Enforcement from the Inside: Improving Quality of Business in Process
Management*

Hanna Eberle2, Stefan Fol13, Klaus Herrmann3, Frank Leymannz, Annapaola Marconi",

1

Tobias Ungerz, Hannes Wolf>
IFondazione Bruno Kessler, Via alla Cascata 56/c, 38100 Trento, Italy
2 Institute of Architecture of Application Systems, Universititsstrasse 38, 70569 Stuttgart, Germany
3 Institute of Parallel and Distributed Systems, Universititsstrasse 38, 70569 Stuttgart, Germany
{lastname } @fbk.eu|iaas.uni-stuttgart.de|ipvs.uni-stuttgart.de

Abstract

In this paper we introduce a new modeling tool for con-
straint handling in the area of workflow technology. The
constraint handlers can be used to improve the quality of
business processes but without changing already existing
business logic. Todays workflow languages provide no pos-
sibility to model constraints and the actions in case the
constraints get violated explicitly. Fault and event handling
mechanisms to react to events not expected in normal execu-
tions are only provided by the BPEL language. Using BPEL
as workflow language we integrate the constraint handling
extension without changing any existing semantics in a smart
way. In our approach we use this fault and event handling
mechanisms to extend the BPEL language with a constraint
handling mechanism. By integrating this constraint handling
tool into the BPEL language we provide an approach for
quality driven process modeling with the BPEL language.

1 Introduction

Business processes have evolved from rigid structures to
workflows highly exposed to the dynamics of the open mar-
ket and the close interdependencies of business partners. The
capability to react immediately on changing conditions in
business environments has been recognized as an important
factor for the enduring success of business oriented systems.
In order to tailor business logic to the actual needs of cus-
tomers and business cooperations, the flexibility of business
processes is considered a cornerstone of today’s business
management principles. However, the requirements for the

*This work is partially funded by the ALLOW project. ALLOW
(http://www.allow-project.eu/) is part of the EU 7™ Frame-
work Programe (contract no. FP7-213339).

development and maintenance of complex business appli-
cations have even increased, since business workflows are
being increasingly tightly coupled to real world processes.
In scenarios like the Smart Factory [15], Logistics Manage-
ment or Health Care [22], where processes are supposed
to react autonomously to context information such as the
location of tools or the health of patients, the managed flows
of activities are directly situated in real world environments.
Workflow management systems are supposed to allow for
the continuous synchronization of the execution of business
processes with events originating from these environments.
For this purpose, the input provided by external observers
of environmental information such as context recognition
systems directly affects the ongoing process behavior. In
this regard, business processes must be aligned to run in
compliance to the state of the real world at each point in time
in the current context of execution. Therefore, the design of
process models must allow for the integration of constraints
guaranteeing the validity of business processes based on
a clear separation of concerns between business logic and
constraint enforcement. These constraints may follow a set
of rules necessary for assuring and improving the quality
of a process and consequently the resulting outcome of the
process (e.g. the manufactured product). As we show in a
case study in this paper, these rules are often derived from
a set of norms or laws underlying the business processes in
real world applications. The detection of constraint violation
during run-time and the following adaptation of the business
process provide efficient means to perform the necessary
steps in order to improve the overall business quality. Based
on these insights, we present in this paper a novel approach
for the design and execution of business processes being
highly adaptive to conditions observed in the real world.
For constraint enforcement we regard business processes
from the inside allowing constraints to cover multiple related
activities of the process model and monitor their validity dur-

pp 405 - 412
© IEEE 2009
http://dx.doi.org/10.1109/ICWS.2009.82

Published in IEEE International Conference on Web Services, ICWS 2009. 6-10 July 2009,

ing run-time. Thus, our works extends current approaches,
which merely mediate between required and offered quality
of service announced by external service providers (e.g. Web
Service Level Agreement [16]). In contrast, our approach
enables to enforce quality of business throughout process
structures by monitoring process-related conditions and treat-
ing them as invariants for the enclosing process fragments.
Our main contributions are a) the extension of process model
design to structure models into sub parts for which compli-
ance rules must be enforced in an individual way b) a way
of defining constraints related to external state captured as
metrics during run-time as well as the internal execution
plan, e.g. the duration of a process instance c) a clear se-
mantics for different choices of handling constraint violation
and d) the application of our ideas to BPEL based workflow
specification as well as an architecture of an extended work-
flow engine for the integration of our concepts. As the Web
Services Business Process Execution Language (WS-BPEL
or BPEL in short) is the de facto standard for composing
functionality into a business process, we develop our con-
cepts in strong alignment to the BPEL syntax and semantics,
although being applicable to other workflow languages as
well.

1.1 Contribution

The aim of this paper is to provide a modeling approach to
annotate business process with constraints and an execution
model to monitor those constraints during process execution.
Additionally the modeler can annotate actions on business
processes which have to be performed in case a constraint
cannot be hold. To use annotations externalizes the handling
of constraints from the core execution of the process logic.
As it is shown in Figure 1 first step of the modeling is to
model the process itself. Later on the process is annotated
with constraints, constraint handling capabilities and metrics
as well. Metrics provide the data needed by constraints and
the scale basis of the subject to be measured. Metrics can
be of various kinds. Simple metrics are e.g. temperature,
time but can also be of a more complex kind, e.g. aggre-
gating some context data relevant to real world applications.
Constraints handling capabilities can also be used to mon-
itor the process itself by defining metrics and constraints
referencing process instance data, e.g. duration of process
instance. During the execution the constraints of the pro-
cesses have to be monitored as long as the according part of
the process instance is running. The metrics processing com-
ponent delivers the input values to the constraint evaluation.
Standard engines have to be extended in order to suit those
needs, what is discussed in section 5. As realization of this
approach we extend the workflow language BPEL with con-
straint handling capabilities. Therefore as foundation to the
further work we provide a formalization parts of the BPEL

1. Process Model

2. Enrich Process
Model with
constraints to
make it compliant
with business rules

1 = Metric; 2 = Constraint; 3 = Constraint violation handler logic

3. Execution,

monitoring of .

constraints, handling @

constraint violations ~

in the process itself O—»O—»O

Figure 1. Concept of Constraint Annotations

syntax and semantics. The challenge of this paper lies in ex-
tending BPEL with constraint handling capabilities without
changing existing semantics in a way that allows to integrate
the additional functionalities be implemented in a workflow
engine. The paper is organized as follows. To foster the
understanding of the paper we provide a short introduction
into BPEL (Business Process Execution Language), its for-
malization and the execution of BPEL processes in section
2. Section 3 introduces the application scenario, which is
used to define requirements and to encompass the problem
domain. In section 4 we describe the concept provided by
this paper followed up with the architecture extending basic
workflow engines with enforcement capabilities in section
5. The realization of the scenario with the new concepts
is depicted in section 6. To round up this paper we will
discuss the related work in section 7. Conclusions are drawn
in section 8 including the outlook for further research.

2 BPEL

In this paper we base the realization of the concepts de-
scribed with BPEL, which can be extended with further func-
tionality. Business Process Execution Language (BPEL) is
an XML-based workflow language, which is used to describe
business processes consisting of several Web services [21].
BPEL’s recursive nature allows to provide a business process
again as a Web service. Both the process interface and the
interfaces of the invoked services are described as WSDL
portTypes. These portTypes are referenced via typed con-
nectors called partnerLinks. A BPEL process consists of a
set of activities. BPEL defines two types of activities: struc-
tured activities and basic activities. The main basic activities
allow the process both to invoke Web services (invoke) and
to be invoked as a Web service (pick/receive/reply). All
invoke activities refer to a portType which is linked via a
partnerLink. Other basic activities are being used for wait-
ing (wait), assigning data (assign) or doing nothing (empty).
Structured activities contain other activities and define the
business logic between them. The flow activity for instance
contains one or more activities, which can be modeled in a

graph-oriented way, and therefore be executed in sequence
or in parallel. The execution of the enclosed activities can be
ordered through the use of control links. Every control link
has a Boolean expression called transition condition, which
is evaluated at completion on the link’s source activity. Every
activity being target of links holds a join condition, which
is a boolean expression in terms of the incoming link value.
Besides flow activities there are other structured activities
defined in BPEL like sequence, if-then-else, forEach, repea-
tUntil, and while. A Sequence executes all activities in the
order they are enclosed. The if-then-else activity provides
a decision construct. While, repeatUntil, and forEach are
used for defining loops. Through the scope activity, BPEL
provides a facility to encompass a subset of activities and
attach certain behaviour by adding fault, compensation, ter-
mination or event handlers. A fault handler deals with faults
within a scope, whereas a compensation handler is able to
reverse successful work done in previous scopes [4]. An
event handler processes events on scope or process level
and a termination handler provides additional control on
terminated scopes.

2.1 A Formalization of BPEL

In this section we provide a formalization of BPEL. We
use this formalization later on to define our constraint han-
dling extensions and plug them into BPEL. Therefore we
formalize only parts of the abstract BPEL syntax. The com-
plete formalization can be found in [13]. The operational
semantics is described in the BPEL 2.0 specification [17].
The general idea of this formalization is to map the XML
hierarchy of BPEL into a hierarchy relation HR (e.g. the
nesting of activities). All activities contained in a process
model are described by the set A. The set T4 defines the
set of all activity types defined in the BPEL specification.
Using the function type 4 : A — T 4 each activity is assigned
to an activity type. All scope activities of a process model
are described using the set Appes C A. In contrast to the
event definition in the BPEL specification, where events are
messaging events from the outside, events in this formaliza-
tion are understood as general events, either internal events
created during navigation over the process model or message
events sent from the outside. The events are used to trigger
the respective handlers. For example, a fault event triggers
a fault handler. The hierarchy relation allows handlers to
be annotated to activities. The set € describes all events of
a process model. Every event is assigned to an event type.
The set T¢ is the set of all event types. The assignment
is done using the function typeg : € — T¢. Events having
impact on constraint handling are of the types event and
fault, {event,fault} C T¢. All events of a process model are
contained in the set E,,.,; C €. Faults are represented by the
set C(:ﬁm][CéE.

Inactive

[Ci d } {f‘ i] | Terminating I

Compensatedl | Terminated I

([Faied]

Finished

Figure 2. Simplified State Diagram of Scope
Activities

2.2 Executing a Scope Activity

In this section we shortly introduce the relevant aspects
of the process execution related to our work [14]. Since
constraint handling are apply to sets of activities or, in terms
of BPEL, scope activities, we investigate the execution of
a scope activity in detail to be able to plug constraint han-
dling capabilities into a scope’s execution semantic later on.
BPEL processes are executed by navigating through a graph
of activities. An activity is started, if all incoming links
are evaluated. If the activity is embedded in a structured
activity like a sequence activity or if activity it is started
if the parent activity schedules the activity for running and
all incoming links are evaluated. The state of an activity
changes during its life-cycle. As the scope activity is the
most relevant activity type for our work, in the following
we illustrate its simplified life-cycle (c.f. Fig.2). The BPEL
specification does not put any requirements on the imple-
mentation and therefore it does not impose any state model
for activities. Hence we use a simplified model. The state
diagram shown in Figure 2 is based on the models presented
in [12], [20], [10] and can be mapped to the most existing
BPEL engines (e.g. Apache Ode). Furthermore it abstracts
from the death path elimination. Depending on the engine
implementation the scope activity might be created either a
priori, e.g. on creation of the process instance and set into
the state inactive or later in the process execution, e.g. when
the first incoming link of the scope activity is evaluated and
the state set into state inactive. The state inactive is basically
needed to allocate resources necessary for the scopes execu-
tion. Once all incoming links are evaluated the activity state
is set to running, the execution of the activities contained in
the scope is started and the event handlers are activated. If
all activities and running event handlers finished, the activity
state is set to completed and the compensation handler is
installed. But if a fault happens within the scope while in
state running the scope gets faulted, which means it changes

to state faulted and all running activities and scopes encom-
passed by the faulted scope will terminate. Terminating
means here to stop all surrounded running activities and
scopes and so on. If all activities and scopes are terminated
the scope enters the state terminated and finishes.

3 Scenario

We will introduce a scenario to illustrate the application
of the concept introduced in this paper. The scenario re-
garded now is located in the area of food safety. Food safety
is a very important issue in the production of food and dur-
ing the delivery of food. There are many laws (e.g. [6]) and
quality guidelines (e.g. [3]) which have to be followed and
must not be broken for the consumer safety. To ensure the
quality of frozen foods the process dealing with the cold
chain must be compliant to these rules. A cold chain is a
temperature-controlled supply chain, i.e. from a specific
point the products must be cooled within a specific tem-
perature range. Cold chains are common in the food and
pharmaceutical industries and also some chemical shipments.
The basic supply chain of frozen peas is as follows (c.f. fig-
ure 3). First, the peas get harvested and as soon as possible
transported to a food production fabric. In the fabric the
fresh peas must be peeled, washed and blanched. The quick
freezing will be done with around -40 ° C [2]. All these
steps have to be done within two days to ensure the quality
constraints. If this constraint cannot be hold the peas have to
be withdrawn from the whole food production process. After
the quick freezing the peas will be packaged and delivered to
the customer. A second guideline indicates that after preser-
vation the peas have to be kept at a temperature around -20 to
-18 ° C during all steps of delivery processing till the product
is sold to the end consumer. To enforce this guideline a con-
straint is defined that the surrounding temperature must not
exceed -18 ° C for longer than 2 minutes. If this constraint
is violated, an additional quality check is necessary, because
the peas are not necessarily spoiled. The check approves
either the high quality of the peas, which means that it can
be proceeded as usual, or it urges the producer to withdraw
the product from the market, due to the high quality of the
product could not be kept. The third guideline which must
be enforced is the expiry date. If not sold within one year
the peas must be withdrawn from the market.

Quick-

Harvesting freezing

Processing Packaging Delivery

Figure 3. Pea Cold Chain Scenario

4 Integrating Constraint Handling Capabili-
ties into BPEL

In this section we will provide an approach how to extend
the existing process metamodel of BPEL with according
capabilities to model and monitor constraints and the actions
to be executed in case of constraint violation. Therefore
new modeling elements are introduced, which are metric,
constraint and constraint handler, where constraints define
conditions, to be fulfilled. Metrics provide values which
serve as input to the parameters used by constraints. Con-
straint handlers define alternate actions on how to proceed if
a constraint violation occurs. To integrate all these modeling
elements with their operational semantics into BPEL without
changing the BPEL semantics is one of the big challenges of
this work. Based on the formalization of BPEL, which we
defined in section 2.1 we specify our concepts and how they
fit into standard BPEL. But first of all we need to discuss,
which way to go to realize constraint handling capabilities
in BPEL.

4.1 Discussing realization approaches

In the following we clarify our realization approach.
Therefore we discuss the possible ways on how to inte-
grate the new modeling elements in the existing BPEL 2.0
metamodel. Metrics and constraints are affected by process
navigation events, e.g. entering a scope event triggers the
evaluation and measuring of constraints and metrics. But
both metrics and constraints do not affect the process navi-
gation of process model directly. The constraint affects the
constraint handler by sending an event message to it, in case
of a constraint violation. The task of the constraint han-
dler is to influence the process logic either to terminate the
associated scope or to perform additional process logic con-
currently. There are basically two possible ways to realize
the semantics described above.

e The first way is to define the alternate process logic
within the constraint handler.

e The second way is to forward the events received by
the constraint handler to already existing modeling el-
ements, which can either be event handlers or fault
handlers.

If one inspects the scenario very carefully can find that the ac-
tions to be done in reaction to constraint violations are either
executing some activities concurrently to the normal exe-
cution or terminating the normal execution and performing
some compensating activities to limit damage done. This be-
havior can be realized by using both fault and event handlers.
We decide in this paper for the second way using event and
fault handlers to realize the desired behavior. Our decision

founds on the following points. It’s a very comfortable way
to realize constraint handling, because the already defined se-
mantics can be reused and must not defined anew. Also this
avoids redundancy in semantics and modeling. Constraints
handling modeling elements can be annotated to both scopes
and activities.

4.2 Defining Constraint Handling Model-
ing Elements

Constraint handling basically consists of 3 modeling el-
ements. First of all we need to define a metric. Metrics
define what shall be measured during the execution of a
scope or activity. These metrics can be referenced by every
constraint definition which is annotated to an enclosed scope
or annotated to the same scope. If a constraint is violated
the constraint handler is triggered. Constraint handlers de-
fine actions which have to be done on constraint violation.
Constraint handlers can be executed either parallel to normal
execution or terminating the normal execution.

4.2.1. Metrics. Q Metrics define values of properties
provided by services. Metrics therefore describe exactly
the meaning of constraints though they specify how to mea-
sure and compute property values respectively. A process
model defines a set of metrics M. A metric is annotated
on a scope or activity, which forms the metrics annotation
relation MA C M x Agcope. Defining a language to express
metrics would go beyond the scope of this paper. Hence
we refer at this point to [16], where a language to express
metrics is defined. The metric evaluation is integrated into
the navigation model as follows. After a scope is activated it
will be checked whether there are any metrics annotated to it,
the annotated metrics get activated, too. Metric processing
must be triggered before the first evaluation of the annotated
constraints since constraints reference metrics. On process
suspension the metric will be deactivated, too.

4.2.2. Constraint. O The set of all possible constraints
is defined by the Cartesian product € C CC x CET,
where CC defines a set of constraint conditions and
CET a set of constraint evaluation times with CET =
{enter, exit, enter&exit,continuous}. A constraint condition
is an expression in first order predicate logic [16], that de-
scribes the constraint the scope must meet. It therefore refer-
ences metrics. The relation is defined through the function
metricsee : @@ — 2M. Constraint conditions can reference
all metrics, which are annotated to a surrounding scope, what
means that there can be also metrics referred to which are
not annotated to the next surrounding scope but to the parent
scope of the surrounding scope, and so on. If the constraint
condition evaluates to false the constraint is violated. The
constraint evaluation time also called event quantifiers spec-

D ivi Activi
eactiviated deactivate. / ctiviated

4:::: " activate, violated
O

Figure 4. Constraint State Diagram

ifies, when the predicate must be evaluated relatively to a
scopes life cycle. As defined above event quantifiers are
enter, exit, enter&exit and continuous, which define at what
point in time in a scopes life cycle the according constraint
condition must be evaluated. E.g. if the evaluation of the
constraint is continuous, the first evaluation of the constraint
condition in the scope lifetime is done immediately after the
scope changed to state running (c.f. Figure 2). Before the
scope is put into running state the constraint remains in state
deactivated,unevaluated (c.f. Figure 4). If the according
scope gets into state running the constraint state changes to
state activated,unevaluated. Depending on the constraint
evaluation time defined the constraint gets evaluated either
immediately after running constraints with a constraint eval-
uation time either {enter, enter&exit, or continuous. If the
constraint evaluation time of the constraint is set to exit, or
enter, exit constraint gets evaluated after all activities includ-
ing all event handlers an of the scope have completed, which
means that scope has entered state completed. If a constraint
needs to be evaluated more then once in a scope’s lif cy-
cle the constraint evaluation time must be set to continuous.
It might happen that the constraint evaluates differently at
those points in time. Hence state transitions between state
valid and state violated state is also a reasonable state tran-
sitions (c.f. 4). At any time of the process execution the
process might get suspended or resumed. Therefore it must
be possible to deactivate or activate the constraints state.

4.2.3. Handling Constraint Violations. D Constraints
are annotated at a scope via the constraint handler relation
CH with CH - Ascope x € x SCOnArtraintAction- EC(mszraimAction
defines the event message to be generated in case of a con-
straint violation. This event message can be either of the
type simple event message Eyn; OF a fault message, €y,
and 8ConstraintAclion = Eevent U 8fault and Eevent and 8fault ce
with € are all possible event messages. The type function

message e € Eopent

Sault e € Epuir

enables to find out what’s type of the generated event mes-
sage is. This enables to forward the message to respective
handlers, which is either an event handler or a fault handler.
The event-types differ in the way how they influence the
running process. The constraint violation might violate the

types ConstraintAction (@) =

rules associated to the scope that seriously, that no successful
completion of the scope is possible any more. This is the
case where constraint violations are handled as a fault. A
fault will be created. This fault message will be handled as
any other fault in BPEL processes, terminating all running
activities within the scope and performing fault handling
as defined in a suitable annotated fault handler. If the con-
straint violation expresses a less serious breach the process
might proceed with its business as usual, but e.g. additional
quality checks might be needed as described in chapter 3.
This forms the second case the constraint handler will create
event messages which can be handled as any other event
messages received by the process instance, e.g. with event
handlers. Event handlers are executed in a concurrent way to
normal business process execution. The constraint handler
gets triggered by an event sent by the constraint evaluation
component, if a constraint reaches state violated. Therefore
a constraint handler might be executed more than once, since
less serious constraints might be violated more than once
during the execution of the respective scope. Every time the
handler might create new event messages. In chapter 3 the
constraint, which requires the peas to be cooled at a tempera-
ture around -20 to -18 ° C, might be violated more than once.
Therefore every time this happens additional quality checks
have to be accomplished, followed by potential withdraw
procedures.

5 Runtime Architecture

To enhance a workflow engine with constraint evaluating
capabilities it needs to be extended by two further com-
ponents: a constraint processing component and a metrics
managing component [16].

e The metrics managing component provides the values
needed by the constraint processing component for the
evaluation of the constraints.

e The constraint processing component is responsible to
evaluate the constraints at certain points in time.

Both new components need some process navigation events
as triggers. For example the metrics managing components
needs the process navigation events of a scope with annotated
constraint handling capabilities. Especially those events sig-
naling that a scopes enters the running or completed state, to
start or stop the measuring. The process navigation events,
which are interesting for constraint processing component,
are the same as the ones to trigger the metric measuring com-
ponent, e.g. enter a scope. If a constraint needs to be evalu-
ated continuously the metrics managing component needs
to update corresponding data if the data changes. Hence
the metrics managing component signs up for changes for
according topic after entering the scope and the first eval-
uation. Apart from measured data provided by different

Workflow Engine Context
- Server
WIE Core Constraint Metrics Il
i engine
- o
- ~=- ERP
lel—»

— ‘
Process ~ (D
Models u le—f

A
A

A

Any
system

Figure 5. Architecture

systems the metrics managing component has some built-in
measures, e.g. time, measured by the core engine or other
process metrics. The components identified above can be
plugged into an existing workflow engine in two ways, ei-
ther as internal components to the workflow engine or as
external components. We support the idea of integrating the
constraint handling components into the workflow engine.
Because in our application scenario metrics engine and con-
straint evaluation component are only used by the workflow
engine and need not to be accessible by other outstanding
components. Therefore and taking performance aspects into
account we recommend an approach with integrated con-
straint handling capabilities in a workflow engine. The archi-
tecture shown in Figure 5 shall only suit our needs regarding
the application of metrics and constraint handling in the area
of workflows. This architecture can be easily implemented
using the pluggable framework described in [11]. The au-
thors in [11] provide a standardized architectural framework
for the implementation of extensions to the BPEL language.
Implementation of extensions to the BPEL language basi-
cally require two interfaces, which enable the extension to
react to navigation events and to affect the engines process
navigation. Therefore they propose to build a ”generic con-
troller”, which exposes all navigation events to the outside
and offers an interface API for incoming events to influence
the navigation logic.

6 Example

The implementation of the scenario described in section
3 is shown in figure 6. The scenario is a sequence of coarse
grained production steps and is therefore modeled as such.
The production steps mapped onto activities are harvesting,
followed up the transportation of the harvested goods to
the production factory, processing and the freezing of the
peas. The frozen peas are packaged, delivered and sold.
During execution three constraints have to hold or it must
be reacted on their violation. The process has to be finished
after a period of time of one year. A constraint and it’s
according metric and constraint handler is defined for scope
A, which is enclosing all activities. The constraint defining
the expiry date of the peas is annotated at this scope and it’s
according metric measuring time of each process instance.
The activities harvesting up to the freezing of the peas have

Transp
ort to
factory

t<1d.ay Throw F1

Throw F1 Catch F1

Event handler:
OnEvent E1
Additional qualtity check
IF (food no good any
more)
THROW F1

’ message:
duration t E1

> 2min

Figure 6. Example - Implementation of Peas Cold Chain Scenario

to be performed during the period of one day. These four
activities build scope B together. Because the annotated
constraint is also a time constraint and the measurement is
not independent from the overall running of the process the
metric of scope A can be referenced. If the constraint gets
violated a fault F1 is thrown by the constraint handler. The
last three activities of the process model are bracketed by
the constraint demanding the activities to be performed in
following condition. The peas must not have a temperature
of -17 and above for the duration of 2 minutes. A metric to
measure temperature has to be defined. And again the time
metric is referenced. On violation of the constraint handler
the very same sends a event message to be received by an
event handler. The event handler defines an action to be
performed in case of its invocation.

7 Related Work

Todays workflow languages (e.g. BPEL [17]) mostly pro-
vide no possibility to explicitly model various constraints and
how to handle their violation. Those languages focus on the
modeling of the business logic. Just the BPEL language pro-
vides appropriate fault and event handling mechanisms [4],
to react on events not expected in normal executions. Fur-
thermore some approaches ([18], [5]) break with the fixed
modeling of the business logic by modeling the control logic
using a set of constraints in contrast to traditional work-
flow modeling paradigm using e.g. directed graphs or petri
nets. [18] uses constraints to describe a partial ordering of
activities by defining restrictions on the activity relations.
However the aim of the approach presented in this paper is to
model and monitor constraints regarding the properties of the
environment (e.g. location) and not the properties of activity
relations. [19] provides an approach for modeling compli-
ance for business processes. Thereby the authors use rules to
check whether a process model is compliant to those rules.
Rules are modeled using a Formal Contract Language (FCL),

while FCL is based on logic expressions. This approach can
be classified as a preventive method to achieve compliance.
The approach of our work on the contrary can be classified
as reactive method to achieve compliance with certain rules,
i.e. we react to constraint violations during runtime. This
is necessary e.g. if a workflow has to deal with unforeseen
situations running in pervasive environments. Service Level
Agreements (SLAs) are used as a contractual basis to de-
fine certain properties (e.g. response time) a service (e.g. a
business process) has to provide. A SLA also specifies the
measures to be taken in case of deviation and failure to meet
the asserted service guarantees, e.g. a notification of the
service customer. Therefore [16] provides mechanisms to
model constraints and metrics. In contrast with our approach
violations of constraints are not propagated to the process
instance directly. [7] provides an approach for modeling the
required message flow of a business process using Linear
Temporal Logic (LTL-FO+). However, a violation is not
propagated to the process. Traditional WfMS (e.g. [8], [9])
and related standards for human integration [1] allow the
definition of escalations for (human) tasks, performed by
humans. Escalations allow the specification of constraints.
If the constraint is violated a specified action (e.g. a notifica-
tion) is triggered. In contrast with our approach constraints
can only be defined on time and state of a task.

8 Conclusion and Outlook

This paper introduced a new concept on how to explic-
itly model and enforce constraints on process modeling and
process execution respectively. Hence we pointed out a way
on how to realize those constraints, including the metrics
they refer to, and the actions to be performed in case the
constraints get violated in BPEL. We provided an architec-
ture for a workflow engine capable of constraint evaluation
and constraint violation handling. Annotating constraints
explicitly in business processes enhances flexibility of pro-

cess models in two ways. We provide a modeling method
to integrate business norms into process models. Thereby
business logic needs not to be adapted or changed. This sim-
plifies the modeling process, because business norms need
not to be translated into business logic, but can stay on its
own conceptional level. Additionally business norms might
change more often than business logic. Since business norms
are attached and not directly integrated in the business logic
they can be easily changed. Business processes can be easily
reused in different business norm contexts. Furthermore our
approach enhances runtime flexibility by means of extending
the execution by constraint violation handling actions. Espe-
cially in the domain of real world applications this concept
provides a useful approach. Context can be considered as
constraints that have to hold during a process’ execution.
The constraint handling framework allows the process to
react and adapt the behavior, if context assumptions do not
hold during execution of the process, by handling the con-
text change as constraint violation. Less serious constraint
violations can be handled through additional tasks, more se-
rious ones through fault handling. Afterwards the processes
can proceed with their business as usual. Further research
interests in this area are, e.g. to generalize the constraint con-
cept. Constraints might not depend on any metrics. Metrics
might be defined as part of the constraint instead. Constraint
handling as shown in this paper has basically two options,
either to execute additional actions in parallel or to execute
alternative actions apart from usual business logic. Other op-
tions are possible, e.g. suspend running process and perform
additional actions, resume normal process execution.

References

[1] A. Agrawl et al. Web Services Human Task. Active Endpoints,
Adobe, BEA, IBM, Oracle, SAP AG, June 2007.

[2] H.-D. Belitz, W. Grosch, and P. Schieberle. Lehrbuch der
Lebensmittelchemie. Springer, Berlin, 2007.

[3] K. Brandriff. A Focus on Hazard Analysis and Critical Con-
trol Points. United States Department of Agriculture, 2003.

[4] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana.
Exception Handling in the BPEL4WS Language. In W. M. P.
van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors,
Business Process Management, volume 2678 of Lecture Notes
in Computer Science, pages 276-290. Springer, 2003.

[5] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakr-
ishnan. Logic based modeling and analysis of workflows. In
PODS 98: Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 25-33, New York, NY, USA, 1998. ACM.

[6] EU. Regulation (ec) no 178/2002 of the european parliament
and of the council of 28 january 2002 laying down the general
principles and requirements of food law, establishing the
european food safety authority and laying down procedures
in matters of food safety. Official Journal of the European
Union, 45:1-24, 2002.

(71

(8]
[91
(10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

S. Hall¢ and R. Villemaire. Runtime monitoring of message-
based workflows with data. In EDOC, pages 63-72. IEEE
Computer Society, 2008.

IBM. MQ Series Workflow 3.6.

IBM. WebSphere Process Server 6.1.

D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and
F. Leymann. BPEL Event Model. Technical Report Computer
Science 2006/10, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology,
Germany, November 2006.

R. Khalaf, D. Karastoyanova, and F. Leymann. Pluggable
Framework for Enabling the Execution of Extended BPEL
Behavior. In Proc. of the 3rd ICSOC Int’l Workshop on Engi-
neering Service-Oriented Application: Analysis, Design and
Composition (WESOA 2007), LNCS. Springer, September
2007.

M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rick-
ayzen, C. von Riegen, P. Schmidt, and I. Trickovic. WS-BPEL
Extension for Sub-processes — BPEL-SPE. 1BM, SAP, 2005.
O. Kopp, R. Mietzner, and F. Leymann. Abstract Syntax of
WS-BPEL 2.0. Technical Report Computer Science 2008/06,
University of Stuttgart, Faculty of Computer Science, Elec-
trical Engineering, and Information Technology, Germany,
September 2008.

F. Leymann and D. Roller. Production Workflow: Concepts
and Techniques. Prentice-Hall, Upper Saddle River, New
Jersey, 2000.

D. Lucke, C. Constantinescu, and E. Westkdmper. Smart
factory - a step towards the next generation of manufactur-
ing. In Manufacturing Systems and Technologies for the New
Frontier, 2008.

H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web
Service Level Agreement (WSLA) Language Specification.
IBM, 2003.

Organization for the Advancement of Structured Information
Standards (OASIS). Web Services Business Process Execution
Language Version 2.0, Mar 2007.

M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P.
van der Aalst. Constraint-based workflow models: Change
made easy. In R. Meersman and Z. Tari, editors, OTM Confer-
ences (1), volume 4803 of Lecture Notes in Computer Science,
pages 77-94. Springer, 2007.

S. W. Sadiq, G. Governatori, and K. Namiri. Modeling
Control Objectives for Business Process Compliance. In
G. Alonso, P. Dadam, and M. Rosemann, editors, BPM, vol-
ume 4714 of Lecture Notes in Computer Science, pages 149—
164. Springer, 2007.

T. Steinmetz. Ein Event-Modell fiir WS-BPEL 2.0 und dessen
Realisierung in Apache ODE. Diploma thesis, University of
Stuttgart, Faculty of Computer Science, Electrical Engineer-
ing, and Information Technology, Germany, August 2008.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson. Web Services Platform Architecture. Prentice Hall,
April 2005.

K. Windt and M. Hiilsmann. Understanding Autonomous
Cooperation & Control in Logistics: The Impact on Man-
agement, Information, Communication and Material Flow.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

