
Efficient and Scalable Network Emulation using
Adaptive Virtual Time

Andreas Grau∗†, Klaus Herrmann, and Kurt Rothermel
Universität Stuttgart, Institute of Parallel and Distributed Systems (IPVS)

Universitätsstr. 38, D–70569 Stuttgart, Germany

Email: {grau,herrmann,rothermel}@ipvs.uni-stuttgart.de

Telephone: +49 (711) 7816–236, Fax: –424

Abstract—Performance analysis and functionality testing are
major parts of developing distributed software systems. Since the
number of communicating software instances heavily influences
the behavior of distributed applications and communication
protocols, evaluation scenarios have to consider a large number of
nodes. Network emulation provides an infrastructure for running
these experiments using real prototype implementations in a
controllable and realistic environment. Large-scale experiments,
however, have a high resource consumption which often exceeds
available physical testbed resources. Time dilation allows for
reducing the resource demands of a scenario at the expense
of the experiment’s runtime. However, current approaches only
consider a constant time dilation factor, which wastes a lot of
resources in case of scenarios with varying load.

We propose a framework for adaptive time virtualization
that significantly reduces the runtime of experiments by im-
proving resource utilization in network emulation testbeds. In
this framework, resource demands are monitored and the time
dilation factor is dynamically adapted to the required level.
Our evaluation shows that adaptive virtual time in combination
with our lightweight node virtualization architecture allows us
to increase the possible scenario sizes by more than an order of
magnitude and, at the same time, ensure unbiased emulation
results. This represents an important contribution to making
network emulation systems highly scalable.

Index Terms—network emulation, performance evaluation,
virtualization, time dilation, adaptive virtual time

I. INTRODUCTION

Two principal components of the software development

process are functionality testing and performance evaluation.

The behavior of distributed applications and communication

protocols depends heavily on the number of communicating

instances. Due to the complexity, an analytical evaluation of

such systems is often infeasible. A commonly used approach

is to evaluate the software under test (SUT) by means of

a network emulation testbed. Using distributed emulation

tools [21], [12] and a configurable network infrastructure,

arbitrary topologies with configurable network properties can

be created. The testbed consists of an arbitrary number of

physical nodes connected by a high-bandwidth network. The

big advantage of network emulation as opposed to the evalu-

ation in a real network [6] and the usage of simulation tools

[9], [20] is that the SUT does not have to be modified and

∗Corresponding author.
†Funded by the Deutsche Forschungsgemeinschaft (German Research

Foundation) under grant DFG-GZ RO 1086/9-2.

can be evaluated in a repeatable fashion and in a controlled

environment.

In order to support large scenarios in a network emulation,

multiple virtual nodes can be executed on each physical node

using node virtualization [1], [13]. However, the number of

virtual nodes per physical node is limited, as mapping too

many virtual nodes to a physical node overloads that node.

Such an overload may bias evaluation results since the SUT

experiences resource shortages that do not exist in a real

execution environment. Using a virtual time [5] that is running

slower than real time allows for reducing the system load and,

therefore, allows to increase the number of virtual nodes per

physical node. For example, a real 10Mbit/s network can be

used to transport 100Mbit/s in the emulation if the time dila-
tion factor is set to 10 (virtual time runs 10 times slower than

real time). With this time dilation factor, a physical node using

this real network can run 10 software instances in 10 virtual

nodes where each consumes 10 MBit/s. Existing systems with

a constant virtual clock rate choose a very conservative rate

to prevent overload even when load peaks occur. Therefore,

in scenarios with changing resource requirements, the system

may experience considerable underload most of the time. The

consequence is that the experiment’s runtime is suboptimal.

In order to prevent overload situations and, at the same

time, optimize the experiment runtime, we extend our Time
Virtualized Emulation Environment (TVEE) [10], a network

emulator based on node and time virtualization, by a mecha-

nism to dynamically adjust the clock rate to the current load

situation. Our evaluation results show that the adaptive time

virtualization in combination with our lightweight node vir-

tualization architecture, allows several hundred virtual nodes

running on the same physical node without influencing the

quality of the emulation results. Using the same hardware,

we have shown in previous work [17] that other emulations

approaches are only able to run in the order of 10 virtual nodes

before results get biased. Therefore, our work represents a

big step forward in terms of scalable network emulation. The

resulting emulation framework can be used by the networking

community in order to evaluate much larger networks and,

thus, achieve more realistic results in many problem domains.

The remainder of the paper is structured as follows. In the

following section, we first present the related work in the

field of network emulation. In Section III, we discuss the

Published in Proceedings of 18th Internatonal Conference on Computer Communications and
Networks (ICCCN'09), pages 1 - 6, San Francisco, CA, Aug 2009.
© IEEE 2009
http://dx.doi.org/10.1109/ICCCN.2009.5235306

architecture of our system with its main building blocks, node

and time virtualization. In Section IV, we introduce the main

contribution of this paper: the adaptive load-controlled virtual

time approach. A detailed evaluation is given in Section V,

and Section VI presents a summary, our conclusions, and an

outlook on future work.

II. RELATED WORK

Canon et. al. [5] where the first to introduce virtual time in

emulations. However, no adaptive clock rate is used in their

approach. Therefore, the clock rate has to be pre-configured

to a value that ensures that no overload situation occurs

throughout the experiment run. This leads to very conservative

clock rates such that outside periods with load peaks, the

system does not utilize the existing resources efficiently and,

thus, the experiment runs much longer than necessary.

Hybrid systems combine the benefits of network simulation

and network emulation, by connecting physical nodes [16]

running real implementations to a simulated network based

on parallel discrete event simulation (PDES) [9], [20]. In

addition, these approaches use a combination of node and time

virtualization [8]. However, a constant clock rate is used here

too. The necessary synchronization in the simulation produces

additional overhead.

Weingärtner et. al. [23] have proposed an approach to

conservatively synchronize multiple virtual machines to a

simulation framework. Here, an experiment is evenly divided

into time-slices. The end of each slice constitutes a barrier to

synchronize the VMs with the simulation framework. How-

ever, the VM-based node virtualization increases the overhead

introduced by the synchronization schema.

Emulation of arbitrarily powerful virtual resources can be

achieved by adapting the Linux protocol stack to use virtual

time instead of real time. While Wang et. al. [22] use only

a simulation framework running on a single physical node,

dONE [4] uses a distributed simulation environment. In con-

trast to our system, dONE only supports testing of application

layer implementations using the BSD socket interface.

All existing approaches either have additional synchroniza-

tion overhead or only support a constant clock rate which

both results in a suboptimal experiment runtime. TVEE solves

these problems, by dynamically adjusting the clock rate to the

current load of the system.

III. SYSTEM ARCHITECTURE

The foundation of our network emulation approach is

the Network Emulation Testbed (NET) at the University of

Stuttgart consisting of 64 nodes. The nodes are connected by

an emulation network using a central, configurable gigabit

switch and an additional control network. The emulation

network can be partitioned using IEEE 802.1Q VLAN (virtual

LAN) to form arbitrary virtual network topologies between

the nodes. We have developed a tool called NETshaper [10],

[12], to emulate network properties like bandwidth, delay and

packet loss. Based on these components, we are able to run the

SUT in a controlled environment. Since our network emulation

Fig. 1. TVEE architecture: Virtual Routing inside a virtual machine

approach provides a virtual network interface, we can evaluate

distributed applications as well as communication protocols

above data link layer.

To increase the number of virtual nodes (hosts, routers,

switches) in the emulated network we use a node virtualization

system that is based on Virtual Routing (VR) [15]. As op-

posed to Virtual Machines (VM) [2], [3], [7], Virtual Routing

provides more lightweight virtualization. The processes that

make up a virtual node all share the same operating system,

but each of these virtual nodes has its own protocol stack,

including sockets and routing tables. By virtualizing additional

operating system components [14] like process name spaces

and file systems, processes of different virtual nodes are clearly

separated from each other. As shown in previous work [17],

the VR-based approach has an order of magnitude better

performance than the VM-based approach with respect to

memory consumption and communication overhead. Thus, it

is very lightweight.

Time virtualization is achieved by using virtual machines.

By changing the interface between the virtual machine and the

hosting operating system or virtual machine monitor, virtual

time is transparently provided to every software running inside

the VM [11].

The TVEE prototype architecture combines Virtual Routing

for node virtualization and virtual machines for time virtual-

ization as depicted in Figure 1. Multiple virtual nodes that are

based on virtual routing run inside one VM that provides the

virtual time. In turn, One of these virtual machines, in turn,

run on each physical node in the emulation testbed.

IV. EPOCH-BASED VIRTUAL TIME

To adapt the virtual clock rate to the resource demand of

the experiment we introduce the Time Dilation Factor (TDF).

Equation 1 shows how the virtual time (Rv) and the real time

(Rr) are related by means of the TDF.

Rv = 2−
T DF
10 · Rr (1)

In order to allow an efficient implementation using integer

arithmetic, we use (in contrast to Gupta et. al. [11]) a logarith-

mic relation between the rate of virtual time and the real time.

Using only integer arithmetics, we can adjust the rate of the

virtual clock with a step width of about 7%. This granularity is

sufficient for the adaptation algorithm that we will introduce in

Section IV-B. In addition, without a logarithmic relation, this

granularity depends on the virtual clock rate. For fast rates the

granularity is coarse and it increases with slower rates.

����
�����	
 ��
�������

�����
	

������

�����	�����	���

	�������	���
���������	���
	�������	���

���������	���
	�������	���

���������	��� ������
��	����

���������	�� ���	������������
��	�����	��������

Fig. 2. TDF adaptation schema

In order to perform the adaption of the TDF, we propose the

concept of epoch-based virtual time [10]. The experiment is

divided in epochs of different length where the TDF is constant

within each epoch. Whenever the resource demand changes,

an epoch switch is triggered to adapt the TDF.

Figure 2 shows the TDF adaptation schema. Each physical

node of the emulation system runs a load monitor that mon-

itors the node’s load and reports it to a central coordinator
who calculates the overall system load. The overall load is

defined as the maximum over all individual node load values.

This definition is chosen to ensure that no physical node is

overloaded at any time.

Using the overall load, the coordinator determines a new

TDF and initiates an epoch switch. The epoch switcher is

used to distribute the new TDF to the physical nodes and to

perform an epoch switch. In the following, each component

(load monitor, TDF adaptor and epoch switcher) is discussed

in detail.

A. Distributed Load Monitoring

The load monitor is used to measure the load of a physical

node and report the load to the TDF adaptor. The virtual

machine monitor (VMM) provides a per virtual machine

statistic, which counts the number of used CPU cycles c(t).
Requesting this value at 2 points in time (c(t1) and c(t2))
allows for calculation of the load l = c(t2)−c(t1)

t2−t1
. To meter

the time between the measurements with a sub-microsecond

granularity, we use the time stamp counter register of processor

(TSC), which is increased on every CPU clock cycle.

The length of the sampling interval has a large effect

on the performance of load monitoring. Short intervals are

required for a fast reaction to load changes, but also result in

a large number of load reports. Transmission and processing of

large amounts of load reports would overload the coordinator

and, therefore, limit scalability. To limit the amount of load

reports, we use 3 mechanisms: adaptive sampling, threshold-
based discretization and hysteresis-based state changes. These

mechanisms effectively reduce communication overhead for

reporting substantially.

Adaptive sampling adjusts the length of the sampling inter-

val (time period between two consecutive load reports) to the

currently used TDF. For a higher TDF (slower virtual time) a

longer sampling interval is chosen. The ratio behind this is that

overload situations develop proportionally slower when the

load panic

load warning

reasonable load

underload
LU

LP

load (ressource utilization)
100%

0%

hysteresis

time

LW

Fig. 3. Load Monitoring Thresholds

virtual time runs slower. Therefore, the sampling interval may

be increased without taking the risk of missing any relevant

change. The effect is that as a system increases in size (number

of virtual nodes) and the load increases as a result, the message

overhead resulting from load reports decreases. Therefore, we

increase the sampling interval linearly with the TDF.

Threshold-based discretization maps the possible load val-

ues of a physical node to the 4 states load panic, load
warning, reasonable load, and underload (see Figure 3) using

3 thresholds (LP , LW , and LU). The load monitor determines

the state locally and only in case of a state change, a load

report is sent to the TDF adaptor. Underload indicates that

there are unused resources and, therefore, virtual time could

be accelerated. Analogous, the two states load panic and load
warning signal that resource consumption is becoming too

high. When the system is in one of these states, virtual time has

to be slowed down. The two thresholds LP and LW are used

to differentiate between slight and heavy load. The different

reaction on these states is described in the next section.

Hysteresis-based state changes are used to avoid oscillation

between two states which causes a high number of load

reports. A state change is only triggered if load exceeds the

threshold and its surrounding hysteresis range (see Figure 3).

B. TDF Adaptation

Based on the load reports, the TDF may need to be adjusted.

The TDF adaptor achieves this adjustment by means of a

very simple proportional feedback control mechanism that is

shown in Algorithm 1. Whenever the system load is outside

the reasonable range, the algorithm adapts the TDF to reach

the reasonable load state. As long as the system load is in state

load warning or underload, a small adjustment Ss is applied

(added or subtracted) to avoid overshooting the reasonable
load state. If there is a fast increase in load, this adjustment

will not suffice and the system will eventually reach the load
panic state. In this situation, a larger step size Sl is used for

the adjustment in order to decrease the load quickly and avoid

overload. If this results in an underload situation, the algorithm

will gradually decrease the TDF again to speed up virtual time.

After each adjustment, the algorithm needs to wait for

feedback from the load monitor to see whether the load is back

in the state reasonable load. Due to the adaptive sampling of

the load monitor, the time until the feedback arrives depends

input: state, TDFprev

while true do1

if state != reasonable_load then2

if state = load_panic then3

setTDF(TDFprev + Sl)4

else if state = load_warning then5

setTDF(TDFprev + Ss)6

else if state = underload then7

setTDF(TDFprev - Ss)8

end9

sleep Ts10

else if state = reasonable_load then11

setTDF(TDFprev + Ss)12

sleep Tl13

end14

end15

Algo. 1. TDF Adaption Process

on the current TDF. Therefore, we dynamically adjust the

waiting time (Ts) to the half of the used sampling interval.

In case of temporarily constant resource demands, the

utilization can keep steady at any level between the LU and

LW thresholds in the state reasonable load. For good resource

usage, however, the system utilization should be near the LW

threshold. Therefore, we decrease the TDF in the reasonable
load state, too. However, the speed of this adjustment is very

low, through a waiting time Tl of an order of magnitude

larger than the waiting time Ts. In combination with the

hysteresis around the thresholds the oscillation around LW ,

these adjustments introduce an insignificant overhead.

Evaluation shows that the introduced algorithm has a good

reaction to changes of resource requirements despite the fact

that it is rather simple.

C. Epoch Switching

After determining the TDF for the next epoch, a mechanism

is required for propagating the new value to the physical nodes.

To ensure a fast reaction on upcoming overload, the time

between detecting the resource demand and the actual TDF

change must be as small as possible. Since the time to compute

the new TDF is negligibly small, we need to minimize the

time for transmitting load reports and TDF change requests. In

addition, realistic emulation requires all virtual clocks to run at

the same rate at any time. Therefore, we need mechanisms to

minimize the difference in propagation times of TDF change

requests. A third problem related to epoch switching is the

occurrence of message loss which cannot be detected in time.

We have developed a protocol for minimizing the propa-

gation time of TDF change requests and load reports. The

basic assumption behind this protocol is that all nodes are

connected to a LAN. We are using the previously mentioned

control network of the cluster. The delay of TDF change

requests and load reports using this network consists of several

components: network transmission delay, packet processing

time in the protocol stack, and delay in queues. The time to

transmit a frame in the network is insignificant because it is

below 200μs and has a small variability. The processing time

in the protocol stack is a magnitude below the transmission

time and can be ignored as well. Most of the message delay is

caused by waiting in egress and ingress queues of the physical

nodes and the switch. In order to limit these delays, we are

using priority queues based on type of service (TOS) of IP

QoS and prioritize TDF change requests and load reports. A

last source of delay are the hardware based FIFO queues inside

the network interface cards (NICs). Since we cannot change

theses queues, we are limiting the traffic on these interfaces

to 95% of the link capacity to keep the queues empty. Using

these mechanisms, the maximum packet transmission delay

can be reduced below 2ms and message loss can be prevented

with a very high probability.

V. EVALUATION

In order evaluate the performance of the proposed system,

we integrated the concepts for load monitoring, TDF adapta-

tion and epoch switching into our prototype. The prototype,

running on the NET Cluster equipped with 64 nodes (P4

2.4GHz, 512MB Ram, 1GBit NICs), is based on XEN [2]

version 3.1.0 running Linux Kernel 2.6.18 inside a virtual

machine (domU in XEN jargon) and inside the control domain

(dom0). In addition, OpenVZ [19] is used to create virtual

nodes inside the VM. The mechanisms for adaptive virtual

time were implemented as Linux Kernel Modules (LKMs)

running in dom0 to minimize latencies for epoch switching.

In previous work [10], we have shown that our emulation

architecture is able to accurately emulate network properties

like bandwidth and delay. By choosing an adequate TDF, we

are able to emulate links between two virtual nodes with

bandwidths between 64kbps and 100Gbps, as well as delays

ranging from 1ms to 100ms. The virtual nodes in the following

evaluation have an average memory overhead of 300KB.

The evaluation is structured as follows: First, we briefly

discuss the chosen parameters for the load monitoring and the

TDF adaptation. Then, we investigate the achieved resource

utilization. Finally, we show how to evaluate the performance

of a routing daemon in a large scenario using TVEE.

An extensive search of the parameter space using scenarios

with different resource requirements has been performed to

identify a configuration which generally minimizes experiment

runtime and ensure unbiased results. The determined thresh-

olds of the load monitor are: LU =50, LW =70, and LP =90.

The adaptive sampling interval ranges from 5ms for TDF=0

to 200ms for TDF=100. TDF adjustments with a step width

Ss of 1 and Sl of 20 give best results for the TDF adaptation.

To quantify the achieved level of resource consumption, we

are emulating a chain of routers routing 2 TCP flows. The

test system consists of two physical nodes. On the first one, 2

virtual nodes are running the TCP sender and receiver of the

first flow Ff . This flow is routed through the chain of routers

with different lengths. The routers run on the second physical

node. Additionally, one link of the router chain is used by

a second flow Fb. The emulated network between the virtual

reasonable loadavg. TDF

 0

 20

 40

 60

 80

0
0

10
5

20 30 40
10

50 60 70
15

80 90
20

LU

LW

LP

av
g.

 C
P

U
 u

sa
ge

 [%
] /

 T
D

F

Real Time [s] / Virtual Time [s]

2 Concurrent TCP Flows

CPU usage

Fig. 4. Load-based TDF adaptation

reasonable load
TCP throughput average TDF

 0

 20

 40

 60

 80

 100

w/o
Ff

4 8 16 32 64 128 253

LU

LW

LP

av
g.

 C
P

U
 u

sa
ge

 [%
] /

 T
D

F
/

tc
p

th
ro

ug
hp

ut
 [m

bp
s]

length of router chain

TCP flow in emulated router infrastructure

CPU usage

Fig. 5. Effectiveness of TDF adaptation

nodes has a bandwidth of 1Gbps except for the first and last

link which have 100Mbit. During each experiment, we run the

TCP flow Fb for 20s of virtual time. After 5s we run the flow

Ff for 10s and measure the achieved throughput. In addition,

the resource usage on both physical nodes is measured. For

each router chain length, the experiment is repeated 50 times.

Figure 4 shows the CPU utilization of the physical node

running a chain of 32 routers. The time axis has two sales:

the upper scale is the real time and the lower scale the virtual

time. Running only the flow Fb requires the system to run

with a TDF of about 10 to keep the CPU utilization inside the

reasonable load range. Running flow Ff between 5s and 15s

of virtual time increases the resource requirements. In order

to prevent overload, the system automatically adapts the TDF

to a value of about 27. As flow Ff stops, the system adapts

the TDF back to the original value.

Figure 5 shows the measured results for different numbers

of routers, which are: the achieved TCP throughput, the load

of the physical node running the router chain, and the average

TDF. Although these measurements have different scales, we

show them in a single graph to increase comparability. For

comparison, we have also included the results for the experi-

ment without flow Ff . The TCP throughput allows to rate the

quality of the emulation by comparing the measurements with

the TCP throughput in real environments. In the emulation as

well as in measurements in real environments, TCP is able

to achieve about 96Mbps throughput and, therefore, we can

conclude that the emulation results are not biased.

As shown in the figure, for up to 8 routers the resource

utilization mainly results from flow Fb. As the number of

routers is increased, the resource requirements for flow Ff

0

500

1000

nu
m

be
r o

f c
on

tro
l m

es
sa

ge
s

[k
ilo

]

OLSR running on grid-topology with shared medium (240s virt. time)

4 phy. nodes 8 phy. nodes

0

500

1000

0 1000 2000 3000 4000 5000

16 phy. nodes

0 1000 2000 3000 4000 5000
number of virtual nodes (OLSR routers)

32 phy. nodes

Fig. 6. Number of control messages sent by n virtual routers running OLSR

increase likewise. Since each router basically does the same,

the load increases linearly with the number of routers. At a

length of about 11 routers, the flow Ff consumes a significant

amount of CPU and, therefore, the system needs to slow down

the virtual time.

The gray area in Figure 5 marks the reasonable load range.

For the experiment to exhibit minimal runtime, the resource

utilization should be near the upper bound of the reasonable
load range. As the Figure shows, the load of the physical

node hosting the routers approaches this limit and stays below

the threshold as desired. For shorter router chains, the low

TDF results in a small sampling interval (see IV-A) which

makes the system more sensitive to short load peaks. These

load variations can cause false positives of overload warning
messages and, finally, a temporary suboptimal TDF. However,

the sensitivity is required to prevent overload situtations.

In the next evaluation experiment, we investigate scalability

aspects with respect to the used number of physical nodes. In

this experiment, we run an MANET (Mobile Ad Hoc Network)

with an increasing number of virtual nodes. Each virtual node

runs the OLSR protocol (Optimized Link State Routing) using

the unmodified version of olsrd [18]. The nodes are arranged

in a grid topology. Due to the configured transmission range,

each virtual node can only directly communicate with its four

neighbors. To verify that emulation results are not biased,

we compare the number of control messages transmitted in

an experiment. This number is depicted in Figure 6 for four

different setups with 4, 8, 16, and 32 physical nodes and

an increasing number of virtual nodes running uniformly dis-

tributed on them. As the number of virtual nodes is increases,

the amount of control messages should increase linearly since

each node emits such messages to its neighbors periodically. If

results were biased by overload situations in the experiments,

this would mean that the olrsd instances would not be able to

emit the required control messages in time. Messages would

be delayed or dropped. As a result, the linear increase would

change and a kink would appear at the point where the number

of virtual nodes gets too high. Figure 6 clearly shows no

such sign of an overload situation throughout the entire range

despite the increase in virtual as well as physical nodes.

Figure 7 shows the time required for running the OLSR

scenario with different numbers of physical nodes. For low

 120

 1000

 2000

 0 1000 2000 3000 4000 5000

re
qu

ire
d

re
al

 ti
m

e
[s

]

number of virtual nodes (OLSR routers)

OLSR running on grid-topology with shared medium (240s virt. time)

a

b

4 phy. nodes
8 phy. nodes

16 phy. nodes
32 phy. nodes

Fig. 7. Required real time to emulate scenario with n virtual routers running
OLSR

numbers of virtual nodes (< 300), increasing the number of

physical nodes does not produce a notable effect as these

experiments can easily be run using 4 and 8 physical nodes.

However, the figure shows that, for a larger number of virtual

nodes, the resources of all physical nodes are efficiently

exploited. For example, with 2700 virtual nodes, doubling the

resources from 16 to 32 physical nodes can reduce the required

experiment time by about 40% if the number of virtual nodes

is kept constant (arrow a). Conversely, through doubling the

resources, the number of virtual nodes (and, thus, the size

of the scenario) can be increased by 50% without increasing

experiment time (arrow b).

VI. CONCLUSION

The TVEE emulation system builds on a combination

of node and time virtualization. This virtualization schema

provides a highly scalable infrastructure for the evaluation of

distributed applications and communication protocols.

The proposed node virtualization techniques allow running

up to a few hundred virtual nodes on each physical node. Our

time virtualization approach allows for a dynamic adaptation

of the virtual time perceived inside the emulated software in

order to react to the current amount of resource consumed by

the SUT. As we have shown, by slowing down virtual time,

overload situations can be avoided and, therefore, unbiased

experiment results are ensured. Moreover, the resources of a

testbed are utilized effectively such that experiment execution

times are minimized.

Our evaluation shows that, with TVEE, the available CPU

and network capacity no longer limits the possible scenario

sizes. The scenario size is only limited by the available

memory and the permissible execution time of an experiment.

This is an important step forward in terms of emulation

scalability. Therefore, TVEE represents a general tool allowing

network researchers to explore large scenarios.

The mapping of virtual nodes to the physical nodes heavily

influences the achieved resource utilization on the individ-

ual physical nodes. In our future work, we will investigate

automatic placement schemas for virtual nodes in order to

achieve load balancing. A second field of future research is

the efficient usage of multi-core processor architectures for

network emulation.

REFERENCES

[1] G. Apostolopoulos and C. Chasapis. V-eM: A Cluster of Virtual Ma-
chines for Robust, Detailed, and High-Performance Network Emulation.
Technical Report 371, ICS-FORTH, Greece, Jan. 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 164–177, 2003.

[3] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the USENIX 2005 Annual Technical Conference, FREENIX
Track, pages 41–46, Anaheim, CA, USA, Apr. 10–15 2005.

[4] C. Bergstrom, S. Varadarajan, and G. Back. The Distributed Open
Network Emulator: Using Relativistic Time for Distributed Scalable
Simulation. In Proc. of the 20th Workshop on Principles of Advanced
and Distributed Simulation, pages 19–28, 2006.

[5] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma,
and J. Rodriquez-Rosell. A Virtual Machine Emulator for Performance
Evaluation. Commun. ACM, 23(2):71–80, 1980.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage
Services. ACM SIGCOMM Computer Communication Review, 33(3):00–
00, July 2003.

[7] J. Dike. A user-mode port of the Linux kernel. In Proc. of the 5th Annual
Linux Showcase and Conference, Oakland, California, Nov 2001.

[8] M. Erazo, Y. Li, and J. Liu. SVEET! A Scalable Virtualized Evaluation
Environment for TCP. In Proceedings of the 5th International Confer-
ence on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom’09), 2009.

[9] R. M. Fujimoto. Parallel Discrete Event Simulation. In Proceedings of
the 21st conference on Winter simulation (WSC’89), pages 19–28, 1989.

[10] A. Grau, S. Maier, K. Herrmann, and K. Rothermel. Time Jails: A
Hybrid Approach to Scalable Network Emulation. In Proc. of the
22nd Workshop on Principles of Advanced and Distributed Simulation
(PADS’08), 2008.

[11] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.
Voelker. To Infinity and Beyond: Time-Warped Network Emulation. In
Proceedings of the 3rd ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI 06), pages 87–100, 2006.

[12] D. Herrscher and K. Rothermel. A Dynamic Network Scenario Emula-
tion Tool. In Proc. of the 11th International Conference on Computer
Communications and Networks (ICCCN 2002), pages 262–267, 2002.

[13] X. Jiang and D. Xu. vBET: a VM-Based Emulation Testbed. In Proc.
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research (MoMeTools’03), pages 95–104, 2003.

[14] P. H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root.
In Proceedings of the 2nd International SANE Conference, 2000.

[15] K. Kourai, T. Hirotsu, K. Sato, O. Akashi, K. Fukuda, T. Sugawara, and
S. Chiba. Secure and Manageable Virtual Private Networks for End-
users. In Proc. of the 28th Annual IEEE International Conference on
Local Computer Networks (LCN’03), pages 385–394, 2003.

[16] J. Liu. Immersive Real-Time Large-Scale Network Simulation: A
Research Summary. In Proc. of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS’08), pages 1–5, April 2008.

[17] S. Maier, A. Grau, H. Weinschrott, and K. Rothermel. Scalable Network
Emulation: A Comparison of Virtual Routing and Virtual Machines.
In Proc. of the IEEE Symposium on Computers and Communications
(ISCC’07), pages 395–402, 2007.

[18] olsrd. http://www.olsr.org, 2009.
[19] OpenVZ. http://openvz.org, 2009.
[20] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A Generic Framework

for Parallelization of Network Simulations. In Proc. of the 7th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 128–135, 1999.

[21] L. Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. SIGCOMM Comput. Commun. Rev., 27(1):31–41, 1997.

[22] S. Y. Wang and H. T. Kung. A New Methodology for Easily Construct-
ing Extensible and High-Fidelity TCP/IP Network Simulators. Computer
Networks, 40(2):205–315, 2002.

[23] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle. Synchronized
Network Emulation: Matching prototypes with complex simulations. In
Proceedings of the First Workshop on Hot Topics in Measurement &
Modeling of Computer Systems (HotMetrics’08), Annapolis, MD, 2008.

