
Enforcement from the Inside: Improving Quality of Business in Process
Management∗

Hanna Eberle2, Stefan Föll3, Klaus Herrmann3, Frank Leymann2, Annapaola Marconi1,

Tobias Unger2, Hannes Wolf3

1Fondazione Bruno Kessler, Via alla Cascata 56/c, 38100 Trento, Italy
2 Institute of Architecture of Application Systems, Universitätsstrasse 38, 70569 Stuttgart, Germany

3 Institute of Parallel and Distributed Systems, Universitätsstrasse 38, 70569 Stuttgart, Germany
{lastname}@fbk.eu|iaas.uni-stuttgart.de|ipvs.uni-stuttgart.de

Abstract

In this paper we introduce a new modeling tool for con-
straint handling in the area of workflow technology. The
constraint handlers can be used to improve the quality of
business processes but without changing already existing
business logic. Todays workflow languages provide no pos-
sibility to model constraints and the actions in case the
constraints get violated explicitly. Fault and event handling
mechanisms to react to events not expected in normal execu-
tions are only provided by the BPEL language. Using BPEL
as workflow language we integrate the constraint handling
extension without changing any existing semantics in a smart
way. In our approach we use this fault and event handling
mechanisms to extend the BPEL language with a constraint
handling mechanism. By integrating this constraint handling
tool into the BPEL language we provide an approach for
quality driven process modeling with the BPEL language.

1 Introduction

Business processes have evolved from rigid structures to

workflows highly exposed to the dynamics of the open mar-

ket and the close interdependencies of business partners. The

capability to react immediately on changing conditions in

business environments has been recognized as an important

factor for the enduring success of business oriented systems.

In order to tailor business logic to the actual needs of cus-

tomers and business cooperations, the flexibility of business

processes is considered a cornerstone of today’s business

management principles. However, the requirements for the

∗This work is partially funded by the ALLOW project. ALLOW

(http://www.allow-project.eu/) is part of the EU 7th Frame-

work Programe (contract no. FP7-213339).

development and maintenance of complex business appli-

cations have even increased, since business workflows are

being increasingly tightly coupled to real world processes.

In scenarios like the Smart Factory [15], Logistics Manage-

ment or Health Care [22], where processes are supposed

to react autonomously to context information such as the

location of tools or the health of patients, the managed flows

of activities are directly situated in real world environments.

Workflow management systems are supposed to allow for

the continuous synchronization of the execution of business

processes with events originating from these environments.

For this purpose, the input provided by external observers

of environmental information such as context recognition

systems directly affects the ongoing process behavior. In

this regard, business processes must be aligned to run in

compliance to the state of the real world at each point in time

in the current context of execution. Therefore, the design of

process models must allow for the integration of constraints

guaranteeing the validity of business processes based on

a clear separation of concerns between business logic and

constraint enforcement. These constraints may follow a set

of rules necessary for assuring and improving the quality

of a process and consequently the resulting outcome of the

process (e.g. the manufactured product). As we show in a

case study in this paper, these rules are often derived from

a set of norms or laws underlying the business processes in

real world applications. The detection of constraint violation

during run-time and the following adaptation of the business

process provide efficient means to perform the necessary

steps in order to improve the overall business quality. Based

on these insights, we present in this paper a novel approach

for the design and execution of business processes being

highly adaptive to conditions observed in the real world.

For constraint enforcement we regard business processes

from the inside allowing constraints to cover multiple related

activities of the process model and monitor their validity dur-

Published in IEEE International Conference on Web Services, ICWS 2009. 6-10 July 2009,
pp 405 - 412
© IEEE 2009
http://dx.doi.org/10.1109/ICWS.2009.82

ing run-time. Thus, our works extends current approaches,

which merely mediate between required and offered quality

of service announced by external service providers (e.g. Web

Service Level Agreement [16]). In contrast, our approach

enables to enforce quality of business throughout process

structures by monitoring process-related conditions and treat-

ing them as invariants for the enclosing process fragments.

Our main contributions are a) the extension of process model

design to structure models into sub parts for which compli-

ance rules must be enforced in an individual way b) a way

of defining constraints related to external state captured as

metrics during run-time as well as the internal execution

plan, e.g. the duration of a process instance c) a clear se-

mantics for different choices of handling constraint violation

and d) the application of our ideas to BPEL based workflow

specification as well as an architecture of an extended work-

flow engine for the integration of our concepts. As the Web

Services Business Process Execution Language (WS-BPEL

or BPEL in short) is the de facto standard for composing

functionality into a business process, we develop our con-

cepts in strong alignment to the BPEL syntax and semantics,

although being applicable to other workflow languages as

well.

1.1 Contribution

The aim of this paper is to provide a modeling approach to

annotate business process with constraints and an execution

model to monitor those constraints during process execution.

Additionally the modeler can annotate actions on business

processes which have to be performed in case a constraint

cannot be hold. To use annotations externalizes the handling

of constraints from the core execution of the process logic.

As it is shown in Figure 1 first step of the modeling is to

model the process itself. Later on the process is annotated

with constraints, constraint handling capabilities and metrics

as well. Metrics provide the data needed by constraints and

the scale basis of the subject to be measured. Metrics can

be of various kinds. Simple metrics are e.g. temperature,

time but can also be of a more complex kind, e.g. aggre-

gating some context data relevant to real world applications.

Constraints handling capabilities can also be used to mon-

itor the process itself by defining metrics and constraints

referencing process instance data, e.g. duration of process

instance. During the execution the constraints of the pro-

cesses have to be monitored as long as the according part of

the process instance is running. The metrics processing com-

ponent delivers the input values to the constraint evaluation.

Standard engines have to be extended in order to suit those

needs, what is discussed in section 5. As realization of this

approach we extend the workflow language BPEL with con-

straint handling capabilities. Therefore as foundation to the

further work we provide a formalization parts of the BPEL

1 2 3

1. Process Model

Rules e.g. Laws
2. Enrich Process
Model with
constraints to
make it compliant
with business rules

3. Execution,
monitoring of
constraints, handling
constraint violations
in the process itself

1 2 3
1 = Metric; 2 = Constraint; 3 = Constraint violation handler logic

1 2

Figure 1. Concept of Constraint Annotations

syntax and semantics. The challenge of this paper lies in ex-

tending BPEL with constraint handling capabilities without

changing existing semantics in a way that allows to integrate

the additional functionalities be implemented in a workflow

engine. The paper is organized as follows. To foster the

understanding of the paper we provide a short introduction

into BPEL (Business Process Execution Language), its for-

malization and the execution of BPEL processes in section

2. Section 3 introduces the application scenario, which is

used to define requirements and to encompass the problem

domain. In section 4 we describe the concept provided by

this paper followed up with the architecture extending basic

workflow engines with enforcement capabilities in section

5. The realization of the scenario with the new concepts

is depicted in section 6. To round up this paper we will

discuss the related work in section 7. Conclusions are drawn

in section 8 including the outlook for further research.

2 BPEL

In this paper we base the realization of the concepts de-

scribed with BPEL, which can be extended with further func-

tionality. Business Process Execution Language (BPEL) is

an XML-based workflow language, which is used to describe

business processes consisting of several Web services [21].

BPEL’s recursive nature allows to provide a business process

again as a Web service. Both the process interface and the

interfaces of the invoked services are described as WSDL

portTypes. These portTypes are referenced via typed con-

nectors called partnerLinks. A BPEL process consists of a

set of activities. BPEL defines two types of activities: struc-

tured activities and basic activities. The main basic activities

allow the process both to invoke Web services (invoke) and

to be invoked as a Web service (pick/receive/reply). All

invoke activities refer to a portType which is linked via a

partnerLink. Other basic activities are being used for wait-

ing (wait), assigning data (assign) or doing nothing (empty).

Structured activities contain other activities and define the

business logic between them. The flow activity for instance

contains one or more activities, which can be modeled in a

graph-oriented way, and therefore be executed in sequence

or in parallel. The execution of the enclosed activities can be

ordered through the use of control links. Every control link

has a Boolean expression called transition condition, which

is evaluated at completion on the link’s source activity. Every

activity being target of links holds a join condition, which

is a boolean expression in terms of the incoming link value.

Besides flow activities there are other structured activities

defined in BPEL like sequence, if-then-else, forEach, repea-
tUntil, and while. A Sequence executes all activities in the

order they are enclosed. The if-then-else activity provides

a decision construct. While, repeatUntil, and forEach are

used for defining loops. Through the scope activity, BPEL

provides a facility to encompass a subset of activities and

attach certain behaviour by adding fault, compensation, ter-

mination or event handlers. A fault handler deals with faults

within a scope, whereas a compensation handler is able to

reverse successful work done in previous scopes [4]. An

event handler processes events on scope or process level

and a termination handler provides additional control on

terminated scopes.

2.1 A Formalization of BPEL

In this section we provide a formalization of BPEL. We

use this formalization later on to define our constraint han-

dling extensions and plug them into BPEL. Therefore we

formalize only parts of the abstract BPEL syntax. The com-

plete formalization can be found in [13]. The operational

semantics is described in the BPEL 2.0 specification [17].

The general idea of this formalization is to map the XML

hierarchy of BPEL into a hierarchy relation HR (e.g. the

nesting of activities). All activities contained in a process

model are described by the set A. The set TA defines the

set of all activity types defined in the BPEL specification.

Using the function typeA : A→ TA each activity is assigned

to an activity type. All scope activities of a process model

are described using the set Ascopes ⊂ A. In contrast to the

event definition in the BPEL specification, where events are

messaging events from the outside, events in this formaliza-

tion are understood as general events, either internal events

created during navigation over the process model or message

events sent from the outside. The events are used to trigger

the respective handlers. For example, a fault event triggers

a fault handler. The hierarchy relation allows handlers to

be annotated to activities. The set E describes all events of

a process model. Every event is assigned to an event type.

The set TE is the set of all event types. The assignment

is done using the function typeE : E → TE. Events having

impact on constraint handling are of the types event and

fault, {event, fault} ⊂ TE. All events of a process model are

contained in the set Eevent ⊂ E. Faults are represented by the

set Efault ⊂ E.

Inactive

Running

Completed Compensating TerminatingFailed

Compensated Terminated

Finished

Figure 2. Simplified State Diagram of Scope
Activities

2.2 Executing a Scope Activity

In this section we shortly introduce the relevant aspects

of the process execution related to our work [14]. Since

constraint handling are apply to sets of activities or, in terms

of BPEL, scope activities, we investigate the execution of

a scope activity in detail to be able to plug constraint han-

dling capabilities into a scope’s execution semantic later on.

BPEL processes are executed by navigating through a graph

of activities. An activity is started, if all incoming links

are evaluated. If the activity is embedded in a structured

activity like a sequence activity or if activity it is started

if the parent activity schedules the activity for running and

all incoming links are evaluated. The state of an activity

changes during its life-cycle. As the scope activity is the

most relevant activity type for our work, in the following

we illustrate its simplified life-cycle (c.f. Fig.2). The BPEL

specification does not put any requirements on the imple-

mentation and therefore it does not impose any state model

for activities. Hence we use a simplified model. The state

diagram shown in Figure 2 is based on the models presented

in [12], [20], [10] and can be mapped to the most existing

BPEL engines (e.g. Apache Ode). Furthermore it abstracts

from the death path elimination. Depending on the engine

implementation the scope activity might be created either a

priori, e.g. on creation of the process instance and set into

the state inactive or later in the process execution, e.g. when

the first incoming link of the scope activity is evaluated and

the state set into state inactive. The state inactive is basically

needed to allocate resources necessary for the scopes execu-

tion. Once all incoming links are evaluated the activity state

is set to running, the execution of the activities contained in

the scope is started and the event handlers are activated. If

all activities and running event handlers finished, the activity

state is set to completed and the compensation handler is

installed. But if a fault happens within the scope while in

state running the scope gets faulted, which means it changes

to state faulted and all running activities and scopes encom-

passed by the faulted scope will terminate. Terminating
means here to stop all surrounded running activities and

scopes and so on. If all activities and scopes are terminated

the scope enters the state terminated and finishes.

3 Scenario

We will introduce a scenario to illustrate the application

of the concept introduced in this paper. The scenario re-

garded now is located in the area of food safety. Food safety

is a very important issue in the production of food and dur-

ing the delivery of food. There are many laws (e.g. [6]) and

quality guidelines (e.g. [3]) which have to be followed and

must not be broken for the consumer safety. To ensure the

quality of frozen foods the process dealing with the cold

chain must be compliant to these rules. A cold chain is a

temperature-controlled supply chain, i.e. from a specific

point the products must be cooled within a specific tem-

perature range. Cold chains are common in the food and

pharmaceutical industries and also some chemical shipments.

The basic supply chain of frozen peas is as follows (c.f. fig-

ure 3). First, the peas get harvested and as soon as possible

transported to a food production fabric. In the fabric the

fresh peas must be peeled, washed and blanched. The quick

freezing will be done with around -40 ˚ C [2]. All these

steps have to be done within two days to ensure the quality

constraints. If this constraint cannot be hold the peas have to

be withdrawn from the whole food production process. After

the quick freezing the peas will be packaged and delivered to

the customer. A second guideline indicates that after preser-

vation the peas have to be kept at a temperature around -20 to

-18 ˚ C during all steps of delivery processing till the product

is sold to the end consumer. To enforce this guideline a con-

straint is defined that the surrounding temperature must not

exceed -18 ˚ C for longer than 2 minutes. If this constraint

is violated, an additional quality check is necessary, because

the peas are not necessarily spoiled. The check approves

either the high quality of the peas, which means that it can

be proceeded as usual, or it urges the producer to withdraw

the product from the market, due to the high quality of the

product could not be kept. The third guideline which must

be enforced is the expiry date. If not sold within one year

the peas must be withdrawn from the market.

Harvesting Processing Quick-
freezing Packaging Delivery

Figure 3. Pea Cold Chain Scenario

4 Integrating Constraint Handling Capabili-
ties into BPEL

In this section we will provide an approach how to extend

the existing process metamodel of BPEL with according

capabilities to model and monitor constraints and the actions

to be executed in case of constraint violation. Therefore

new modeling elements are introduced, which are metric,

constraint and constraint handler, where constraints define

conditions, to be fulfilled. Metrics provide values which

serve as input to the parameters used by constraints. Con-

straint handlers define alternate actions on how to proceed if

a constraint violation occurs. To integrate all these modeling

elements with their operational semantics into BPEL without

changing the BPEL semantics is one of the big challenges of

this work. Based on the formalization of BPEL, which we

defined in section 2.1 we specify our concepts and how they

fit into standard BPEL. But first of all we need to discuss,

which way to go to realize constraint handling capabilities

in BPEL.

4.1 Discussing realization approaches

In the following we clarify our realization approach.

Therefore we discuss the possible ways on how to inte-

grate the new modeling elements in the existing BPEL 2.0

metamodel. Metrics and constraints are affected by process

navigation events, e.g. entering a scope event triggers the

evaluation and measuring of constraints and metrics. But

both metrics and constraints do not affect the process navi-

gation of process model directly. The constraint affects the

constraint handler by sending an event message to it, in case

of a constraint violation. The task of the constraint han-

dler is to influence the process logic either to terminate the

associated scope or to perform additional process logic con-

currently. There are basically two possible ways to realize

the semantics described above.

• The first way is to define the alternate process logic

within the constraint handler.

• The second way is to forward the events received by

the constraint handler to already existing modeling el-

ements, which can either be event handlers or fault

handlers.

If one inspects the scenario very carefully can find that the ac-

tions to be done in reaction to constraint violations are either

executing some activities concurrently to the normal exe-

cution or terminating the normal execution and performing

some compensating activities to limit damage done. This be-

havior can be realized by using both fault and event handlers.

We decide in this paper for the second way using event and

fault handlers to realize the desired behavior. Our decision

founds on the following points. It’s a very comfortable way

to realize constraint handling, because the already defined se-

mantics can be reused and must not defined anew. Also this

avoids redundancy in semantics and modeling. Constraints

handling modeling elements can be annotated to both scopes

and activities.

4.2 Defining Constraint Handling Model-
ing Elements

Constraint handling basically consists of 3 modeling el-

ements. First of all we need to define a metric. Metrics

define what shall be measured during the execution of a

scope or activity. These metrics can be referenced by every

constraint definition which is annotated to an enclosed scope

or annotated to the same scope. If a constraint is violated

the constraint handler is triggered. Constraint handlers de-

fine actions which have to be done on constraint violation.

Constraint handlers can be executed either parallel to normal

execution or terminating the normal execution.

4.2.1. Metrics. Metrics define values of properties

provided by services. Metrics therefore describe exactly

the meaning of constraints though they specify how to mea-

sure and compute property values respectively. A process

model defines a set of metrics M. A metric is annotated

on a scope or activity, which forms the metrics annotation

relation MA ⊆ M×Ascope. Defining a language to express

metrics would go beyond the scope of this paper. Hence

we refer at this point to [16], where a language to express

metrics is defined. The metric evaluation is integrated into

the navigation model as follows. After a scope is activated it

will be checked whether there are any metrics annotated to it,

the annotated metrics get activated, too. Metric processing

must be triggered before the first evaluation of the annotated

constraints since constraints reference metrics. On process

suspension the metric will be deactivated, too.

4.2.2. Constraint. The set of all possible constraints

is defined by the Cartesian product C ⊆ CC × CET,

where CC defines a set of constraint conditions and

CET a set of constraint evaluation times with CET =
{enter,exit,enter&exit,continuous}. A constraint condition

is an expression in first order predicate logic [16], that de-

scribes the constraint the scope must meet. It therefore refer-

ences metrics. The relation is defined through the function

metricsCC : CC → 2M. Constraint conditions can reference

all metrics, which are annotated to a surrounding scope, what

means that there can be also metrics referred to which are

not annotated to the next surrounding scope but to the parent

scope of the surrounding scope, and so on. If the constraint

condition evaluates to false the constraint is violated. The

constraint evaluation time also called event quantifiers spec-

unevaluated

valid

violated

unevaluated

valid

violated

deactivate

activate

deactivate

activate

activate

deactivate
Deactiviated Activiated

Figure 4. Constraint State Diagram

ifies, when the predicate must be evaluated relatively to a

scopes life cycle. As defined above event quantifiers are

enter,exit,enter&exit and continuous, which define at what

point in time in a scopes life cycle the according constraint

condition must be evaluated. E.g. if the evaluation of the

constraint is continuous, the first evaluation of the constraint

condition in the scope lifetime is done immediately after the

scope changed to state running (c.f. Figure 2). Before the

scope is put into running state the constraint remains in state

deactivated,unevaluated (c.f. Figure 4). If the according

scope gets into state running the constraint state changes to

state activated,unevaluated. Depending on the constraint

evaluation time defined the constraint gets evaluated either

immediately after running constraints with a constraint eval-

uation time either {enter, enter&exit, or continuous. If the

constraint evaluation time of the constraint is set to exit, or

enter,exit constraint gets evaluated after all activities includ-

ing all event handlers an of the scope have completed, which

means that scope has entered state completed. If a constraint

needs to be evaluated more then once in a scope’s lif cy-

cle the constraint evaluation time must be set to continuous.

It might happen that the constraint evaluates differently at

those points in time. Hence state transitions between state

valid and state violated state is also a reasonable state tran-

sitions (c.f. 4). At any time of the process execution the

process might get suspended or resumed. Therefore it must

be possible to deactivate or activate the constraints state.

4.2.3. Handling Constraint Violations. Constraints

are annotated at a scope via the constraint handler relation

CH with CH ⊆ Ascope ×C×EConstraintAction. EConstraintAction
defines the event message to be generated in case of a con-

straint violation. This event message can be either of the

type simple event message Eevent or a fault message, Efault
and EConstraintAction = Eevent ∪Efault and Eevent and Efault ⊆ E

with E are all possible event messages. The type function

typeEConstraintAction
(e) =

{
message e ∈ Eevent

fault e ∈ Efault

enables to find out what’s type of the generated event mes-

sage is. This enables to forward the message to respective

handlers, which is either an event handler or a fault handler.

The event-types differ in the way how they influence the

running process. The constraint violation might violate the

rules associated to the scope that seriously, that no successful

completion of the scope is possible any more. This is the

case where constraint violations are handled as a fault. A

fault will be created. This fault message will be handled as

any other fault in BPEL processes, terminating all running

activities within the scope and performing fault handling

as defined in a suitable annotated fault handler. If the con-

straint violation expresses a less serious breach the process

might proceed with its business as usual, but e.g. additional

quality checks might be needed as described in chapter 3.

This forms the second case the constraint handler will create

event messages which can be handled as any other event

messages received by the process instance, e.g. with event

handlers. Event handlers are executed in a concurrent way to

normal business process execution. The constraint handler

gets triggered by an event sent by the constraint evaluation

component, if a constraint reaches state violated. Therefore

a constraint handler might be executed more than once, since

less serious constraints might be violated more than once

during the execution of the respective scope. Every time the

handler might create new event messages. In chapter 3 the

constraint, which requires the peas to be cooled at a tempera-

ture around -20 to -18 ˚ C, might be violated more than once.

Therefore every time this happens additional quality checks

have to be accomplished, followed by potential withdraw

procedures.

5 Runtime Architecture

To enhance a workflow engine with constraint evaluating

capabilities it needs to be extended by two further com-

ponents: a constraint processing component and a metrics

managing component [16].

• The metrics managing component provides the values

needed by the constraint processing component for the

evaluation of the constraints.

• The constraint processing component is responsible to

evaluate the constraints at certain points in time.

Both new components need some process navigation events

as triggers. For example the metrics managing components

needs the process navigation events of a scope with annotated

constraint handling capabilities. Especially those events sig-

naling that a scopes enters the running or completed state, to

start or stop the measuring. The process navigation events,

which are interesting for constraint processing component,

are the same as the ones to trigger the metric measuring com-

ponent, e.g. enter a scope. If a constraint needs to be evalu-

ated continuously the metrics managing component needs

to update corresponding data if the data changes. Hence

the metrics managing component signs up for changes for

according topic after entering the scope and the first eval-

uation. Apart from measured data provided by different

Any
system

Workflow Engine

Metrics
engine

Constraint
Evaluating
Component

WfE Core

Navigation

Process
Models

ERP

Context
Server

Figure 5. Architecture

systems the metrics managing component has some built-in

measures, e.g. time, measured by the core engine or other

process metrics. The components identified above can be

plugged into an existing workflow engine in two ways, ei-

ther as internal components to the workflow engine or as

external components. We support the idea of integrating the

constraint handling components into the workflow engine.

Because in our application scenario metrics engine and con-

straint evaluation component are only used by the workflow

engine and need not to be accessible by other outstanding

components. Therefore and taking performance aspects into

account we recommend an approach with integrated con-

straint handling capabilities in a workflow engine. The archi-

tecture shown in Figure 5 shall only suit our needs regarding

the application of metrics and constraint handling in the area

of workflows. This architecture can be easily implemented

using the pluggable framework described in [11]. The au-

thors in [11] provide a standardized architectural framework

for the implementation of extensions to the BPEL language.

Implementation of extensions to the BPEL language basi-

cally require two interfaces, which enable the extension to

react to navigation events and to affect the engines process

navigation. Therefore they propose to build a ”generic con-

troller”, which exposes all navigation events to the outside

and offers an interface API for incoming events to influence

the navigation logic.

6 Example

The implementation of the scenario described in section

3 is shown in figure 6. The scenario is a sequence of coarse

grained production steps and is therefore modeled as such.

The production steps mapped onto activities are harvesting,

followed up the transportation of the harvested goods to

the production factory, processing and the freezing of the

peas. The frozen peas are packaged, delivered and sold.

During execution three constraints have to hold or it must

be reacted on their violation. The process has to be finished

after a period of time of one year. A constraint and it’s

according metric and constraint handler is defined for scope

A, which is enclosing all activities. The constraint defining

the expiry date of the peas is annotated at this scope and it’s

according metric measuring time of each process instance.

The activities harvesting up to the freezing of the peas have

Harves
ting

Transp
ort to

factory

Proces
sing Sell

Time t

Scope A

Cool
down

Packag
ing

Deliver
y

C2:
t<1day

Temper
ature
temp

Scope B Scope C

Throw F1

C1: t < 1
year

C3: temp
>-18 for

duration t
> 2min

Catch F1

Event
message:

E1

Event handler:
OnEvent E1
Additional qualtity check
IF (food no good any
more)
THROW F1

Throw F1

Figure 6. Example - Implementation of Peas Cold Chain Scenario

to be performed during the period of one day. These four

activities build scope B together. Because the annotated

constraint is also a time constraint and the measurement is

not independent from the overall running of the process the

metric of scope A can be referenced. If the constraint gets

violated a fault F1 is thrown by the constraint handler. The

last three activities of the process model are bracketed by

the constraint demanding the activities to be performed in

following condition. The peas must not have a temperature

of -17 and above for the duration of 2 minutes. A metric to

measure temperature has to be defined. And again the time

metric is referenced. On violation of the constraint handler

the very same sends a event message to be received by an

event handler. The event handler defines an action to be

performed in case of its invocation.

7 Related Work

Todays workflow languages (e.g. BPEL [17]) mostly pro-

vide no possibility to explicitly model various constraints and

how to handle their violation. Those languages focus on the

modeling of the business logic. Just the BPEL language pro-

vides appropriate fault and event handling mechanisms [4],

to react on events not expected in normal executions. Fur-

thermore some approaches ([18], [5]) break with the fixed

modeling of the business logic by modeling the control logic

using a set of constraints in contrast to traditional work-

flow modeling paradigm using e.g. directed graphs or petri

nets. [18] uses constraints to describe a partial ordering of

activities by defining restrictions on the activity relations.

However the aim of the approach presented in this paper is to

model and monitor constraints regarding the properties of the

environment (e.g. location) and not the properties of activity

relations. [19] provides an approach for modeling compli-

ance for business processes. Thereby the authors use rules to

check whether a process model is compliant to those rules.

Rules are modeled using a Formal Contract Language (FCL),

while FCL is based on logic expressions. This approach can

be classified as a preventive method to achieve compliance.

The approach of our work on the contrary can be classified

as reactive method to achieve compliance with certain rules,

i.e. we react to constraint violations during runtime. This

is necessary e.g. if a workflow has to deal with unforeseen

situations running in pervasive environments. Service Level

Agreements (SLAs) are used as a contractual basis to de-

fine certain properties (e.g. response time) a service (e.g. a

business process) has to provide. A SLA also specifies the

measures to be taken in case of deviation and failure to meet

the asserted service guarantees, e.g. a notification of the

service customer. Therefore [16] provides mechanisms to

model constraints and metrics. In contrast with our approach

violations of constraints are not propagated to the process

instance directly. [7] provides an approach for modeling the

required message flow of a business process using Linear

Temporal Logic (LTL-FO+). However, a violation is not

propagated to the process. Traditional WfMS (e.g. [8], [9])

and related standards for human integration [1] allow the

definition of escalations for (human) tasks, performed by

humans. Escalations allow the specification of constraints.

If the constraint is violated a specified action (e.g. a notifica-

tion) is triggered. In contrast with our approach constraints

can only be defined on time and state of a task.

8 Conclusion and Outlook

This paper introduced a new concept on how to explic-

itly model and enforce constraints on process modeling and

process execution respectively. Hence we pointed out a way

on how to realize those constraints, including the metrics

they refer to, and the actions to be performed in case the

constraints get violated in BPEL. We provided an architec-

ture for a workflow engine capable of constraint evaluation

and constraint violation handling. Annotating constraints

explicitly in business processes enhances flexibility of pro-

cess models in two ways. We provide a modeling method

to integrate business norms into process models. Thereby

business logic needs not to be adapted or changed. This sim-

plifies the modeling process, because business norms need

not to be translated into business logic, but can stay on its

own conceptional level. Additionally business norms might

change more often than business logic. Since business norms

are attached and not directly integrated in the business logic

they can be easily changed. Business processes can be easily

reused in different business norm contexts. Furthermore our

approach enhances runtime flexibility by means of extending

the execution by constraint violation handling actions. Espe-

cially in the domain of real world applications this concept

provides a useful approach. Context can be considered as

constraints that have to hold during a process’ execution.

The constraint handling framework allows the process to

react and adapt the behavior, if context assumptions do not

hold during execution of the process, by handling the con-

text change as constraint violation. Less serious constraint

violations can be handled through additional tasks, more se-

rious ones through fault handling. Afterwards the processes

can proceed with their business as usual. Further research

interests in this area are, e.g. to generalize the constraint con-

cept. Constraints might not depend on any metrics. Metrics

might be defined as part of the constraint instead. Constraint

handling as shown in this paper has basically two options,

either to execute additional actions in parallel or to execute

alternative actions apart from usual business logic. Other op-

tions are possible, e.g. suspend running process and perform

additional actions, resume normal process execution.

References

[1] A. Agrawl et al. Web Services Human Task. Active Endpoints,

Adobe, BEA, IBM, Oracle, SAP AG, June 2007.

[2] H.-D. Belitz, W. Grosch, and P. Schieberle. Lehrbuch der
Lebensmittelchemie. Springer, Berlin, 2007.

[3] K. Brandriff. A Focus on Hazard Analysis and Critical Con-
trol Points. United States Department of Agriculture, 2003.

[4] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana.

Exception Handling in the BPEL4WS Language. In W. M. P.

van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors,

Business Process Management, volume 2678 of Lecture Notes
in Computer Science, pages 276–290. Springer, 2003.

[5] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakr-

ishnan. Logic based modeling and analysis of workflows. In

PODS ’98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 25–33, New York, NY, USA, 1998. ACM.

[6] EU. Regulation (ec) no 178/2002 of the european parliament

and of the council of 28 january 2002 laying down the general

principles and requirements of food law, establishing the

european food safety authority and laying down procedures

in matters of food safety. Official Journal of the European
Union, 45:1–24, 2002.

[7] S. Hallé and R. Villemaire. Runtime monitoring of message-

based workflows with data. In EDOC, pages 63–72. IEEE

Computer Society, 2008.

[8] IBM. MQ Series Workflow 3.6.

[9] IBM. WebSphere Process Server 6.1.

[10] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and

F. Leymann. BPEL Event Model. Technical Report Computer

Science 2006/10, University of Stuttgart, Faculty of Computer

Science, Electrical Engineering, and Information Technology,

Germany, November 2006.

[11] R. Khalaf, D. Karastoyanova, and F. Leymann. Pluggable

Framework for Enabling the Execution of Extended BPEL

Behavior. In Proc. of the 3rd ICSOC Int’l Workshop on Engi-
neering Service-Oriented Application: Analysis, Design and
Composition (WESOA 2007), LNCS. Springer, September

2007.

[12] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rick-

ayzen, C. von Riegen, P. Schmidt, and I. Trickovic. WS-BPEL
Extension for Sub-processes – BPEL-SPE. IBM, SAP, 2005.

[13] O. Kopp, R. Mietzner, and F. Leymann. Abstract Syntax of

WS-BPEL 2.0. Technical Report Computer Science 2008/06,

University of Stuttgart, Faculty of Computer Science, Elec-

trical Engineering, and Information Technology, Germany,

September 2008.

[14] F. Leymann and D. Roller. Production Workflow: Concepts
and Techniques. Prentice-Hall, Upper Saddle River, New

Jersey, 2000.

[15] D. Lucke, C. Constantinescu, and E. Westkämper. Smart

factory - a step towards the next generation of manufactur-

ing. In Manufacturing Systems and Technologies for the New
Frontier, 2008.

[16] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web
Service Level Agreement (WSLA) Language Specification.

IBM, 2003.

[17] Organization for the Advancement of Structured Information

Standards (OASIS). Web Services Business Process Execution
Language Version 2.0, Mar 2007.

[18] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P.

van der Aalst. Constraint-based workflow models: Change

made easy. In R. Meersman and Z. Tari, editors, OTM Confer-
ences (1), volume 4803 of Lecture Notes in Computer Science,

pages 77–94. Springer, 2007.

[19] S. W. Sadiq, G. Governatori, and K. Namiri. Modeling

Control Objectives for Business Process Compliance. In

G. Alonso, P. Dadam, and M. Rosemann, editors, BPM, vol-

ume 4714 of Lecture Notes in Computer Science, pages 149–

164. Springer, 2007.

[20] T. Steinmetz. Ein Event-Modell für WS-BPEL 2.0 und dessen

Realisierung in Apache ODE. Diploma thesis, University of

Stuttgart, Faculty of Computer Science, Electrical Engineer-

ing, and Information Technology, Germany, August 2008.

[21] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.

Ferguson. Web Services Platform Architecture. Prentice Hall,

April 2005.

[22] K. Windt and M. Hülsmann. Understanding Autonomous
Cooperation & Control in Logistics: The Impact on Man-
agement, Information, Communication and Material Flow.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

