyes: A distributed location
monitoring service using moving location queries,” IEEE
Trans. on Mobile Computing, vol. 5, no. 10, 2006.

[13] J. Beutel, O. Kasten, F. Mattern, K. Rmer, F. Siegemund, and
L. Thiele, “Prototyping wireless sensor network applications
with btnodes,” in In Proc. 1st European Workshop on Sensor
Networks (EWSN 2004). Springer, 2004, pp. 323–338.

[14] H. W. Gellersen, A. Schmidt, and M. Beigl, “Multi-sensor
context-awareness in mobile devices and smart artifacts,”
Mob. Netw. Appl., vol. 7, no. 5, pp. 341–351, 2002.

[15] P. Rudman, S. North, and M. Chalmers, “Mobile pollution
mapping in the city,” in Proc. UK-UbiNet workshop on
eScience and ubicomp, Edinburgh, May 2005.

[16] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu, “Data-centric storage in sensornets with
GHT, a geographic hash table,” Mob. Netw. Appl., vol. 8,
no. 4, pp. 427–442, August 2003.

[17] T. Zahn and J. Schiller, “MADPastry: A DHT Substrate for
Practicably Sized MANETs,” in Proc. of 5th Workshop on
Applications and Services in Wireless Networks (ASWN2005),
Paris, France, June 2005.

[18] D. Dudkowski, P. J. Marron, and K. Rothermel, “Migration
policies for location-centric data storage in mobile ad-hoc
networks.” in Proc. of MSN’07. Springer, 2007.

[19] N. Vaidya and S. R. Das, “Rfid-based networks: exploiting
diversity and redundancy,” SIGMOBILE Mob. Comput. Com-
mun. Rev., vol. 12, no. 1, 2008.

