Temporal Addressing for Mobile
Context-Aware Communication

Lars Geiger, Ronald Schertle, Frank Diirr, and Kurt Rothermel
Institute of Parallel and Distributed Systems (IPVS), Universitit Stuttgart
Universititsstrasse 38, 70569 Stuttgart, Germany
{geiger, schertrd, duerr, rothermel} @ipvs.uni-stuttgart.de

Abstract—Mobile clients in context-aware systems benefit from
the indirect addressing of users via their context (contextcast),
such as addressing messages to all users in downtown Toronto
whose age is below 35. There is, however, almost no support
for a temporal decoupling in such a contextcast system, i.e., the
addressing of users that were or will be in a certain context in
the past or future, respectively. This could for instance be used
to distribute the minutes of a meeting to all people who attended
the meeting in room 1.138, 3 days ago, between 1 and 3 pm.

To enable a context-aware communication system to address
messages with temporal relations, especially those contexts in
the past, the system needs to manage information about user
context histories. This poses the risk that the system can be
abused to profile users, which would most probably hinder
acceptance. Therefore, privacy aspects need to be considered
in the core design of such a system. We present an extension
to our earlier work, which allows a temporal decoupling of
messages and users and requires very little additional overhead
to manage historic context information. The solution includes
mechanisms to efficiently disseminate messages to both users
with past and future contexts, while effectively preventing user
profiling through the use of virtual identities.

I. INTRODUCTION

Context-aware communication enables mobile context-aware
systems to disseminate messages according to client contexts,
i.e., the addressing of receivers with a certain context. An
application of this is the dissemination of event announcements
for concerts or the communication with fellow students for
the purpose of forming a study group. In [1], we propose our
CONTEXTCAST system based on principles from content-based
publish/subscribe. Event-based systems, such as subject- or
content-based publish/subscribe, have been a widely studied
topic in recent years. They offer a loose coupling of senders and
receivers and, in particular, a spatial and temporal decoupling.
User mobility (with all its problems such as changing connec-
tivity) is a key aspect in mobile context-aware systems. The
authors of [2] even call location “primary context”. Therefore,
it seems reasonable to exploit such a decoupling of senders
and receivers in context-aware communication systems as well.

However, originally CONTEXTCAST only routes messages
to receivers whose context is known to the system at the time a
message is sent. It cannot address clients that were in a certain
context in the past and has only limited support to address
clients in the future via the message lifetime. The solution we
propose in this paper extends CONTEXTCAST to use temporal
predicates to address both past and future contexts of mobile

users. The resulting “temporal contextcast” achieves an efficient
message dissemination while protecting the users’ privacy.

A. Temporal Contextcast

A temporal contextcast increases the flexibility of the system
as it enables addressing of contexts that satisfy a given temporal
constraint, both in the past and the future.

This has several applications: For example, the person writing
the minutes of a meeting can distribute them via a temporal
contextcast to all people who attended the meeting in room
0.108, 3 days ago, between 1 and 3 o’clock pm. While this
is also possible using a pub/sub system, it requires that the
participants explicitly subscribe to any future notifications
concerning the meeting. A temporal cotextcast, however, is
a sender-centric approach. It does not require the clients to
explicitly register for messages they might be interested in.
Another example is a fashion store, which uses CONTEXTCAST
to send out a questionnaire for three weeks starting tomorrow,
to all people who pass by, are female, and are between 15 and
35 years old, which is the store’s target audience.

As one can see from this informal description, a temporal
extension requires a couple of challenges to be addressed: It
needs an efficient method to distribute messages to addressed
users, for both past and future contexts. To achieve this, the
system needs information about past user contexts to resolve
the addressed users and deliver messages. At the same time,
additional measures must ensure that the system cannot be
abused for profiling users.

In the remainder of this section we discuss related work.
Section II introduces the CONTEXTCAST system and discusses
the requirements of a temporal extension. Our main contribution
is Section III, where we present a temporal addressing, the
privacy-aware archival of past contexts, the routing algorithms
for both historic and future messages, and an estimate for the
scalability of our approach. We show the performance of our
approach in Section IV and conclude the paper in Section V
with a short outlook on future topics.

B. Related Work

The concept of a contextcast, which we introduced in [1],
is closely related to both publish/subscribe (or simply pub/sub)
and geocast. The support for locations to address receivers
comes from geocast while the use of attribute/value pairs to
address and route messages is similar to content-based pub/sub.

Published in 6th Annual Int. Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous '09. Toronto, Canada, July 2009.

© ICST 2009
http://lwww.ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5326393

Existing geocast systems offer support for locations as
addresses. Examples for such systems are GEO [3], which
uses a geometric location model based on WGS84, [4], which
uses a hierarchical symbolic location model, or “semantic
geocast” [5], which uses a hybrid model. All these systems
rely on current location as the sole method of addressing and
routing, none of these considers any temporal relations.

Similarly, various content-based pub/sub systems have been
researched and developed in recent years, e.g., JEDI [6],
REBECA [7], or SIENA [8]. All of these systems allow
clients to express their interest in notifications using predicates
(attribute, operator, value). However, none of these systems
includes any particular support to use temporal predicates
in either subscriptions or notifications and subscriptions are
limited to future notifications.

While regular pub/sub systems allow clients only to subscribe
to future events, PADRES [9] is currently the only system that
supports clients to also retrieve notifications of past events. The
system achieves this by storing past events in a database and
allowing subscriptions to specify temporal predicates, which
are then used to query the database accordingly. However, the
semantics of publish/subscribe and contextcast are essentially
reversed, i.e. in pub/sub the subscribers (or clients) select the
notifications while in contextcast the messages (ot their senders)
select the receivers (cf. [1] for an in-depth discussion of this
difference). Therefore, the solution used in PADRES cannot
be easily incorporated into a context-aware communication
system, since it needs information about past or future contexts
in the routing process, not past events or notifications.

A newly designed set of temporal predicates allows CON-
TEXTCAST to address past and future user contexts (cf.
Section III for details). These predicates are based on the
temporal relations presented by Allen [10] but were adapted
for a temporal, context-aware communication system.

Several applications can build on the contextcast paradigm to
efficiently disseminate messages to the addressed receivers. For
instance, semantic email addressing [11] relies on a semantic
description of email recipients such as “the group developing
product X at company Y” instead of explicit addresses like
developersX@Y.com.

II. CONTEXTCAST

As we mentioned in Section I, a contextcast disseminates
messages to users with a specific context. Currently, the system
is limited to addressing only contexts that are known to the
system at the time of message dissemination. This leads to a
simpler design without having to access historic information,
but also limits the possibilities of the system; in this paper, we
present concepts to overcome these limitations.

In this section, we present our CONTEXTCAST system,
including the basic components, the matching of messages and
contexts (i.e., which messages to forward to which receivers),
and the required changes for a temporal CONTEXTCAST.

A. The CONTEXTCAST System

The system presented in this section is based on our previous
work on the CONTEXTCAST system and does not support

ContextNode ContextRouter

Contextcast Client Service Area

Figure 1: The CONTEXTCAST overlay

c: WGS84: location = 48.12N, 9.10E
string: class = "pedestrian"
string: gender = "female"
int: age = 29

Figure 2: Example of a user context

temporal addressing concepts. It serves as a basis for our
extensions for a temporal addressing.

To efficiently forward messages from senders to all receivers
with a matching context, we use a distributed approach with
context-aware routers. We imagine an overlay network for this
purpose, formed by infrastructure nodes. See Figure 1 for the
overlay network and its components (in addition to location,
the clients have a context attribute activity that is depicted in
the figure by the shape of the clients).

The overlay nodes basically have two roles: routing and
access. The mobile clients connect to an access node (or
ContextNode) and thus to the system and transmit their context
information to it. The ContextNodes propagate this information
into the network of contextcast routers (or ContextRouters),
which build routing tables based on where clients with
certain contexts are currently located. A client in the system
periodically refreshes the connection via heartbeat messages.
This is necessary since a user might leave a service area, lose
its connectivity, and can no longer deregister its context.

Each CN covers a certain service area. A new client selects
a CN based on its own location and these service areas. The
assignment of service areas can follow different criteria. Since
we assume a system of wired or wireless LANs containing the
clients, it seems natural to assign service areas coinciding with
the area covered by the LAN, i.e., a context node’s service
area can vary in size from a single floor of a building covered
by a wireless LAN to a set of LANSs, e.g., a campus network
of a university.

B. Matching Messages and Contexts

A user context in the system contains a number of context
attributes .. Each attribute « is a tuple (type, name, value). The
location attribute o is given as a geometric location based
on WGS84, with a type of “WGS84”. For the other context
attributes, we currently support the typical simple types such
as integer, float, and string. See Figure 2 for an example.

A message m addresses a set of clients by specifying
constraints on context attributes that need to be fulfilled by a

m: WGS84: location € 48.0N-48.4N, 9.0E-9.2E

string: gender = "female"
int: age > 15
int: age < 35
payload = [questionnaire & voucher]

Figure 3: Example of a contextcast message

client’s context. The constraints (or attribute filters) ¢ are tuples
(type, name, predicate, value), where type, is the attribute type,
nameg is the attribute name, and predicate, can be any binary
predicate that is defined on the attribute type. In addition to
the attribute filters for addressing, a message also contains a
payload. Figure 3 shows a sample message m.

For a given attribute filter, the system can thus evaluate the
constraint ‘value,, predicate, valuey’, e.g. for the attribute age:
29 > 15 — true. If a message contains an attribute filter and
the attribute is not defined in a user context, the corresponding
filter evaluates to false for that context. The conjunction of
all attribute filters in a message determines whether it matches
a user’s context and thus must be delivered.

C. Requirements of a Temporal Contextcast

Obviously, if the system should have the ability to address
messages with temporal constraints, it needs a corresponding
attribute as well as a set of temporal predicates defined for
this attribute. For application programmers and users, these
predicates should be as natural as possible to use, i.e., a
predicate [z, y] before [a,b] is conceptually simpler than testing
on intervall boundaries such as y < a (even though that is the
condition that the system evaluates internally).

Depending on the contexts needed to evaluate a temporal
contextcast message, we can distinguish three types of messages
with different requirements: historic messages address only past
contexts, future messages address only contexts in the future
and hybrid messages address both past and future contexts.
This distinction also determines the strategies to evaluate a
matching for temporal contextcast messages: First, for historic
messages the system needs access to past contexts, i.e. methods
to efficiently store and retrieve past user contexts; this includes
efficient ways to deliver messages to the corresponding entities.
Such an archival of past user contexts obviously raises privacy
concerns, which need to be addressed. Therefore, it is necessary
to store contexts anonymously, to prevent the system from being
abused to track mobile users and their context, i.e. potentially
private information. Second, future messages require messages
to be delayed or stored until the temporal constraints can be
evaluated with the contexts at that time. This should occur
very early and close to the sender, as any message forwarding
without a matching receiver wastes bandwidth and places load
on the overlay nodes and links. Third, hybrid messages can be
split into a historic and future part, which can be processed
separately.

Since the scalability of the approach depends on the fast
lookup of matching contexts, the system also requires to index
the contexts via one or more attributes. As we are going to show

in Section III, we have chosen location to index user contexts,
as this is one attribute every context contains and location is
considered to be primary context information. Therefore, to
allow for a faster lookup, every message must contain a target
location. This can potentially be rather large, but it needs to
be present. Without a target location, the system would have
to fall back to a different, less efficient method to reach all
access networks with potential matches, possibly a broadcast.

Section III introduces the necessary changes and additions
to the original CONTEXTCAST system of Section II-A to build
a temporal context-aware communication system.

III. TEMPORAL CONTEXTCAST

A temporal context-aware communication system consists
of several related aspects. In this Section, we present the main
contributions of this paper: the temporal addressing, the archival
of past contexts together with the means to protect the users’
privacy, and the routing of both historic and future messages.

A. Temporal Addressing for Contextcast

In a temporal contextcast, suitable attribute filters need to be
defined to restrict the set of receivers according to a temporal
relation. Informally, such a constraint could be similar to
“Address all users who pass through the shopping mall between
January 14th, 9 o’clock a.m., and January 28th, 5 o’clock
p-m., and whose age is below 307, i.e. whose context matched
the temporal attribute filter as well as the attribute filters for
location and age. To use temporal constraints as attribute filters,
a new temporal attribute time is introduced. For a user context,
the time attribute is implicitly defined by the temporal interval
[tregistera tderegister} (OI‘ [tra td] for ShOI't), where tregister < tderegister-
Lregister 1S the time the context was registered with the system
and fgeregister 18 the time it was deregistered, either explicitly or
by missing heartbeat messages. While ¢, is always known for
any given user context in the system, ¢4 can still be unknown
as long as a context has not been deregistered yet.

The CONTEXTCAST system uses UTC internally, so, e.g.,
the timestamp for the first date mentioned above is written as
2009-01-14T09:00:00Z. When sending messages, a concrete
application can of course offer the user an interface with the
more intuitive local time but must then transform those times
into UTC when sending a message.

Based on [10], we have defined 11 temporal predicates
for CONTEXTCAST. Figure 4 shows an overview of all 11
predicates together with the equivalent comparisons on the
interval boundaries. It also contains the expiration condition,
which we will explain in detail in Section III-D. It includes, for
instance, a predicate before, a predicate during, or a predicate
equals. These allow comparison of the context interval [¢, t4]
with an interval [a, b] given in the message (i.e., time < [a, b]).
The predicate before ([t;,t4] < [a,b]) specifies that a user
context had to be registered and deregistered before the interval
[a, b], which is equvalent to t4 < a when comparing interaval
boundaries. Another example is the predicate during to test
whether a given context was valid at some point during the
interval [a,b]. It is equivalent to a < ¢, Atq < b. The third

Predicate Evaluation Expiration

before: [tr,ta] <[a,b] <tg<a NOW > a

after: [tr,ta] > [a,b] <b<t, —

starts-only: [t,,tq] <*° [a,b] < a <t . At, <bAb<ty NOW > b

ends-only: [t,,tq] > [a,b] ©t, <aha<tgAty<b NOW > bV (NOW > aAVeceC:t > a)
start-by: [t tq] < [a,b] S a<t,At. <D NOW > b

end-by: [tr, td} >° [CL, b] Sa<tgNtg <b NOW > b

overlaps: [t tq]N]a,b] <t <bAa<ty NOW > b

excludes: [t,,tq] # [a,b] S tg<aAb<t, —

equals: [tr,ta] = [a,b,2] & |tr —a| < zA|tg—b <z NOW > (b+2z)V (NOW > (a+ z) AVec € C: |t; —a| > 2)
during: [tr,ta] Cla,b] < a<t,Atg<b NOW > b

contains: [t,,tq] 2 [a,b] <t <aAb<ty NOW > bV (NOW > aAVece C: i > a)

Figure 4: Predicates for temporal relations, their evaluation, and expiration conditions

example is the predicate equals. It tests two intervals [t t4]
and [a, b, z] for equality. Since usually no two time intervals
are exactly the same, the comparison interval contains an
additional tolerance, z, which applications can specify. This
results in an equivalent comparison on interval boundaries as
[t: —a| <z Ata —b] < 2.

B. Archival of Historic Contexts protecting User Privacy

Addressing past contexts requires that the system can match
messages with past contexts and can deliver these messages
to the corresponding entities. However, the entities may have
changed their context or might not be connected to the system at
the time of message sending. Thus, addressing past contexts not
only requires knowledge about the historic contexts, but also a
mapping from contexts to the corresponding physical entity, i.e.,
resolving entities from a given context. The straight-forward
solution, tagging all user contexts with a unique user ID,
guarantees that. However, with such an unambiguous mapping
from user contexts to entities it is possible to create complete
movement and context profiles of users.

To improve user privacy, our system uses (globally unique)
virtual identities (VIDs) [12] for the user contexts. Such
a VID can be constructed as [timestamp]@[fully qualified
domainname (FQDN)]. The advantage of such a construction
will become clearer in the following paragraphs. With these
VIDs, archival of contexts simply means storing a context
and the corresponding unambiguous mapping context — VID,
e.g., in a database. N.b., these VIDs were not necessary in
the original system, as messages were simply delivered to
anonymously connected users with a matching context. Because
the users were still registered with the system, the network
had an implicit mapping from contexts to the entities.

Users can potentially choose a new VID every time they
register their context with the system. This achieves two things:
First, it becomes very hard to obtain a complete history of a
single entity’s context since no pair of contexts can reliably
be determined to relate to the same entity. Second, no other
entity except the one choosing a certain VID can reliably map
an archived context with this VID to the corresponding entity.
Unfortunately, to deliver historic messages to users, who may

be offline or have changed their VID, it is still necessary to
have such a mapping from VIDs to entities.

Therefore, in CONTEXTCAST, we rely on trusted third parties,
which we call Trusted Node or TN, to actually create and
resolve virtual identities for entities. For instance, this can be
a user’s cell phone provider or internet service provider, which
are usually trusted implicitly. The Trusted Nodes only store a
mapping VID — entity, they do not know a user’s context.

If the VIDs follow the schematic [timestamp]@[FQDN],
the FQDN determines the TN to resolve this VID while the
timestamp, which the TN hands out, ensures that all of the
VIDs of a single trusted node are locally unique. These two
properties together ensure that VIDs are globally unique.

Nevertheless, none of these considerations actually designate
any particular location in the network for the archival of
contexts. The system only requires an efficient method to store
and lookup contexts, no matter where the physical location
of the data is. However, for the reasons outlined below, in
our opinion the simplest and most efficient solution to archive
contexts is at the access nodes. First, the access network is
where each context of a user actually originates. The routers in
the network usually aggregate user contexts to lower the amount
of state information and thus improve the system’s scalability.
Therefore, if the archival of contexts does not take place locally,
the system must forward a verbatim copy of each user context
to the storage location. And once a context is deregistered,
an update must be sent, containing the time y when the
context was deregistered. All this information is available in
the access network without additional communication. One
drawback of the approach is that archiving contexts locally
at the ContextNodes requires additional storage. This is not
a problem, though, since historic contexts can be placed in a
dedicated database co-located with the CN. Second, all access
networks have a well-known service area and the network of
ContextRouters can be exploited to act as a spatial index over
these areas. Therefore, location forms a readily available index
over historic contexts as well. It is possible that the lookup of
historic contexts improves with additional distributed indexes
over other context attributes. However, since this aspect is
outside of the scope of this paper, we do not consider it further.

C. Routing of Historic Messages

The basic approach to route historic messages consists of
four phases: First, in the Spatial Context Lookup phase, the
ContextRouters forward a message to all access networks
whose service area intersects with the target location of the
message. These are the access networks with historic contexts
of potentially matching users. Second, in the Local Context
Lookup, the access nodes lookup the set of VIDs of contexts
matching this message in their local context database. Third,
for each of the VIDs, the ContextNode forwards a copy of
the message to the corresponding Trusted Nodes to resolve
the actual user during the VID Resolution. And in the Historic
Message Delivery phase, each trusted node either delivers the
messages to the users directly or, if a user is not connected to
the system, to a mailbox, which users poll regularly.

For the example of the minutes of a meeting (cf. Section I-A)
addressed to the location and the time of the meeting, the
routing takes place as follows: In the Spatial Context Lookup,
the system routes the message to all access networks whose
location intersects the target location, i.e., the meeting room. In
the Local Context Lookup, the access nodes find the matching
contexts and their VIDs and forward a copy of the message to
each responsible Trusted Node during VID Resolution. For the
Historic Message Delivery, the Trusted Nodes can then either
find the corresponding entity, possibly connected from home,
or store the message in the user’s mailbox.

In the following paragraphs, we present these phases in
detail and also show optimizations to both the Local Context

Lookup and the VID Resolution to further reduce network load.

Spatial Context Lookup. During the Spatial Context Lookup
phase, the overlay routes a message along a distribution tree
defined by a spatial index to all the access networks where
potentially matching contexts are stored. This is very similar
to a geocast. Thus, this phase can directly benefit from any
advances in the field of geographic communication such as
more efficient routing algorithms.

Algorithm 1 shows this phase in pseudo code. It requires that
each router maintains a geographic routing table, i.e., for each
link the information what areas are reached via that link. This
can be achieved, e.g., by running a modified link-state algorithm
with geographic extension, where each node periodically
broadcasts its service area, and then computes shortest paths and
bounding areas for this information. CONTEXTCAST already
maintains this information for regular contextcast messages. In
the following algorithms, service area(n) denotes the service
area of a ContextNode n, while service area(l) denotes the
cumulative area that can be reached via a link .

When routing a historic message, each router checks first
whether this message was received and thus forwarded before.
Then it forwards the message via each link for which the
service area of the link intersects with the message’s target
location. If a router is also responsible for an access network
and its service area intersects m’s target location, it continues
with the next phase, the Local Context Lookup.

Local Context Lookup. This phase finds all locally stored
contexts that match m and creates a set of the VIDs of

Algorithm 1 Spatial Context Lookup

Require: A ContextRouter CR and a historic contextcast
message m.
Ensure: m forwarded over all links whose service area
intersects with m’s target location.
if m was not received before then
for all [€ {links of CR} do
if service area(l) N target location(m) # () then
forward m via [
end if
end for
if CR is also an AccessNode and service area(C'R) N
target location(m) # () then
Local Context Lookup(m,)
end if
end if

these contexts. This is basically a database lookup, thus any
improvements in the area of databases and indexing will also
benefit this phase.

Algorithm 2 shows the pseudo code of the algorithm. First,
it looks up all the locally archived contexts that match m. Then,
it collects all the VIDs of these contexts in a set. It is possible
and desirable to optimize the local lookup by using additional
indexes over context attributes other than location. However,
this is outside the scope of this paper.

Algorithm 2 Local Context Lookup

Require: A ContextNode CN and a historic contextcast
message m.
Ensure: mVID = {Set of all VIDs matching m}.
mVID «
for all ¢ € {locally stored contexts} do
if ¢ matches m then
mVID «— mVID U ¢
end if
end for

VID Resolution. The VID Resolution phase sends a copy of
the message to each of the Trusted Nodes that are responsible
for the VIDs from the previous phase. The pseudo code for
this step is shown in Algorithm 3. It creates a set of all Trusted
Nodes that are responsible for subsets of the given VIDs. For
each of these TNs, the CN tags m with the subset of VIDs
that TN is responsible for and forwards m to the respective
TN. This way, only a single message is sent from a given CN
to each of the TNs with VIDs for matching contexts.

Historic Message Delivery. Once a message reaches a
Trusted Node, the TN can deliver the message to all matching
receivers. Algorithm 4 shows the message delivery algorithm.
First, it looks up the entity represented by a given VID. If
the corresponding client is currently connected to the system
(under a potentially different VID), the TN can deliver the
message directly to that user. This requires that TNs know

Algorithm 3 VID Resolution

Require: A historic contextcast message m and set of VIDs
mVID.
Ensure: m sent to all Trusted Nodes for all VIDs in mVID.
TNs «+ ()
for all VID € mVID do
TNs <« TNs U Trusted Node for VID
end for
for all TN € TNs do
Tag a copy m’ of m with VIDs that TN can resolve
Send m’ to TN
end for

about their clients’ status. If the user is not connected to the
system or the TN is not aware of it, the message is delivered
to the user’s mailbox, which every user needs to poll in regular
intervals. In the absence of failures, the algorithm also ensures
that a message is delivered to a single user at most once, even
though several VIDs of a physical entity may have matched
m.

Algorithm 4 Historic Message Delivery

Require: A historic contextcast message m and set of VIDs.
Ensure: m delivered to all matching receivers.
for all VID € VIDs do
R « lookup physical entity for VID
if R has not already received m then
if R is currently connected then
Deliver m directly to R.
else
Deliver m to R’s mailbox.
end if
end if
end for

Unicast Messages and Duplicates during VID Resolution.

While the Spatial Context Lookup employs a distribution tree
over the geographic index, the naive Local Context Lookup
and VID Resolution are less efficient for two reasons:

First, since the user contexts usually represent mobile users, a
user’s context can be archived in several access networks. Thus,
a message with a target location spanning multiple access nodes
may match the same VID in each of these access networks
and must thus be sent to the same TN for resolution. The
naive historic (NH) algorithm uses the local results from every
CN and starts the VID Resolution without removing duplicate
VIDs. This results in several ContextNodes trying to send a
given message to the same TN. To avoid these duplicates, the
Full Backtracking Historic algorithm (FBTH) fully collects the
matching VIDs for a given message from all access networks
where matching contexts are archived, reconciles them and
removes obvious duplicates, i.e., identical VIDs. After this step,
the algorithm starts the VID Resolution from the node where
the results were collected, without obvious duplicates.

Source (A, B

Branching Point

Target Location

Figure 5: A historic message’s distribution tree, with branching
points recorded in the message along the route

To this end, we need to record the distribution tree for the
messages so the results can take the same route back: Every
time a ContextRouter forwards a message to more than one
neighbor (or children in the distribution tree), it records its
own ID in the message. This sequence marks all the branching
points in the distribution tree down to the leaves, i.e., all the
nodes where results from two or more subtrees can be collected.
See Figure 5 for an example of a message and its distribution
tree, with branching points recorded in the message.

With the information about the distribution tree, the access
nodes can return their local results to the previous node where
the distribution tree branched. This router then consolidates
the results, i.e., unifies the sets of VIDs from all its subtrees,
and sends the result back to the previous branching point in
the tree. Again, this router consolidates the VID lists and
so on until it reaches the backtracking point, depending on
the algorithm. (For succinctness, we omitted any discussion
of lost results from subtrees. Obviously, the system needs a
mechanism, e.g., timeout and/or retransmit, to prevent these
situations.) Algorithm 5 shows the pseudo code to collect the
results from the subtrees until we reach a backtracking point.
While collecting the resulting VIDs suppresses duplicates from
different CNis, it also causes an increase in end-to-end message
delay because of the time it takes to collect and reconcile the
results from the different subtrees. Between these two extremes

Algorithm 5 Optimized Local Context Lookup

Require: A ContextNode CN and a historic contextcast
message m.
Ensure: mVID = {Set of all VIDs matching m} returned to
backtracking point.
mVID « Collect and unify results from all subtrees
if CN # backtracking point then
return mVID to previous branching point
end if

NH and FBTH, one can also imagine several approaches that
collect the results but limit the level up to which to collect the
results. We call these algorithms Backtracking Historic (BTH)
<n>, n = 2,3,..., where n is the number of the branching
point where we collect the results. The nodes that collect
results from their subtrees are called “backtracking points”.
Thus, BTH1 would be identical to the FBTH algorithm, as
the backtracking point is at the first branching point, BTH2

collects the results at the second branching points (node B in
Figure 5), BTH3 at the third, and so on.

Second, each access node sends a single copy of a temporal
message via unicast to each Trusted Node, neglecting any
shared links between the different unicast paths. A reasonable
solution to reduce the system load from these messages is
to employ a form of multicasting. However, for any given
message the receivers are an element of the power set of all
Trusted Nodes P ({TN;}). This would require us to establish
in the order of 21{T™N:}l separate multicast groups for every
combination of Trusted Nodes. Such a large number of groups
poses a scalability problem, so, instead of relying on a network
layer multicast, we route these messages along the overlay
network to the Trusted Nodes using an explicit multicast
(cf. [13]). An explicit multicast message contains a set of
all the receivers of the message and the routers construct the
distribution tree on the fly, usually based on available unicast
routing information. In the process, they duplicate the message
and split the receiver sets as needed. This scheme avoids the
large amount of multicast groups at the expense of a more
complex message forwarding and larger messages.

Algorithm 6 shows how the backtracking point collects all
the local results from the Context Lookup into a set and then
determines the TN that are responsible for the VIDs from step
one. After that, it tags m with all the TNs and also with the
VIDs that matched this message and sends it via an explicit
multicast to the TNs.

Algorithm 6 Optimized VID Resolution

Require: A historic contextcast message m and the first CR
where the distribution tree branched.
Ensure: m sent to all Trusted Nodes responsible for all VIDs
that matched m.
mVID « ()
for all mVID)o, € {resulting VIDs from subtrees} do
mVID < mVID U mVIDjycy
end for
TNs « ()
for all VID € mVID do
TNs < TNs U Trusted Node for VID
end for
Tag a copy m' of m with set TNs and mVID
Send m’ via an explicit multicast to all elements in TNs

Even with these optimizations, it is impossible to avoid all
duplicate messages: Since a user can change VIDs between
CNs, not all duplicate VIDs can be recognized as such. This
is a disadvantage of the chosen level of privacy. But as each
Trusted Node receives only one copy for all matching VIDs,
this only increases the message size. The Trusted Nodes are
able to discover and reconcile all the different VIDs for every
physical entity.

D. Routing of Future Messages

When routing future messages, it is usually not possible to
fully evaluate the addressing based on current contexts alone at

the time of sending the message. Similar to historic messages,
in a naive approach one can use the target location of future
messages to proactively forward a future message to all access
networks, whose service area intersects the message’s target
location. The access nodes then store the future messages and
match them with future contexts as soon as clients register them.
This makes routing future messages conceptually simpler than
historic messages since the matching can happen continuously.

However, if a message is forwarded to an access network
before a matching context exists there, the system has wasted
network bandwidth if no future context ever matches the
message. In CONTEXTCAST, we can exploit a property of
the system to delay forwarding of a message until a matching
context exists in the system: CONTEXTCAST ensures that all
newly registered and updated contexts get propagated in the
network as current contexts (possibly aggregated with other
contexts but still any message matching a context ¢ must also
match an aggregated, more general context ¢’). Thus, it is
possible to cache messages very close to message senders
instead of at the access network level. This caching could
even take place directly on the mobile device of the sender.
However, the sender should be able to disconnect from the
network, e.g., to save energy. Therefore, in our approach, the
first infrastructure node caches the message. As an optimization,
to avoid repeatedly forwarding the message from the first
caching node, any intermediate node also caches a message if
it has at least one other potential downstream router to which
it has not forwarded the message yet.

The routers that have cached messages must then evaluate
new contexts against their cached messages and forward a
message if it matches a new context and it hasn’t been
forwarded over a link before. This caching is a trade-off
between unnecessary forwarding and increased delay for the
first receiver when a message finally matches a context. To
avoid that routers need to store messages indefinitely, it is
possible to define a maximum lifetime for which to cache
future messages.

Algorithm 7 shows the caching and routing for future
messages. For each neighbor it determines whether one of
the current contexts matches the messages and forwards it
accordingly. If this isn’t the case (or none of the current contexts
can match the message because of the temporal constraint),
it determines whether (part of) the message’s target location
intersects with the area reachable via that neighbor; in this
case, a node may have to forward the message later, when
a matching context is registered. Furthermore, if the node is
responsible for an access network and it intersects with the
message’s target location, it must also cache it for potential
future contexts from local entities.

Figure 6 shows an example for this approach with a number
of nodes and the distribution tree for a given message. The
message is first cached by the sender directly (or rather the
sender’s access node). Once the two matching contexts are
registered and propagated through the network (shown for
one of the contexts by the arrows in the Figure), the reactive
message forwarding delivers the message to the two necessary

Algorithm 7 Future Message Caching and Forwarding

Require: A ContextRouter CR and a future contextcast mes-
sage m.
Ensure: m forwarded to all access nodes with matching
receivers and possibly cached on CR.
if m was not received before then
children « ()
for all [€ {links of CR} do
if Jc € {contexts reachable via }: ¢ matches m then
Forward m over [
else if service area(l) N target location(m) # () then
children « children U [
end if
end for
if children #) or
service area(CR) N target location(m) # () then
Cache m for potential contexts, local or subtrees.
end if
end if

Matching Contexts

>

Source A

Target Location

Figure 6: Caching of Future Messages: Initial caching at the
source; at B, when the two matching contexts are registered

access network. Node A on the delivery tree does not need
to cache a copy of the message since it already forwarded
it to all its children from the location-based distribution-tree.
Node B, however, only forwarded it to one of its children, thus
caching the message for its remaining child. Whenever a new
context or an update of an existing one gets propagated in the
network, the routers must also match the context against the
cached messages and forward some if necessary.

Obviously, with downstream routers also caching messages,
once a router has forwarded a message to all its children in
the distribution tree and/or when no longer any newer contexts
(either local or from its children) can match a given message,
the message can be removed from the cache. E.g., if a messages
is addressed to some contexts before an interval [a,b] in the
future, once the current time NOW is past the beginning of the
interval, a, no newer contexts can match the temporal predicate.
Similar conditions apply to the other predicates, some of which,
in addition to the current time NOW, also depend on the set C
of contexts that are registered at that time. Figure 4 also shows
these expiration conditions. Messages with the predicates after
and excludes do not have an expiration condition and router
administrators should define a maximum message lifetime for
these cases.

E. Storage Requirements

Our approach to enable historic and future messages requires
the storage of certain information. In the next two paragraphs,
we discuss the storage requirements for our infrastructure nodes
and derive an estimate for the number of users.
ContextNodes. The ContextNodes need to locally store the
historic contexts of their users. The actual storage requirements
depend on the number of users and the update rate of contexts.
We assume that a co-located database is used for the purpose
of context storage that is capable of 50,000 inserts of user
contexts (i.e., newly registered or changed user contexts) per
day. With an average size of 2 KB per insert, this amounts to
100MB of context data every day. This is well within reach
of today’s storage and database technology. Thus, the system
should scale to up to 10,000 users with an average of 5 updates
per day in a single access network.

To increase scalability further, the system can reduce older

context information, e.g., by only keeping location and time
information.
ContextRouters. In contrast to ContextNodes, Context-
Routers store only future messages. Since our network of
overlay routers consists of regular computer hardware, a
ContextRouter with current technology probably has 100 GB
or more of persistent storage space. With average messages of
100 KB (depending on the payload, probably less), each router
could cache 1,000,000 messages. If the maximum message
lifetime is limited to 60 days, this equates to more than 5500
new future messages per day that each router can cache.

Should a ContextRouter at any time run out of cache space,
it can always “push down” (i.e., forward) a message in the
distribution tree until it reaches either a router that can still
cache new messages or an access network, where the previously
mentioned database provides additional storage space.

IV. EVALUATION

To show the efficiency of our approach, we implemented a
prototype with support for temporal contextcast in the simulator
PeerSim and used it to evaluate our algorithms. As a basis
for the simulation, we set up an overlay topology of 10,000
routers, which were uniformly distributed over a normalized
area [0,1[x[0,1[. The links between the routers follow an
Internet-like power-law distribution [14], i.e., a new node
connects to an existing node j that minimizes the weighted sum
a - d;; + hj;, where d;; is the Euclidian distance from the root
and h; is a measure for the centrality such as the hop count
from the source. We choose o = 20, which is significantly
less than /10,000 = 100 and therefore leads to pronounced
clusters of routers. We expect to see similar clusters in real
CONTEXTCAST systems, corresponding to the local networks
of different network providers.

From these 10, 000 routers we then selected 7, 000 as access
nodes. Usually, the access nodes are closer to the edge of the
network, i.e., nodes with few neigbors are more likely to be
access nodes. To achieve this distribution of access nodes, we
sorted the nodes by node degree and used a Zipf distribution
such that 80% of the 7,000 access nodes were selected from

the 20% of nodes with the lowest degree. For historic messages,
300 overlay nodes were also selected uniformly as TNs.

In the following two Sections, we present our evaluation
of historic and future messages. We compare the message
load for several algorithms to disseminate historic messages in
our simulation scenario. For future messages, all simulation
results would directly mirror the parameters we input into the
simulation. We therefore present an intuitive analysis of the
reduction of message load we can expect with the presented
routing algorithm instead of a simulation.

A. Historic Messages

The simulation creates random historic contexts for the
participants of the system. The simulated users randomly select
one of the 300 Trusted Nodes to be responsible for its VID
resolution. This selection again follows a Zipf distribution to
account for the fact that usually only a few providers (20%) are
very popular, i.e., serve 80% of all clients. We evaluated our
approach in several simulations, with random historic messages
where the target locations were squares, with edges ranging in
length from 0.05 to 0.25.

We do not evaluate the Spatial Context Lookup or the Local
Context Lookup because they are based on existing mechanisms
for geocast routing and database lookup and indexing, which
are outside the scope of this paper. For the simulation of our
approach, we therefore focus on the phase of VID Resolution,
especially on the topic of duplicate suppression. We compare
the different algorithms which we introduced in Section III-C:

1) The naive historic algorithm (NH) does not suppress
duplicates and forwards an explicit multicast message
for the local results from each CN.

2) The full backtracking historic (FBTH) algorithm provides
the other extreme. It collects the results from all subtrees
at the first branching point. With the complete result
set, this router can easily eliminate obvious duplicates
from the result set and then send only a single explicit
multicast message to the Trusted Nodes.

3) A number of algorithms BTH<n> (n = 2, 3,4) provide
different levels between these two extremes by specifying
the backtracking points for the local result sets. These
algorithms cannot fully eliminate duplicates and several
branching points send multicast messages to the TNs.
(For n = 1 this degenerates to the FBTH algorithm,
while for n > maximum depth of the distribution tree
this is identical to the NH algorithm.)

Figure 7 presents the results from our simulation of these

algorithms. As our focus is on the effects of duplicates in the

system, we show the message load for the different algorithms.

The number of messages is shown as the arithmetic mean of
ten simulation runs, with errorbars indicating the minimum
and maximum number of messages during these runs.

Figure 7a shows the number of messages resulting from the
collection of the local results for the different backtracking
levels and for different target area sizes. Obviously, the FBTH
algorithm produces the highest message load, which is lower
for the algorithms BTH2 through BTH4, since these do not

return the local results all the way to the first branching point.
E.g., with a target location of edge length 0.25, BTH4 saves
approximately 60% of the backtracking messages compared
to FBTH.

Despite the FBTH algorithm requiring more messages to
collect the matching VIDs from all access networks, Figure 7b
indicates that the total message load (i.e., collecting the results
and VID Resolution) is lowest for the FBTH algorithm. It
increases with the limit on how far back we return the local
results. The NH algorithm places the highest load on the
system as it is unable to recognize and suppress duplicates
from different CNs. These results indicate that collecting the
results is dominated by the effect of VID Resolution and the
explicit multicast messages in the overall message load.

However, our simulation also showed that FBTH in fact
increases the average delay for historic messages by 5 overlay
hops. We do not think this to be a problem, though, as the
increased delay is largely irrelevant since a historic message
addresses past contexts, possibly several hours old or more.
An additional delay in the order of seconds is not going to
affect the system.

Another potentially problematic aspect is the size of the
historic messages in the FBTH algorithm. When collecting all
matching VIDs, the explicit multicast message contains the
TNs for all these VIDs. Therefore, the size of a header of
such messages with many receivers increases. However, this
increase is limited by the total number of TNs in the system,
which we expect to be several hundred in reality. Thus, the
overhead of the message header is still small compared to the
size of the message data.

Therefore, we conclude that in most scenarios the FBTH
algorithms performs better than the other alternatives.

B. Future Messages

The early caching of future messages we presented in
Section III-D reduces network load when no client in an access
network ever registers a matching context. There are two main
aspects in the routing of future messages: How much network
load does the early caching save? And how many messages
do the routers need to cache?

Network Load. The amount of saved messages depends on
the actual addressing of messages, the user contexts, and the
network. For example, if we assume random contexts, with
uniformly distributed attributes (including location), and a
message that 30% of our contexts match, then statistically the
message must be forwarded to 30% of the access networks
intersecting the addressed area. Or if we put it differently, an
early caching in this case avoids to forward the message to 70%
of the access networks compared to the naive approach, which
simply forwards the message to every CN, whose service area
intersects the addressed area. In addition to this percentage of
matching contexts, the actual reduction in network load also
depends on the network topology and the resulting distribution
tree. While in the worst case this could nullify any saving from
the delayed forwarding (e.g., if the topology were just a linear

FBTH ——1 b
450 [-BHT2 t-%-- /i
BTH3 :--%--! 4

400 [~BTH4 &-fl 2 k

of messages for backtracking

0.25

Edge length of target location

(a) Backtracking message load (without VID resolution

Total # of msg. (backtracking and VID resolution)

0.05 0.1 0.15 0.2 0.25
Edge length of target location

(b) Historic message load (including backtracking and VID resolution)

Figure 7: Simulation of historic messages

sequence of routers), in reality we expect the topology to be
rather tree-like and thus more favorable for our approach.

Storage Space for Caching. The early caching does not
increase the storage requirements in the system: An inner node
in the distribution tree only caches a message when there is
at least one access node with potentially matching contexts
within a subtree. Therefore, if we cache a message at an inner
node, we save the same space at a leaf node. And the space
saving is even higher if we cache a message at an inner node

for multiple leaves with potentially matching future contexts.

The locality in our CONTEXTCAST overlay network supports
this approach.

V. CONCLUSION & OUTLOOK

Temporal addressing for contextcast messages extends the
original paradigm in two useful ways: First, it allows to send
historic messages to entities who had a certain context in the
past without requiring explicit addresses. Second, it enables
senders to address future messages to entities with a given
context in the future.

We have shown how to efficiently deliver both historic and

future messages using our CONTEXTCAST overlay network.

The dissemination of historic messages employs a history of
user contexts, indexed via the contexts’ locations. It avoids
duplicate messages between the CNs and the TNs by collecting
the local results and sending a single explicit multicast message
to the TNs. Future messages are delayed until receivers actually
enter a service area within the target location. This avoids
unnecessary messages to areas without matching receivers.

In the future, we are going to improve the presented
approach further. In its current version, the system uses a
rather complete history of an entity’s context. This obviously
raises the complexity of the management and the lookup of
local contexts. An aggregation of historic information similar
to the aggregation of current contexts in the routers could
improve the system in this regard, while incurring a certain
amount of false positives because of the information lost in
the aggregation.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by
the German Research Foundation (DFG) within the Collabora-
tive Research Center (SFB) 627.

REFERENCES

[1] L. Geiger, E. Diirr, and K. Rothermel, “On Contextcast: A Context-Aware
Communication Mechanism,” in Proceedings of the IEEE International
Conference on Communications (ICC ’09), 2009.

[2] A. K. Dey and G. D. Abowd, “Towards a Better Understanding of

Context and Context-Awareness,” Georgia Institute of Technology, Tech.

Rep. GIT-GVU-99-22, 1999.

T. Imielinski and J. C. Navas, “GPS-based geographic addressing, routing,

and resource discovery,” Commun. ACM, vol. 42, no. 4, pp. 86-92, 1999.

[4] F. Durr, C. Becker, and K. Rothermel, “An Overlay Network for
Forwarding Symbolically Addressed Geocast Messages,” in Proceedings
of the 15th International Conference on Computer Communications and
Networks (ICCCN’06), oct 2006, pp. 427-434.

[5] J. Roth, “Semantic Geocast Using a Self-Organizing Infrastructure,” in
Innovative Internet Community Systems, ser. Lecture Notes in Computer
Science. Berlin and Heidelberg: Springer, 2003, pp. 216-228.

[6] G. Cugola, E. D. Nitto, and A. Fuggetta, “The JEDI Event-Based

Infrastructure and Its Application to the Development of the OPSS

WEMS,” IEEE Trans. Softw. Eng., vol. 27, no. 9, pp. 827-850, 2001.

G. Miihl, “Large-Scale Content-Based Publish/Subscribe Systems,” Ph.D.

dissertation, TU Darmstadt, 2002.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Interfaces and
Algorithms for a Wide-Area Event Notification Service,” University
of Colorado, Tech. Rep. CU-CS-888-99, 2000.

[91 G.Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy, R. Sherafat, A. Wun, H.-

A. Jacobsen, and S. Manovski, “Historic data access in publish/subscribe,”

in Proceedings of the International Conference on Distributed Event-

Based Systems (DEBS ’07), 2007, pp. 80-84.

J. E. Allen, “Maintaining knowledge about temporal intervals,” Commun.

ACM, vol. 26, no. 11, pp. 832-843, 1983.

M. Kassoff, C. Petrie, L.-M. Zen, and M. Genesereth, “Semantic email

addressing: Sending email to people, not strings,” in AAAI 2006 Fall

Symposium on Integrating Reasoning into Everyday Applications., 2006.

B. Weyl, P. Branddo, A. F. G. Skarmeta, R. M. Lopez, P. Mishra,

C. Hauser, and H. Ziemek, “Protecting privacy of identities in federated

operator environments,” in Proceedings of the 14th IST Mobile & Wireless

Communications Summit, jun 2005.

M.-K. Shin, Y.-J. Kim, K.-S. Park, and S.-H. Kim, “Explicit multicast

extension (xcast+) for efficient multicast packet delivery,” ETRI Journal,

vol. 23, no. 4, pp. 202-204, dec 2001.

A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou, “Heuristically

optimized tradeoffs: A new paradigm for power laws in the internet,”

in ICALP ’02: Proceedings of the 29th International Colloquium on

Automata, Languages and Programming. Springer Verlag, 2002.

[3

[t}

[7

—

[10]

(11]

(12]

[13]

[14]

