
Together we are strong–
Towards Ad-Hoc Smart Spaces

Andreas Brodt∗, Sailesh Sathish‡
∗ IPVS Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany, andreas.brodt@ipvs.uni-stuttgart.de

‡ Nokia Research Center, Visiokatu 1, 33720 Tampere, Finland, sailesh.sathish@nokia.com

Abstract—Today’s mobile devices feature many resources, sen-
sors and data, which make it possible for them to adapt to their
environment. However, they would have a lot more resources at
hand, and thus could better adapt to their context, if they used
their communication capabilities to share their resources with
others near them. In this paper we propose the concept of ad-hoc
smart spaces, which enables mobile devices to utilize resources
owned by other devices in physical proximity. This imposes a
number of challenges as cooperation partners can join and leave
any time and as devices are highly heterogeneous. We propose
a system architecture for ad-hoc smart spaces and present a
prototypic implementation.

I. INTRODUCTION

Today’s mobile devices (smartphones, PDAs, etc.) have come
a long way from single purpose tools to mobile general purpose
computers. They feature many capabilities, including GPS
receivers, cameras, or accelerometers. Moreover, mobile devices
carry lots of data, such as calendar data, or maps. This allows
applications to adapt to the user’s context, which is defined as
any information that can be used to characterize the situation
of an entity [5]. However, not all aspects of context are always
available. Devices largely differ in their capabilities and not
every sensor is always functional (e. g., GPS indoors). What
would humans do in such a situation? Most people would
probably ask somebody near them for help. Although today’s
mobile devices possess numerous means to communicate, they
don’t do that.

If mobile devices could combine their own context models
with (parts of) context models from other devices nearby, a
much richer view of the world would result and context-aware
applications would become a lot more useful. To illustrate
this vision, let us consider Anna, who is using a pedestrian
navigation application on her smart phone. Anna does not
posses a GPS receiver, so her phone estimates her position
from the cellular network and only shows a map of the area.
A few meters behind her, Bert is also navigating, but with a
GPS-enabled phone. As soon as the two devices discover each
other, Anna’s device receives much more accurate position data
from Bert’s and gives Anna exact walking directions. On the
other hand, Bert can now see local sights on his map, which
Anna had stored on her device.

Later, Anna is in a meeting with Charles, Denise and Edward.
To find an appropriate date for a follow up-meeting, Anna asks
her calendar application to search for a two-hour slot in about
three weeks. All devices have been together in the room long
enough to discover each other and everybody allows Anna to

read their free time slots. So Anna’s calendar can easily find a
date which is fine for everybody.

Before she leaves the meeting, Anna uses a printer from her
mobile phone connected to Edward’s laptop.

In this paper we propose the concept of ad-hoc smart spaces
to address Anna’s scenario. We identify major challenges that
ad-hoc smart spaces impose, present a system architecture
and a prototypic implementation. The remainder of this paper
is organized as follows: In Section II we define ad-hoc
smart spaces. Section III lists the most important challenges
imposed by ad-hoc smart spaces and Section IV proposes a
system architecture to address them. We present our prototypic
implementation in Section V and discuss related work in
Section VI. We conclude the paper in Section VII

II. AD-HOC SMART SPACES

To put Anna’s scenario of spontaneously cooperating co-
located devices into practice, we propose the concept of
ad-hoc smart spaces. They do not require any dedicated
infrastructure, but are self-organizing device societies which
solely rely on the mobile devices themselves. A device society
is formed when devices are brought into proximity. The devices
discover each other, exchange their resource information, and
share their resources between applications running on the
respective devices. As devices move, device societies grow
and shrink, split up and merge, so capabilities appear and
disappear very dynamically. Consequently, applications for ad-
hoc smart spaces must constantly adapt to the capabilities that
are currently available.

Ad-hoc smart spaces do not attempt to replace existing
context-aware applications or infrastructure-based smart space
environments. On the contrary, they improve existing context-
aware applications and can be used in addition to infrastructure-
based approaches, as they attempt to provide context informa-
tion where other approaches have already given up (e. g., when
navigating without GPS).

III. CHALLENGES

Ad-hoc smart spaces impose a number of challenges. None
of them is new within the context of smart spaces, but the
ad-hoc characteristics add quite a bit of new flavor.

Ad-hoc device discovery. First of all, devices have to find
each other before any interaction is possible. Wireless device
discovery itself is well understood, the question is merely
when to do it. Ad-hoc smart spaces address a scenario with



constantly changing device neighborhoods and thus cannot
make any assumptions on available interaction partners. Devices
constantly attempting to find others that are not there will waste
unnecessary battery power. Devices not searching sufficiently
often may not find useful cooperation partners. Discovering
devices and configuring wireless communication between them
is a major challenge.

Fault tolerance. In ad-hoc smart spaces it is the rule, rather
than the exception, that any member of a device society may
leave at any time. Thus, fault tolerance must be designed into
any implementation from the very beginning. This in turn
influences the way devices interact. No guarantees can be
given that a certain message will ever reach its destination
or whether the recipient will be seen ever again, i. e., reliable
communication or distributed transactions are utterly difficult
in ad-hoc smart spaces.

Directory service. In addition to finding cooperating devices,
it is also a challenge to discover resources of interest offered
by the device society, since no central entity keeps track of
what devices offer. A distributed index, e. g., as provided by
Chord [12], must be highly redundant to be sufficiently fault
tolerant. However, considering the highly volatile nature of
ad-hoc smart spaces, the device society must not be drowned
in index management and recovery. Additionally, it is desirable
that applications be notified as new resources appear.

Interaction paradigms. As seen from Anna’s scenario in
Section I, devices may interact in several ways. Anna using
Bert’s GPS is a typical example of a data stream accessed
via publish/subscribe. Map data or calendars are static data
which are used in a query/response scheme. Finally, services,
such a printer, require interface descriptions and invocation
messages. While it seems easy to offer one specific interaction
paradigm, we consider it a challenge to offer all of them in a
single system.

Context modeling. Context-aware applications need a data
model to represent context. In an ad-hoc smart space, applica-
tions have no direct control over context data sources. Position
information originating from a remote device, for instance, does
not reflect the exact position of the user and, depending on
the requirement of a particular application, might or might not
be accurate enough. Only the application can decide whether
remote context data is useful. Thus, it is essential that the
context model provides detailed metadata and a notion of data
quality.

Moreover, ad-hoc smart spaces bring together utterly dif-
ferent devices. Ideally, these devices communicate seamlessly
using the same context model. But devices come up with new
capabilities and different vendors are likely to use different
models. To be realistic, ad-hoc smart spaces will have to cope
with heterogeneous context models.

Access control. Ad-hoc smart spaces provide device re-
sources for everybody in physical proximity, so it is self-evident
access control is needed. Within such spaces private data, such
as the user’s calendar, must be protected. Yet, people who are
physically co-located have overlapping contexts, so a part of
their context model is deemed shareable. Moreover, ad-hoc

Fig. 1. Proposed system architecture for ad-hoc smart spaces

smart spaces will only work if there is some (non-private)
data available. So the question is merely to find a simple but
powerful way for the user to determine what can be shared
with whom.

Platform independent applications. It is entirely possible
to build native applications for every device participating in
ad-hoc smart spaces. For certain application domains this
might be the best choice. However, since applications for
ad-hoc smart spaces must constantly adapt to the available
resources, they are not always simple to build. Thus, it would
be desirable if they could be reused for the entire heterogeneity
of devices participating in ad-hoc smart spaces. For this reason,
the resources of an ad-hoc smart space should be made available
to web applications.

IV. ARCHITECTURE

To put the vision of ad-hoc smart spaces into practice and
address the above challenges, we propose a middleware layer
for mobile devices we call the shared context model. The shared
context model contains local resources of the mobile device and
shares them with other devices nearby. Mobile applications
built on top of the shared context model access a unified
view of both local and remote resources and are disburdened
from device discovery, data exchange, access control, and error
management. Applications do not have to know as to where
the resource is being accessed from i.e. whether the resource
is remote or local to the device. However, applications can get
this information by checking the metadata for that particular
resource.

Figure 1 illustrates our proposed system architecture. Every
device hosts its own shared context model, which runs as a
daemon process in the background. The shared context model
is the central context model for everything a device knows
about its current situation and contains data and metadata as
well as service descriptions for all known resources. Being the
component where everything is integrated, the shared context
model is also the right place to perform access control.

The shared context model features a provisioning interface,
via which resources are entered. Local resources are registered
at the shared context model, but given the heterogeneity of



resources, they cannot be accessed in a unified way. Static
data, such as device capabilities, is read directly from storage.
Dynamic data, data streams, and services, e. g., battery state,
position information, or the camera, respectively, must be
accessed via appropriate wrappers.

In addition to local resources, one or more components
providing remote connectivity are connected to the provisioning
interface of the shared context model. The remote connectivity
components provide what makes ad-hoc smart spaces unique.
Based on the networking capabilities of the device’s operating
system, they search for nearby devices, exchange resource
descriptions and update the shared context model accordingly.
The remote connectivity components coordinate the device
society, i. e., this is where self-organization of ad-hoc smart
spaces happens. Upon request from the shared context model,
the remote connectivity components fetch required resources
from remote devices. Finally, they remove resources from the
shared context model which are no longer available.

For applications utilizing ad-hoc smart spaces, the shared
context model provides the client interface. The client interface
provides a browsable view of the resources currently available
in the shared context model. In addition, the client interface
features an event system to notify applications of changes in
the shared context model, so that the applications can adapt
accordingly. Naturally, the client interface lets applications
access the resources of the shared context model, i. e., the
client interface provides all supported interaction paradigms of
ad-hoc smart spaces.

To support context-aware web applications utilizing ad-hoc
smart spaces, the shared context model must be made available
in the web browser. This is done by extending the web browser
of the mobile device providing a context model suited for
web applications. In order to achieve wide adoption of this
model, it is important to use standardized interfaces. For this
purpose we propose the W3C Delivery Context Client Interfaces
(DCCI) [13]. The DCCI specification defines a tree containing
properties to expose context data to web applications. DCCI
specifies only the interface and makes no statement on the
underlying implementation or where the context data is obtained
from. Moreover, DCCI supports the dynamic addition and
removal of properties and features events for web applications
to adapt accordingly. Thus, DCCI fits the scenario of ad-hoc
smart spaces very well. As DCCI mandates an object-based
context model, an implementation of DCCI for ad-hoc smart
spaces likely has to convert between the context model used
in the shared context model and the one presented to the web
applications. Moreover, opening the context model to web
pages even increases the need for access control. This is taken
care of by the shared context model, but has to work hand in
hand with the DCCI implementation.

V. PROTOTYPE IMPLEMENTATION

We built a prototypic implementation to study the advantages
of ad-hoc smart spaces and obtain first insights on how the
challenges of ad-hoc smart spaces can be addressed best.
The mobile devices we used are the Nokia N810 and N800

Internet Tablets running maemo linux, as they provide a nearly
full desktop linux environment which facilitates development
considerably. In addition, we used a laptop running ubuntu
linux. The Nokia N810 features a built-in GPS receiver whereas
the N800 does not, so we focused on the GPS sharing scenario.
To support this scenario, we implemented a shared context
model in the Python programming language which addresses
most of the challenges elaborated in Section III in a simple
way: Remote connectivity is based on Bluetooth networking
and we use Bluetooth service discovery to find co-located
devices running a shared context model service. Fault tolerance
is implemented by removing all knowledge about a remote
device as soon as communication errors occur. To provide
directory service functionality, knowledge of other devices’
resources is currently replicated on all devices of a device
society. For the GPS sharing scenario, we implemented the
publish/subscribe interaction paradigm on a context model
based on properties. A property is identified by a namespace
and a name, to cater for heterogeneous context model schemas,
and carries a value, on which the shared context model does
not impose any restrictions. As our prototype is merely for
studying, it does not address access control. For platform-
independent applications, we extended the mobile web browser
of the Internet Tablets. We used the Telar DCCI implementation
[1] developed for Nokia Internet Tablets in our previous work
[2] and added an additional context data provider as a bridge
between the shared context model and the DCCI property tree.

The shared context model is implemented as a dbus service
and as such automatically started when an application first
accesses it, e. g., when the DCCI browser extension is brought
up. Local resources become available immediately. Also, the
remote connectivity component of the shared context model
starts to perform a Bluetooth scan every 30 seconds to find other
devices running a shared context model service. At the same
time a Bluetooth server socket is kept open for other devices
to connect. As soon as one device discovers another one, they
exchange the (namespace, name)-pairs of all their properties.
This includes properties of other devices they know about,
i. e., device A might receive from device B knowledge about a
property owned by device C. If after this “handshake” a shared
context model has gained knowledge about new properties,
a dbus signal is sent to inform applications (and the DCCI
bridge) about the new properties. Applications interested in
the new properties may subsequently subscribe to the new
properties, which causes the shared context model to subscribe
at the remote device. From that point on, the remote device will
send notifications whenever the value of a subscribed property
changes. If the subscribed property is not owned by the remote
device, subscriptions are made along the entire path to the
original property owner and notifications are routed back along
this path. A subscription ends if the requesting application
explicitly unsubscribes or if communication errors occur, in
which case the shared context model removes all knowledge
about the respective property. The removal of properties is
broadcasted to applications as a dbus signal.



Using our prototype we were able to build and use location-
aware web applications on a Nokia N800 which utilize position
data gained from the GPS device of a co-located Nokia N810
or simulated by a laptop. This demonstrates the concept of
ad-hoc smart spaces very nicely.

VI. RELATED WORK

Since Mark Weiser’s vision of ubiquitous computing [14]
numerous frameworks, platforms, and systems were created to
put this vision into practice. Smart environment systems [3],
[8] create intelligent living or meeting rooms from cooperating
devices with some dynamic aspects. These systems are strongly
infrastructure-based and usually rely on a central coordinator,
such as the EventHeap in [8]. Moreover, the smart environments
in the various research labs are often built from devices whose
functionality is known to the developers beforehand.

Sodapop [7] builds smart environments without a central
coordinating infrastructure. To achieve a certain goal, a suitable
chain of stateless channels and stateful transducers has to be
created in a device society. The Sodapop model is event-based
and is not designed for the highly volatile scenario of ad-hoc
smart spaces.

The Nexus platform [10] is an example of a distributed
context platform and provides a unified world-scale context
model composed by numerous context servers. Nexus features a
complex and extensible schema and metadata model. In Nexus,
a client has to include some knowledge about its context (e. g.,
its location) in a query to get appropriate results. Using ad-hoc
smart spaces, the context servers would be in proximity, so
the client’s context would be implicitly clear.

AmbientDB [6] is a self-organizing P2P database manage-
ment system intended for an ad-hoc mobile environment. It
makes use of Chord [12] to share data among a potentially
large collection of nodes in a robust way. AmbientDB is used
in a query/response manner but again aims at a less dynamic
scenario than ad-hoc smart spaces do.

The Context Broker [4] provides a centralized context model
using the Web Ontology Language (OWL) for for modeling
ontologies of context and supporting context reasoning. This
is interesting for ad-hoc smart spaces too, as it provides a
possibility to deal with heterogeneity and fault tolerance.

Mäntyjärvi et. al. presented a method to make context
recognition more reliable by combining uncertain context data
from multiple devices [9]. This addresses the challenges of
context modeling, metadata, and data quality.

Contory [11] is a Java-based context provisioning middle-
ware for mobile devices which incorporates multiple provision-
ing strategies, including ad-hoc networks.

VII. CONCLUSION

Today’s mobile devices could be a lot more useful if they
utilized their manifold means of communication to work
together and share their resources. In this paper we proposed
the concept of ad-hoc smart spaces, which enables mobile
devices to benefit from resources owned by other devices in
physical proximity. We identified major challenges mainly

caused by the highly dynamic scenario of ad-hoc smart spaces
and the heterogeneity of devices. We discussed an architecture
to address these challenges and presented a first prototypic
implementation.

Our work is at an early stage and we are yet to fully address
challenges such as access control, varied interaction paradigms
and a more powerful context model supporting heterogeneous
data models. We will be integrating more devices with support
for varied communication platforms and service discovery. We
aim to conduct subjective and objective evaluation of the system
through user trials incorporating more applications, different
browsers, and devices from different manufacturers. We are
encouraged by the potential of ad-hoc smart spaces and intend
to provide a more comprehensive report soon.

ACKNOWLEDGMENTS

We thank Christian Prehofer, Leonid Zolotarev, Nazario
Cipriani, Michael Trunner and our fellow colleagues at Nokia
Research Center, W3C, and University of Stuttgart for all their
valuable feedback and support with the overall framework.

REFERENCES

[1] A. Brodt. Telar DCCI website, 2008. http://telardcci.garage.maemo.org.
[2] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang. Context-aware

mashups for mobile devices. In Web Information Systems Engineering -
WISE 2008, 9th International Conference, volume 5175 of LNCS, 2008.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving:
Technologies for intelligent environments. Handheld and Ubiquitious
Computing, 2000.

[4] H. Chen, T. Finin, and A. Joshi. Semantic web in the context broker
architecture. In PERCOM ’04: Proceedings of the Second IEEE
International Conference on Pervasive Computing and Communications
(PerCom’04), Washington, DC, USA, 2004. IEEE Computer Society.

[5] A. K. Dey. Understanding and using context. Personal and Ubiquitous
Computing, 5(1), 2001.

[6] W. Fontijn and P. Boncz. Ambientdb: P2P data management middleware
for ambient intelligence. In PERCOMW ’04: Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications
Workshops. IEEE Computer Society, 2004.

[7] M. Hellenschmidt and T. Kirste. Sodapop: a software infrastructure
supporting self-organization in intelligent environments. In 2nd IEEE
International Conference on Industrial Informatics (INDIN 04), 2004.

[8] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces project:
experiences with ubiquitous computing rooms. Pervasive Computing,
IEEE, 1(2), 2002.

[9] J. Mäntyjärvi, J. Himberg, and P. Huuskonen. Collaborative context
recognition for handheld devices. In PERCOM ’03: Proceedings of
the First IEEE International Conference on Pervasive Computing and
Communications, Washington, DC, USA, 2003. IEEE Computer Society.

[10] D. Nicklas, M. Großmann, T. Schwarz, S. Volz, and B. Mitschang. A
model-based, open architecture for mobile, spatially aware applications.
In Proceedings of the 7th International Symposium on Spatial and
Temporal Databases: SSTD, 2001.

[11] O. Riva. Contory: A Middleware for the Provisioning of Context
Information on Smart Phones. In Proceedings of the 7th ACM
International Middleware Conference (Middleware’06), volume 4290 of
LNCS. Springer, 2006.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego,
California, 2001.

[13] K. Waters, R. A. Hosn, D. Raggett, S. Sathish, M. Womer, M. Froumentin,
and R. Lewis. Delivery context: Client interfaces (DCCI) 1.0. Candidate
recommendation, W3C, 2007.

[14] M. Weiser. The computer for the 21st century. Scientific American,
265(3), 1991.


