Efficient and Scalable Network Emulation using
Adaptive Virtual Time

Andreas Grau*T, Klaus Herrmann, and Kurt Rothermel
Universitdt Stuttgart, Institute of Parallel and Distributed Systems (IPVS)
Universititsstr. 38, D-70569 Stuttgart, Germany
Email: {grau,herrmann,rothermel } @ipvs.uni-stuttgart.de
Telephone: +49 (711) 7816-236, Fax: —424

Abstract—Performance analysis and functionality testing are
major parts of developing distributed software systems. Since the
number of communicating software instances heavily influences
the behavior of distributed applications and communication
protocols, evaluation scenarios have to consider a large number of
nodes. Network emulation provides an infrastructure for running
these experiments using real prototype implementations in a
controllable and realistic environment. Large-scale experiments,
however, have a high resource consumption which often exceeds
available physical testbed resources. Time dilation allows for
reducing the resource demands of a scenario at the expense
of the experiment’s runtime. However, current approaches only
consider a constant time dilation factor, which wastes a lot of
resources in case of scenarios with varying load.

We propose a framework for adaptive time virtualization
that significantly reduces the runtime of experiments by im-
proving resource utilization in network emulation testbeds. In
this framework, resource demands are monitored and the time
dilation factor is dynamically adapted to the required level.
Our evaluation shows that adaptive virtual time in combination
with our lightweight node virtualization architecture allows us
to increase the possible scenario sizes by more than an order of
magnitude and, at the same time, ensure unbiased emulation
results. This represents an important contribution to making
network emulation systems highly scalable.

Index Terms—network emulation, performance evaluation,
virtualization, time dilation, adaptive virtual time

I. INTRODUCTION

Two principal components of the software development
process are functionality testing and performance evaluation.
The behavior of distributed applications and communication
protocols depends heavily on the number of communicating
instances. Due to the complexity, an analytical evaluation of
such systems is often infeasible. A commonly used approach
is to evaluate the software under test (SUT) by means of
a network emulation testbed. Using distributed emulation
tools [21], [12] and a configurable network infrastructure,
arbitrary topologies with configurable network properties can
be created. The testbed consists of an arbitrary number of
physical nodes connected by a high-bandwidth network. The
big advantage of network emulation as opposed to the evalu-
ation in a real network [6] and the usage of simulation tools
[9], [20] is that the SUT does not have to be modified and

*Corresponding author.

TFunded by the Deutsche Forschungsgemeinschaft (German Research
Foundation) under grant DFG-GZ RO 1086/9-2.

can be evaluated in a repeatable fashion and in a controlled
environment.

In order to support large scenarios in a network emulation,
multiple virtual nodes can be executed on each physical node
using node virtualization [1], [13]. However, the number of
virtual nodes per physical node is limited, as mapping too
many virtual nodes to a physical node overloads that node.
Such an overload may bias evaluation results since the SUT
experiences resource shortages that do not exist in a real
execution environment. Using a virtual time [5] that is running
slower than real time allows for reducing the system load and,
therefore, allows to increase the number of virtual nodes per
physical node. For example, a real 10Mbit/s network can be
used to transport 100Mbit/s in the emulation if the time dila-
tion factor is set to 10 (virtual time runs 10 times slower than
real time). With this time dilation factor, a physical node using
this real network can run 10 software instances in 10 virtual
nodes where each consumes 10 MBit/s. Existing systems with
a constant virtual clock rate choose a very conservative rate
to prevent overload even when load peaks occur. Therefore,
in scenarios with changing resource requirements, the system
may experience considerable underload most of the time. The
consequence is that the experiment’s runtime is suboptimal.

In order to prevent overload situations and, at the same
time, optimize the experiment runtime, we extend our Time
Virtualized Emulation Environment (TVEE) [10], a network
emulator based on node and time virtualization, by a mecha-
nism to dynamically adjust the clock rate to the current load
situation. Our evaluation results show that the adaptive time
virtualization in combination with our lightweight node vir-
tualization architecture, allows several hundred virtual nodes
running on the same physical node without influencing the
quality of the emulation results. Using the same hardware,
we have shown in previous work [17] that other emulations
approaches are only able to run in the order of 10 virtual nodes
before results get biased. Therefore, our work represents a
big step forward in terms of scalable network emulation. The
resulting emulation framework can be used by the networking
community in order to evaluate much larger networks and,
thus, achieve more realistic results in many problem domains.

The remainder of the paper is structured as follows. In the
following section, we first present the related work in the
field of network emulation. In Section III, we discuss the

Published in Proceedings of 18th Internatonal Conference on Computer Communications and
Networks (ICCCN'09), pages 1 - 6, San Francisco, CA, Aug 2009.

© IEEE 2009
http://dx.doi.org/10.1109/ICCCN.2009.5235306

architecture of our system with its main building blocks, node
and time virtualization. In Section IV, we introduce the main
contribution of this paper: the adaptive load-controlled virtual
time approach. A detailed evaluation is given in Section V,
and Section VI presents a summary, our conclusions, and an
outlook on future work.

II. RELATED WORK

Canon et. al. [5] where the first to introduce virtual time in
emulations. However, no adaptive clock rate is used in their
approach. Therefore, the clock rate has to be pre-configured
to a value that ensures that no overload situation occurs
throughout the experiment run. This leads to very conservative
clock rates such that outside periods with load peaks, the
system does not utilize the existing resources efficiently and,
thus, the experiment runs much longer than necessary.

Hybrid systems combine the benefits of network simulation
and network emulation, by connecting physical nodes [16]
running real implementations to a simulated network based
on parallel discrete event simulation (PDES) [9], [20]. In
addition, these approaches use a combination of node and time
virtualization [8]. However, a constant clock rate is used here
too. The necessary synchronization in the simulation produces
additional overhead.

Weingirtner et. al. [23] have proposed an approach to
conservatively synchronize multiple virtual machines to a
simulation framework. Here, an experiment is evenly divided
into time-slices. The end of each slice constitutes a barrier to
synchronize the VMs with the simulation framework. How-
ever, the VM-based node virtualization increases the overhead
introduced by the synchronization schema.

Emulation of arbitrarily powerful virtual resources can be
achieved by adapting the Linux protocol stack to use virtual
time instead of real time. While Wang et. al. [22] use only
a simulation framework running on a single physical node,
dONE [4] uses a distributed simulation environment. In con-
trast to our system, dONE only supports testing of application
layer implementations using the BSD socket interface.

All existing approaches either have additional synchroniza-
tion overhead or only support a constant clock rate which
both results in a suboptimal experiment runtime. TVEE solves
these problems, by dynamically adjusting the clock rate to the
current load of the system.

III. SYSTEM ARCHITECTURE

The foundation of our network emulation approach is
the Network Emulation Testbed (NET) at the University of
Stuttgart consisting of 64 nodes. The nodes are connected by
an emulation network using a central, configurable gigabit
switch and an additional control network. The emulation
network can be partitioned using IEEE 802.1Q VLAN (virtual
LAN) to form arbitrary virtual network topologies between
the nodes. We have developed a tool called NETshaper [10],
[12], to emulate network properties like bandwidth, delay and
packet loss. Based on these components, we are able to run the
SUT in a controlled environment. Since our network emulation

physical node
time dilated guest (VM)

[guest OS with VR
virtual virtual virtual
node 1 node 2 node n

Fig. 1. TVEE architecture: Virtual Routing inside a virtual machine

approach provides a virtual network interface, we can evaluate
distributed applications as well as communication protocols
above data link layer.

To increase the number of virtual nodes (hosts, routers,
switches) in the emulated network we use a node virtualization
system that is based on Virtual Routing (VR) [15]. As op-
posed to Virtual Machines (VM) [2], [3], [7], Virtual Routing
provides more lightweight virtualization. The processes that
make up a virtual node all share the same operating system,
but each of these virtual nodes has its own protocol stack,
including sockets and routing tables. By virtualizing additional
operating system components [14] like process name spaces
and file systems, processes of different virtual nodes are clearly
separated from each other. As shown in previous work [17],
the VR-based approach has an order of magnitude better
performance than the VM-based approach with respect to
memory consumption and communication overhead. Thus, it
is very lightweight.

Time virtualization is achieved by using virtual machines.
By changing the interface between the virtual machine and the
hosting operating system or virtual machine monitor, virtual
time is transparently provided to every software running inside
the VM [11].

The TVEE prototype architecture combines Virtual Routing
for node virtualization and virtual machines for time virtual-
ization as depicted in Figure 1. Multiple virtual nodes that are
based on virtual routing run inside one VM that provides the
virtual time. In turn, One of these virtual machines, in turn,
run on each physical node in the emulation testbed.

IV. EPOCH-BASED VIRTUAL TIME

To adapt the virtual clock rate to the resource demand of
the experiment we introduce the Time Dilation Factor (TDF).
Equation 1 shows how the virtual time (R,) and the real time
(R,) are related by means of the TDF.

TDF

R, =2 "R" R, (1)

In order to allow an efficient implementation using integer
arithmetic, we use (in contrast to Gupta et. al. [11]) a logarith-
mic relation between the rate of virtual time and the real time.
Using only integer arithmetics, we can adjust the rate of the
virtual clock with a step width of about 7%. This granularity is
sufficient for the adaptation algorithm that we will introduce in
Section IV-B. In addition, without a logarithmic relation, this
granularity depends on the virtual clock rate. For fast rates the
granularity is coarse and it increases with slower rates.

__CPU utilization

virtual machine
with virtual nodes
——

A

load monitor

load

reports TDF change

requests

» epoch switcher

tdf adaptor
(coordinator)

new TDF

Fig. 2. TDF adaptation schema

In order to perform the adaption of the TDF, we propose the
concept of epoch-based virtual time [10]. The experiment is
divided in epochs of different length where the TDF is constant
within each epoch. Whenever the resource demand changes,
an epoch switch is triggered to adapt the TDF.

Figure 2 shows the TDF adaptation schema. Each physical
node of the emulation system runs a load monitor that mon-
itors the node’s load and reports it to a central coordinator
who calculates the overall system load. The overall load is
defined as the maximum over all individual node load values.
This definition is chosen to ensure that no physical node is
overloaded at any time.

Using the overall load, the coordinator determines a new
TDF and initiates an epoch switch. The epoch switcher is
used to distribute the new TDF to the physical nodes and to
perform an epoch switch. In the following, each component
(load monitor, TDF adaptor and epoch switcher) is discussed
in detail.

A. Distributed Load Monitoring

The load monitor is used to measure the load of a physical
node and report the load to the TDF adaptor. The virtual
machine monitor (VMM) provides a per virtual machine
statistic, which counts the number of used CPU cycles ¢(t).
Requesting this value at 2 points in time (¢(¢;) and ¢(t2))
allows for calculation of the load | = % To meter
the time between the measurements with a sub-microsecond
granularity, we use the time stamp counter register of processor
(TSC), which is increased on every CPU clock cycle.

The length of the sampling interval has a large effect
on the performance of load monitoring. Short intervals are
required for a fast reaction to load changes, but also result in
a large number of load reports. Transmission and processing of
large amounts of load reports would overload the coordinator
and, therefore, limit scalability. To limit the amount of load
reports, we use 3 mechanisms: adaptive sampling, threshold-
based discretization and hysteresis-based state changes. These
mechanisms effectively reduce communication overhead for
reporting substantially.

Adaptive sampling adjusts the length of the sampling inter-
val (time period between two consecutive load reports) to the
currently used TDF. For a higher TDF (slower virtual time) a
longer sampling interval is chosen. The ratio behind this is that
overload situations develop proportionally slower when the

A l0ad (ressource utilization)
100%.
load panic

Lp_pos===-
hysteresis

Ly 1

Ly

0° underload R
time

Fig. 3. Load Monitoring Thresholds

virtual time runs slower. Therefore, the sampling interval may
be increased without taking the risk of missing any relevant
change. The effect is that as a system increases in size (number
of virtual nodes) and the load increases as a result, the message
overhead resulting from load reports decreases. Therefore, we
increase the sampling interval linearly with the TDF.
Threshold-based discretization maps the possible load val-
ues of a physical node to the 4 states load panic, load
warning, reasonable load, and underload (see Figure 3) using
3 thresholds (L p, Ly, and Lg;). The load monitor determines
the state locally and only in case of a state change, a load
report is sent to the TDF adaptor. Underload indicates that
there are unused resources and, therefore, virtual time could
be accelerated. Analogous, the two states load panic and load
warning signal that resource consumption is becoming too
high. When the system is in one of these states, virtual time has
to be slowed down. The two thresholds Lp and Ly are used
to differentiate between slight and heavy load. The different
reaction on these states is described in the next section.
Hysteresis-based state changes are used to avoid oscillation
between two states which causes a high number of load
reports. A state change is only triggered if load exceeds the
threshold and its surrounding hysteresis range (see Figure 3).

B. TDF Adaptation

Based on the load reports, the TDF may need to be adjusted.
The TDF adaptor achieves this adjustment by means of a
very simple proportional feedback control mechanism that is
shown in Algorithm 1. Whenever the system load is outside
the reasonable range, the algorithm adapts the TDF to reach
the reasonable load state. As long as the system load is in state
load warning or underload, a small adjustment S, is applied
(added or subtracted) to avoid overshooting the reasonable
load state. If there is a fast increase in load, this adjustment
will not suffice and the system will eventually reach the load
panic state. In this situation, a larger step size S; is used for
the adjustment in order to decrease the load quickly and avoid
overload. If this results in an underload situation, the algorithm
will gradually decrease the TDF again to speed up virtual time.

After each adjustment, the algorithm needs to wait for
feedback from the load monitor to see whether the load is back
in the state reasonable load. Due to the adaptive sampling of
the load monitor, the time until the feedback arrives depends

input: state, TDF}c,

1 while true do

2 if state != reasonable_load then

3 if state = load_panic then

4 setTDR(TI'DF)yy e, + S1)

5 else if state = load_warning then
6 setTDF(T'DF e + S)

7 else if state = underload then

8 setTDR(I'DFyrer - Ss)

9

end
10 sleep T’
1 else if state = reasonable_load then
12 setTDF(T'DFyre + S5)
13 sleep 1;
14 end
15 end

Algo. 1. TDF Adaption Process

on the current TDFE. Therefore, we dynamically adjust the
waiting time (7%) to the half of the used sampling interval.

In case of temporarily constant resource demands, the
utilization can keep steady at any level between the Ly and
Lyy thresholds in the state reasonable load. For good resource
usage, however, the system utilization should be near the Ly
threshold. Therefore, we decrease the TDF in the reasonable
load state, too. However, the speed of this adjustment is very
low, through a waiting time 7; of an order of magnitude
larger than the waiting time 7. In combination with the
hysteresis around the thresholds the oscillation around Lyy,
these adjustments introduce an insignificant overhead.

Evaluation shows that the introduced algorithm has a good
reaction to changes of resource requirements despite the fact
that it is rather simple.

C. Epoch Switching

After determining the TDF for the next epoch, a mechanism
is required for propagating the new value to the physical nodes.
To ensure a fast reaction on upcoming overload, the time
between detecting the resource demand and the actual TDF
change must be as small as possible. Since the time to compute
the new TDF is negligibly small, we need to minimize the
time for transmitting load reports and TDF change requests. In
addition, realistic emulation requires all virtual clocks to run at
the same rate at any time. Therefore, we need mechanisms to
minimize the difference in propagation times of TDF change
requests. A third problem related to epoch switching is the
occurrence of message loss which cannot be detected in time.

We have developed a protocol for minimizing the propa-
gation time of TDF change requests and load reports. The
basic assumption behind this protocol is that all nodes are
connected to a LAN. We are using the previously mentioned
control network of the cluster. The delay of TDF change
requests and load reports using this network consists of several
components: network transmission delay, packet processing
time in the protocol stack, and delay in queues. The time to

transmit a frame in the network is insignificant because it is
below 200us and has a small variability. The processing time
in the protocol stack is a magnitude below the transmission
time and can be ignored as well. Most of the message delay is
caused by waiting in egress and ingress queues of the physical
nodes and the switch. In order to limit these delays, we are
using priority queues based on type of service (TOS) of IP
QoS and prioritize TDF change requests and load reports. A
last source of delay are the hardware based FIFO queues inside
the network interface cards (NICs). Since we cannot change
theses queues, we are limiting the traffic on these interfaces
to 95% of the link capacity to keep the queues empty. Using
these mechanisms, the maximum packet transmission delay
can be reduced below 2ms and message loss can be prevented
with a very high probability.

V. EVALUATION

In order evaluate the performance of the proposed system,
we integrated the concepts for load monitoring, TDF adapta-
tion and epoch switching into our prototype. The prototype,
running on the NET Cluster equipped with 64 nodes (P4
2.4GHz, 512MB Ram, 1GBit NICs), is based on XEN [2]
version 3.1.0 running Linux Kernel 2.6.18 inside a virtual
machine (domU in XEN jargon) and inside the control domain
(dom0). In addition, OpenVZ [19] is used to create virtual
nodes inside the VM. The mechanisms for adaptive virtual
time were implemented as Linux Kernel Modules (LKMs)
running in domO to minimize latencies for epoch switching.

In previous work [10], we have shown that our emulation
architecture is able to accurately emulate network properties
like bandwidth and delay. By choosing an adequate TDF, we
are able to emulate links between two virtual nodes with
bandwidths between 64kbps and 100Gbps, as well as delays
ranging from 1ms to 100ms. The virtual nodes in the following
evaluation have an average memory overhead of 300KB.

The evaluation is structured as follows: First, we briefly
discuss the chosen parameters for the load monitoring and the
TDF adaptation. Then, we investigate the achieved resource
utilization. Finally, we show how to evaluate the performance
of a routing daemon in a large scenario using TVEE.

An extensive search of the parameter space using scenarios
with different resource requirements has been performed to
identify a configuration which generally minimizes experiment
runtime and ensure unbiased results. The determined thresh-
olds of the load monitor are: L;;=50, Ly =70, and L p=90.
The adaptive sampling interval ranges from 5ms for TDF=0
to 200ms for TDF=100. TDF adjustments with a step width
Ss of 1 and S; of 20 give best results for the TDF adaptation.

To quantify the achieved level of resource consumption, we
are emulating a chain of routers routing 2 TCP flows. The
test system consists of two physical nodes. On the first one, 2
virtual nodes are running the TCP sender and receiver of the
first flow F;. This flow is routed through the chain of routers
with different lengths. The routers run on the second physical
node. Additionally, one link of the router chain is used by
a second flow F}. The emulated network between the virtual

2 Concurrent TCP Flows

[T
=]
=~ 80 | CPU usage avg. TDF reasonable load 1 Lp
IS
X Attt AN A Ve AN AN 1L
o 60 va v LW
I 1tu
S 40 | R
o R S -
s 0 . . . L
3 0 10 20 30 40 50 60 70 80 90
0 5 10 15 20
Real Time [s] / Virtual Time [s]
Fig. 4. Load-based TDF adaptation
TCP flow in emulated router infrastructure
E_ TCP throughput —— average TDF s
,:ﬁ_ 100 CPU usage +---x--- reasonable load
<E ile
=280 -
gg_ _____ g ey emme i S o S e A LW
o< 60
R 1L
=] 8 U
>E 40 -
as | e
©g8 20 T .
o Ll R D -
>
© 0
wio 4 8 16 32 64 128 253
Fs length of router chain

Fig. 5. Effectiveness of TDF adaptation

nodes has a bandwidth of 1Gbps except for the first and last
link which have 100Mbit. During each experiment, we run the
TCP flow F, for 20s of virtual time. After 5s we run the flow
Fy for 10s and measure the achieved throughput. In addition,
the resource usage on both physical nodes is measured. For
each router chain length, the experiment is repeated 50 times.

Figure 4 shows the CPU utilization of the physical node
running a chain of 32 routers. The time axis has two sales:
the upper scale is the real time and the lower scale the virtual
time. Running only the flow F} requires the system to run
with a TDF of about 10 to keep the CPU utilization inside the
reasonable load range. Running flow F; between 5s and 15s
of virtual time increases the resource requirements. In order
to prevent overload, the system automatically adapts the TDF
to a value of about 27. As flow F stops, the system adapts
the TDF back to the original value.

Figure 5 shows the measured results for different numbers
of routers, which are: the achieved TCP throughput, the load
of the physical node running the router chain, and the average
TDF. Although these measurements have different scales, we
show them in a single graph to increase comparability. For
comparison, we have also included the results for the experi-
ment without flow Fy. The TCP throughput allows to rate the
quality of the emulation by comparing the measurements with
the TCP throughput in real environments. In the emulation as
well as in measurements in real environments, TCP is able
to achieve about 96Mbps throughput and, therefore, we can
conclude that the emulation results are not biased.

As shown in the figure, for up to 8 routers the resource
utilization mainly results from flow Fj. As the number of
routers is increased, the resource requirements for flow Fy

OLSR running on grid-topology with shared medium (240s virt. time)

oy T T T T T T T T
z 4 phy. nodes ——— 8 phy. nodes ———

«» 1000

Q

g 500

& T

£ 0 ™

5 6 ohy. : . . - : . T
£ phy. nodes ——— 32 phy. nodes Fﬁ/,./
g 1000 o

o

§ 500 / e //

[

E o0 L,

2 0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000

number of virtual nodes (OLSR routers)

Fi

=

g. 6. Number of control messages sent by n virtual routers running OLSR

increase likewise. Since each router basically does the same,
the load increases linearly with the number of routers. At a
length of about 11 routers, the flow Fy consumes a significant
amount of CPU and, therefore, the system needs to slow down
the virtual time.

The gray area in Figure 5 marks the reasonable load range.
For the experiment to exhibit minimal runtime, the resource
utilization should be near the upper bound of the reasonable
load range. As the Figure shows, the load of the physical
node hosting the routers approaches this limit and stays below
the threshold as desired. For shorter router chains, the low
TDF results in a small sampling interval (see IV-A) which
makes the system more sensitive to short load peaks. These
load variations can cause false positives of overload warning
messages and, finally, a temporary suboptimal TDF. However,
the sensitivity is required to prevent overload situtations.

In the next evaluation experiment, we investigate scalability
aspects with respect to the used number of physical nodes. In
this experiment, we run an MANET (Mobile Ad Hoc Network)
with an increasing number of virtual nodes. Each virtual node
runs the OLSR protocol (Optimized Link State Routing) using
the unmodified version of olsrd [18]. The nodes are arranged
in a grid topology. Due to the configured transmission range,
each virtual node can only directly communicate with its four
neighbors. To verify that emulation results are not biased,
we compare the number of control messages transmitted in
an experiment. This number is depicted in Figure 6 for four
different setups with 4, 8, 16, and 32 physical nodes and
an increasing number of virtual nodes running uniformly dis-
tributed on them. As the number of virtual nodes is increases,
the amount of control messages should increase linearly since
each node emits such messages to its neighbors periodically. If
results were biased by overload situations in the experiments,
this would mean that the olrsd instances would not be able to
emit the required control messages in time. Messages would
be delayed or dropped. As a result, the linear increase would
change and a kink would appear at the point where the number
of virtual nodes gets too high. Figure 6 clearly shows no
such sign of an overload situation throughout the entire range
despite the increase in virtual as well as physical nodes.

Figure 7 shows the time required for running the OLSR
scenario with different numbers of physical nodes. For low

OLSR running on grid-topology with shared medium (240s virt. time)

8

2000 o

Fy
1000 . P B 4 phy. nodes -+
- 8 phy. nodes x
16 phy. nodes +---
32 phy. nodes ---=--

4000 5000

required real time [s]
Lo
B
¥

3000

0 1000
number of virtual nodes (OLSR routers)

2000

Fig. 7.
OLSR

Required real time to emulate scenario with n virtual routers running

numbers of virtual nodes (< 300), increasing the number of
physical nodes does not produce a notable effect as these
experiments can easily be run using 4 and 8 physical nodes.
However, the figure shows that, for a larger number of virtual
nodes, the resources of all physical nodes are efficiently
exploited. For example, with 2700 virtual nodes, doubling the
resources from 16 to 32 physical nodes can reduce the required
experiment time by about 40% if the number of virtual nodes
is kept constant (arrow a). Conversely, through doubling the
resources, the number of virtual nodes (and, thus, the size
of the scenario) can be increased by 50% without increasing
experiment time (arrow b).

VI. CONCLUSION

The TVEE emulation system builds on a combination
of node and time virtualization. This virtualization schema
provides a highly scalable infrastructure for the evaluation of
distributed applications and communication protocols.

The proposed node virtualization techniques allow running
up to a few hundred virtual nodes on each physical node. Our
time virtualization approach allows for a dynamic adaptation
of the virtual time perceived inside the emulated software in
order to react to the current amount of resource consumed by
the SUT. As we have shown, by slowing down virtual time,
overload situations can be avoided and, therefore, unbiased
experiment results are ensured. Moreover, the resources of a
testbed are utilized effectively such that experiment execution
times are minimized.

Our evaluation shows that, with TVEE, the available CPU
and network capacity no longer limits the possible scenario
sizes. The scenario size is only limited by the available
memory and the permissible execution time of an experiment.
This is an important step forward in terms of emulation
scalability. Therefore, TVEE represents a general tool allowing
network researchers to explore large scenarios.

The mapping of virtual nodes to the physical nodes heavily
influences the achieved resource utilization on the individ-
ual physical nodes. In our future work, we will investigate
automatic placement schemas for virtual nodes in order to
achieve load balancing. A second field of future research is
the efficient usage of multi-core processor architectures for
network emulation.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]
[19]
[20]

[21]

[22]

[23]

REFERENCES

G. Apostolopoulos and C. Chasapis. V-eM: A Cluster of Virtual Ma-
chines for Robust, Detailed, and High-Performance Network Emulation.
Technical Report 371, ICS-FORTH, Greece, Jan. 2006.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 164-177, 2003.

F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the USENIX 2005 Annual Technical Conference, FREENIX
Track, pages 41-46, Anaheim, CA, USA, Apr. 10-15 2005.

C. Bergstrom, S. Varadarajan, and G. Back. The Distributed Open
Network Emulator: Using Relativistic Time for Distributed Scalable
Simulation. In Proc. of the 20th Workshop on Principles of Advanced
and Distributed Simulation, pages 19-28, 2006.

M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma,
and J. Rodriquez-Rosell. A Virtual Machine Emulator for Performance
Evaluation. Commun. ACM, 23(2):71-80, 1980.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage
Services. ACM SIGCOMM Computer Communication Review, 33(3):00—
00, July 2003.

J. Dike. A user-mode port of the Linux kernel. In Proc. of the 5th Annual
Linux Showcase and Conference, Oakland, California, Nov 2001.

M. Erazo, Y. Li, and J. Liu. SVEET! A Scalable Virtualized Evaluation
Environment for TCP. In Proceedings of the 5th International Confer-
ence on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom’09), 2009.

R. M. Fujimoto. Parallel Discrete Event Simulation. In Proceedings of
the 21st conference on Winter simulation (WSC’89), pages 19-28, 1989.
A. Grau, S. Maier, K. Herrmann, and K. Rothermel. Time Jails: A
Hybrid Approach to Scalable Network Emulation. In Proc. of the
22nd Workshop on Principles of Advanced and Distributed Simulation
(PADS’08), 2008.

D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.
Voelker. To Infinity and Beyond: Time-Warped Network Emulation. In
Proceedings of the 3rd ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI 06), pages 87-100, 2006.

D. Herrscher and K. Rothermel. A Dynamic Network Scenario Emula-
tion Tool. In Proc. of the 11th International Conference on Computer
Communications and Networks (ICCCN 2002), pages 262-267, 2002.
X. Jiang and D. Xu. vBET: a VM-Based Emulation Testbed. In Proc.
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research (MoMeTools’03), pages 95-104, 2003.
P. H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root.
In Proceedings of the 2nd International SANE Conference, 2000.

K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sugawara, and
S. Chiba. Secure and Manageable Virtual Private Networks for End-
users. In Proc. of the 28th Annual IEEE International Conference on
Local Computer Networks (LCN’03), pages 385-394, 2003.

J. Liu. Immersive Real-Time Large-Scale Network Simulation: A
Research Summary. In Proc. of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS’08), pages 1-5, April 2008.
S. Maier, A. Grau, H. Weinschrott, and K. Rothermel. Scalable Network
Emulation: A Comparison of Virtual Routing and Virtual Machines.
In Proc. of the IEEE Symposium on Computers and Communications
(ISCC’07), pages 395-402, 2007.

olsrd. http://www.olsr.org, 2009.

OpenVZ. http://openvz.org, 2009.

G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A Generic Framework
for Parallelization of Network Simulations. In Proc. of the 7th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 128-135, 1999.
L. Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. SIGCOMM Comput. Commun. Rev., 27(1):31-41, 1997.

S. Y. Wang and H. T. Kung. A New Methodology for Easily Construct-
ing Extensible and High-Fidelity TCP/IP Network Simulators. Computer
Networks, 40(2):205-315, 2002.

E. Weingirtner, F. Schmidt, T. Heer, and K. Wehrle. Synchronized
Network Emulation: Matching prototypes with complex simulations. In
Proceedings of the First Workshop on Hot Topics in Measurement &
Modeling of Computer Systems (HotMetrics’08), Annapolis, MD, 2008.

