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Abstract—The dissemination of messages according to clients’
contexts (i.e., location and other attributes) opens up new
possibilities in context-aware systems. While geocast or content-
based publish/subscribe forward messages according to client
location or attributes, respectively, neither uses a combination
of the two. In this paper, we present this new communication
paradigm and the challenges it poses. We also extend concepts
from publish/subscribe networks to efficiently deal with highly
dynamic user location to lower update rates by approximating
the user’s location. This reduces update rates by between 25%
and 90%, depending on the granularity of the approximation.

I. INTRODUCTION

SING user contexts to address and disseminate messages
Uis a powerful new communication paradigm. Instead of
explicitly addressing via, for instance, IP addresses, contextcast
uses indirect addressing via context attributes. This enables
applications like the distribution of tourist or event information.
In this paper, we introduce a system for context-based address-
ing and routing of messages, called CONTEXTCAST. With it,
an announcement for an art gallery could be sent according
to a users’s interest in modern art and the proximity to the
exhibition. One can also imagine the dissemination of event
information using an event’s location and an age attribute
to inform people under a certain age of a city’s night life
while people over a certain age might be more interested in
the classical sights like churches or museums. Other sample
applications of contextcast include the selective distribution of
product information (advertisements), context-aware personal
communication services (e.g., context-aware instant messaging
or semantic email addressing [1]), or context-aware warning
services, for instance, for people with allergies.

An efficient network for forwarding messages is required
for large-scale contextcast scenarios. The basic idea of using
attributes for addressing in contextcast is similar to content-
based publish/subscribe systems, which have been thoroughly
researched in the past few years. A straight-forward idea to
implement contextcast, based on a publish/subscribe network,
is to let users subscribe to messages based on their context and
use content-based routing to forward messages to users with
matching context. However, as one contribution of this paper,
we show that contextcast has some fundamentally different
properties, which prevent us from simply using existing content-
based publish/subscribe networks for contextcast. Instead, we
need novel context-based routing mechanisms. One reason is
that even the very expressive class of publish/subscribe systems

does not cope well with context information, in particular,
location information as a very important type of context
information. If a location were simply put into a subscription,
any movement would cause an update of that subscription.
Moreover, simply treating location as an ordinary pair of float
values — as proposed by [2] — would make any two contexts
differ at least in their location information. This would prevent
a contextcast system from using an optimization like covering,
which aims to reduce routing information in the overlay network
for message distribution by aggregating similar or identical
subscriptions. Such optimizations are essential for a scalable
implementation; therefore, we argue that context attributes have
to be treated specially to allow for efficient systems. In this
paper, we present a contextcast overlay network including a
first strategy to deal with highly dynamic location information
by approximating user positions. Our evaluations show that
this approach greatly reduces the number of context updates
caused by movement of a mobile object by up to 91.5%.

The rest of this paper is structured as follows: Section II gives
an overview of related work. After that, we introduce context-
based routing, its semantics and our system model in Section III.
Section IV shows the challenges resulting from differences to
existing content-based routing mechanisms. An approach to
reduce updates by approximating location information is the
focus of Section V. The merit of our approach is shown in
Section VI, where we present results obtained from a simulation
with a prototypical implementation. In Section VII, we conclude
the paper and give a short outlook on future work.

II. RELATED WORK

The concept of a contextcast, which we introduce in this
paper, is closely related to both publish/subscribe (or simply
pub/sub) and geocast. From content-based pub/sub comes the
usage of attribute/value pairs to address and route notifications
while geocast addresses receivers in certain locations.

Numerous pub/sub systems have been researched and
developed in recent years, e.g., REBECA [3] or SIENA [4].
Nevertheless, none of these systems includes any particular
support to use the receiver’s location in either subscriptions or
notifications. The authors of [5] and [6] extended REBECA
and SIENA respectively to support mobility but focused
on problems arising from intermittent connectivity instead
of location information for addressing. The authors in [5]
also introduced “location-dependent subscriptions”, which
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allow a location attribute filter in subscriptions. However,
they do not specify how they handle covering and merging
subscriptions, which are an important aspect of REBECA. In
addition, Chen et al. [2] and Cugola et al. [7] proposed to
incorporate location information in publish/subscribe systems.
Chen introduced a concept of spatial events but does not
consider the properties of locations. Cugola also introduced
locations into publish/subscribe, and argued the need to handle
locations differently from simple attribute types. They recently
revisited the topic in [8], where they introduced a context-
aware publish/subscribe system. They extended the semantics of
pub/sub to include publisher and subscriber context in addition
to subscriptions and publications. The authors do not specify,
however, how they intend to use this information for routing
and ensure that the information is up-to-date. We consider
these issues in this paper.

Existing geocast systems offer support for locations as
addresses. Examples for such systems are GEO [9], which
uses a geometric location model based on WGS84, [10], which
uses a hierarchical symbolic location model, or “semantic
geocast” [11], which uses a hybrid model. All these geocast
systems use locations as the sole method of addressing and
routing and do not consider additional context attributes. To
extend any of these systems for context-aware communication
would require integrating additional context information into
the geographic routing structures, which is not a trivial task.
Instead, we focus on the extension of pub/sub-like overlay
networks with the capability to deal with location information.

An earlier work [12] used the term “ContextCast”. However,
this system only supports addressing and routing in a global
context space G C Z". Since this is an n-dimensional space,
the addressing and routing can be seen as a variant of a
geocast system. Additional types like strings or even semantic
information like a color type and attribute are not provided and
would have to be mapped to separate (numeric) dimensions in
G. While this is possible for strings, it is unclear how more
complex types like an enumeration color could be mapped
onto these numeric dimensions.

III. CONTEXTCAST

In this Section, we introduce context-aware communication,
the semantics of matching messages and contexts, and our
general system model.

A. Context-aware Communication

1) User Contexts: The contexts in CONTEXTCAST represent
users or entities participating in the system. Let k represent
a particular context. We assume that it consists of a number
of context attributes o, one of which is the entity’s location.
Since we focus on the efficient handling of a location attribute
in such a system, we distinguish between the location attribute
g0 and the other context attributes «;. The context attributes
« are tuples (type, name, value). The location attribute qj,c is
given as a geometric location based on WGS84, with a type
of “WGS84”. For the other context attributes «;, we currently
support simple types like integer, float, and string. However,
the system can easily be extended to support other types, e.g.,

k: WGS84: location = 48.12N, 9.10E
string: class = pedestrian
string: interest = "jazz"
string: interest = "modern art"
int: age = 33
Figure 1. Example of a context k
m: WGS84: location € 48.0N — 48.4N, 9.0E — 9.2E
string: interest = "jazz"
int: age > 30
payload = [concert details]

Figure 2. Example of a message m

an enumeration color or a class attribute based on a class
hierarchy. See Figure 1 for an example of such a context.

2) Contextcast Messages: The contextcast messages address
the contexts and thus the corresponding entities in the system.
They consist of a number of constraints on context attributes.
Formally, let m represent one particular message. Then m
consists of a number of attribute filters ¢. (Again, for clarity,
we distinguish between the constraint on location, which we
call target location ¢, and other attribute filters ¢.) The
attribute filters ¢ are tuples (type, name, operator, value),
where operator,, can be any binary operator that is defined
on the attribute type and evaluates to {true, false}. The filters
determine the set of receivers by matching a message’s attribute
filters and the attributes of the users’ contexts. The matching
between messages and contexts is explained in detail in the
next section. In addition to these attribute filters, a message
also carries a payload. Figure 2 shows a sample message.

B. Matching Messages and Contexts

The matching of attribute filters and attributes is defined by

the predicate AFMatch(¢, «): An attribute filter ¢ matches an

attribute «, i.e. AFMatch(¢, «) evaluates to true, iff
type, = type, A namey = name,

A\ operator , (value,, value,, ) M

Whether a message with several attribute filters matches

a user context and must be delivered to that user is defined

by the predicate Match(m, k): Let k be a user context with

attributes «; and let m be a message with attribute filters ¢;.
Then k matches m, i.e. Match(m, k) = true, iff

for each ¢, Ja; : AFMatch(9;, o;) = true 2)

Thus, attribute filters in messages are evaluated as a conjunction
of predicates, while a disjunction can be expressed by sending
multiple messages.

C. System Model

The purpose of our CONTEXTCAST system is to forward
messages from the senders to all receivers with a matching
context, i.e., avoid situations where a client with a matching
context does not receive a message (false negatives). (Though
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Figure 3. The CONTEXTCAST system

this seems to be most natural for applications, it may be possible
to improve the system even further if we accept a certain
amount of false negatives to reduce update rates. However, this
is out of the scope of this paper.)

To achieve a scalable system, we use a distributed approach
with routers forwarding the messages to the users with a match-
ing context. This resembles a distributed publish/subscribe
system, where a network of brokers disseminates notifications
to all interested clients.

Since it is very unlikely that context-based addressing will be
supported by the Internet routing infrastructure on the network
layer in the near future, we imagine an overlay network for this
purpose. It is formed by infrastructure nodes, which could be
provided and maintained by ISPs. See Figure 3 for an overview
of the overlay and its components (in addition to location the
clients have a context attribute inferest that is depicted in the
figure by the shape of the clients).

In our system, the overlay nodes basically have two roles:
routing and access. We assume the users of our system are
mobile and equipped with a positioning sensor.

When the clients connect to an access node (or ContextN-
odes), they transmit their context information to it. The access
nodes propagate this information into the network of contextcast
routers (or ContextRouters), which build routing tables based
on where clients with certain contexts are located. We call
the propagation of context information an “update” and the
contexts, which the routers store, the state information that is
maintained in the overlay.

The access nodes cover a certain service area and all clients
joining the system select an access node according to their
own location and these service areas. The service areas can
be assigned following different criteria. Since we assume a
system of wired or wireless LANs containing the clients, it
seems natural to assign service areas coinciding with the area
covered by the LAN, i.e., a context node’s service area might
be as small as a floor of a building covered by a wireless
LAN or as big as a set of LANSs, e.g., a campus network of a
university.

Users can also roam between different service areas and,
after roaming, re-attach to a new access node. This information
is again propagated in the network and the routers adjust their
forwarding tables.

IV. COMPARISON OF CONTEXTCAST AND PUB/SUB

Pub/sub and contextcast, as we describe it here, share some
similarities. Therefore, using content-based pub/sub overlay
networks as a basis for distributing contextcast messages seems

reasonable. However, as we show in this section, contextcast
poses a number of new challenges that prevent us from simply
using pub/sub.

At first glance, contextcast and pub/sub seem similar:
contexts appear to be equal to subscriptions and contextcast
messages equal to notifications. However, the semantics of both
systems differ: in contextcast messages select the receivers via
attribute filters, while in a pub/sub system the receivers select
the messages via their subscription.

As we can see from this description, there is a fundamen-
tal difference between the two paradigms: In content-based
publish/subscribe systems, brokers check whether the content
of the published message is subsumed by the subscriptions
and forward notifications accordingly. The receivers’ subscrip-
tions therefore select the interesting notifications. In contrast,
contextcast routers check whether the context of the client
is subsumed by the published message to make their routing
decision. In this case, the messages (and hence the senders)
select the receivers. The matching semantic is therefore reversed
between the two systems. This has an impact on several aspects
of the system.

First, of course, the local matching in the nodes as part of the
forwarding decision has to be adapted. The basic, unoptimized
implementation for this, however, is straight-forward. Second,
it also affects the reduction of state in the network. Pub/sub
systems increase scalability by techniques like covering to
represent several similar subscriptions by the most general one;
only general information covering the more specific information
has to be propagated far into the network, which reduces the
induced overhead. This works very well for subscriptions with
value ranges. For subscriptions with point values, covering is
only possible when either both subscriptions are equal or when
one is more specific than the other. Unfortunately, covering
in this form offers virtually no benefit in contextcast. On the
one hand, since contexts are point values, we are limited to
sets of identical attributes and values when trying to cover two
contexts. On the other hand, also covering contexts where all
other attributes are equal is hardly possible, since usually at
least the location attributes are different between two contexts.
Consider for instance two WGS84 coordinates of two users.
These coordinates will hardly be the same for two different
users. Therefore, without special treatment, both user contexts
must be propaged separately into the overlay network without
the possibility for covering.

Another possibility to aggregate contexts and thus reduce
state information in the network is a method similar to
merging in publish/subscribe. Merging replaces a set of similar
subscriptions by a single, newly generated one, which contains
all the information of the individual contexts. Then this merged
subscription can be propagated in the network for building
routing tables.

Unfortunately, a more complex aggregation largely depends
on the characteristics of the contexts and on the different
attribute types. Location, for instance, has to be aggregated dif-
ferently than enumeration types like interest. Also, aggregation
usually causes a loss of information, which in turn increases the
number of messages that are transmitted without a matching
receiver. These false positives cause additional forwarding,



processing and storage load in the network. An aggregation of
user contexts must therefore find a good trade-off between the
reduction of contexts and the introduction of false positives
into the system.

The need for an efficient reduction of updates and state in a
contextcast system is even more evident when we consider the
update rates of clients: Contextcast must be able to cope with
high update rates, since, for example, modern GPS receivers
provide update rates of up to 4Hz. If this resulted in the same
update rate in the overlay, scalability would be severely limited.
In Section V, we therefore propose an approach to approximate
location information in an effort to lower the update rate caused
by moving clients.

Another difference between contextcast and pub/sub con-
cerns how contexts and subscriptions are entered into the
respective systems: A pub/sub system has a pattern of “sub-
scribe, unsubscribe, subscribe, unsubscribe, ...” and there is
usually little or no correlation between any two subscriptions.
Consider the example of a stock market subscription, with a
filter on the stock’s value rising above a certain amount. If
the filter matches a notification, the stock might be sold and
the subscription is no longer relevant. It could be replaced
by a subscription for different stocks, by a totally different
subscription, or not at all. In contrast, most attributes in a user
context are rather static (like the attributes gender or age) and
mostly change gradually (age or location are examples for
that). This could be exploited in different ways: First, we can
use an “update” operation to update only a small part of an
existing context in the system instead of revoking the complete
old context and re-installing the new version. This reduces
the size of the updates. Second, we can also use a prediction
function to further reduce the number of state updates in the
network. Then update messages would only have to be sent
when the prediction does differ from the actual context values.

In this paper, we propose a technique for reducing updates
by using approximated location information in user contexts.
More general methods of aggregating contexts and applying
predictions to context values are part of our future work.

V. LOCATION APPROXIMATION

To improve the scalability of the system, we strive to limit
the amount of context data transferred and stored in the network.
The reduction of updates requires a trade off against routing
accuracy: On the one hand, if we reduce updates to zero, i.e.
contexts are only stored at access nodes but not propagated into
the overlay network, the only way to forward a message to all
addressed receivers is to broadcast it. This causes many false
positives to be forwarded because of the missing information for
in-network filtering. On the other hand, if we have very accurate
and up-to-date information in the network and propagate every
update to every router (i.e. global knowledge at every router),
the system can make very precise routing decisions without
creating false positives. Unfortunately it would generate an
update for every little change in context.

Location is surely one of the most dynamic context attributes.
Thus, movement is the reason for many of the context updates
in the system. To avoid updates, we propose an approximation

of locations and only update contexts for larger changes of
location. (Of course, changes in other attributes still cause
updates; however, in this paper we only focus on updates
caused by movement.)

As we have shown in the system model, each access node has
an assigned service area. Hence, a simple yet effective solution
to approximate location information is to identify an entity’s
location with the service area of its current access node. In this
case, we can forego the context updates caused by movement,
as long as an entity only moves within the service area. If it
leaves the area, it needs to re-attach to a different access node
anyway to inform the system that messages matching its context
should now be forwarded to this access node. This reduces
updates caused by movement to the entering and leaving of
an access node’s service area, instead of every few meters.

This change also requires us to adapt how we match
messages: Since contexts no longer contain exact positions,
we cannot test for the inclusion of a context in the target
location any more. Instead, we need to test whether the target
location intersects with a context’s approximated location (i.e.
the access node’s service area):

WGS84: location N (target location) ,

where the operator N is defined as loc; N locy = true, iff
locy Nlocy # (.

While this optimization reduces the updates caused by
movement, it increases the number of false positives: We
now have to consider all contexts for forwarding in which
the location intersects with the target location, simply because
the user might be in that overlapping area. However, since
the context information might need to be propagated far into
the network, whereas messages are directed towards matching
contexts, a context update usually causes more traffic in the
network than a single message. We evaluate this trade-off
between updates and messages in the next section.

VI. EVALUATION

To evaluate the performance of our approach, we have
implemented a prototype to determine the savings in messages
of the location aggregation we described in the previous section.
We simulated an overlay network of 1000 ContextRouters with
2000, 5000, and 10000 mobile clients. Since we only consider
the effects of the location attribute, we fix the other context
attributes and simulate only clients with these attributes. (This
also means that we do not simulate any updates caused by
changes in attributes other than location.)

The routers were connected according to a Waxman
model [13]. Simulation time of each run was 900s and the
clients followed an incrementally changed random motion.
We simulated clients with a low average speed typical for
pedestrians. The simulated system covered a total area of
10000 units x 10000 units, which we then divided up into 400
squares (resulting in an edge length of 500 units per square).
On average, 60% were then selected as access networks and
each was assigned a router within its area as access node.

Each of the clients sent random messages with an average
rate of one message every 18s; the target location of these
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Figure 4. Message load for Contextcast

messages were random squares with an edge length of 0.5t0 1.5
times the edge length of an access network square (500 units),
uniformly distributed over the total simulation area. The other
attribute filters were set to the fixed attributes, therefore only
the location was relevant for determining matching receivers.

In this system, we then simulated our approach approximat-
ing user location by the access nodes’ service areas (SAA,
Service Area Approximation) and compared this to an approach
propagating more accurate position information, i.e. we sent
a position update once the client moved more than 20 units
(DB20), accounting for the typical accuracy of GPS. We
also compared it to an approach with a distance threshold of
500 units (DB500). This served as a reference with a location
uncertainty comparable to the service area approximation (if
the distance threshold were significantly higher than the size
of an access network, it would replicate the behavior of SAA).
In all approaches the clients also sent an update message when
both entering and leaving an access network.

We ran each experiment 10 times, with different network
topologies, client movement, and contextcast messages. In
each run, we measured the number of forwarded updates
and contextcast messages between neighboring routers and
calculated the average number of total overlay messages.

As can be seen from Figure 4, SAA reduces the average
total number of messages by 91.5% compared to DB20. This
effect is largely the result of a decrease in updates by 91.6%
on average, while the number of messages increases between
66.4% for 2000 clients and 16.2% for 10000 clients because
of the false positives (the amount of false positives is higher for
2000 clients because of the lower density of clients). However,
since the number of forwarded updates is significantly higher
than the number of forwarded messages (in the order of 10% for
DB20 and still 102 for DB500), the reduction of updates greatly
outweighs the false positives introduced by the approximated
location. SAA also reduces updates by 24.9% compared to
DB500, with similar location uncertainty. The reason for this
reduction is the fact that even with a 500 unit threshold, the
clients must still register and unregister with the access nodes,
in addition to sending a location update once they move more
than 500 units.

These results show that the reduction of update messages
greatly reduces message load in the system. As the message
rate increases, though, the effect of false positives also increases
until finally the false positives outweigh the savings in updates.
However, the simulation shows that — depending on the size
of the system — the message rate would have to increase by

102 or more to outweigh the savings achieved by location
approximation. This would mean more than 5 messages every
second from each client, which is unreasonably high in the
scenarios we envision for a contextcast.

VII. CONCLUSIONS

Using user contexts to address and route messages opens
up interesting new applications. In this paper we identified
the new challenges for contextcast, which are not addressed
by existing publish/subscribe overlay networks. Moreover, we
proposed a first optimized contextcast overlay network that
efficiently deals with highly dynamic location information by
approximating individual user positions to reduce the need for
frequent position updates.

This approximation of location information also alleviates
the problem that any two contexts differ at least in the location
attribute and thus paves the way for aggregating similar
context information. Since an access network might contain
many objects with similar contexts, the aggregation of context
information could greatly reduce the need for propagating many
individual context updates into the network. Instead only few
aggregated updates have to be sent. We are currently working
on ways to exploit these similarities in the aggregation of
context data and only propagate context for groups of users,
which should further improve the scalability of routing tables
and thus the whole system.
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