
An Abstract Processing Model for the Quality of
Context Data

Matthias Grossmann, Nicola Hönle, Carlos Lübbe, and Harald Weinschrott
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Abstract. Data quality can be relevant to many applications. Espe-
cially applications coping with sensor data cannot take a single sensor
value for granted. Because of technical and physical restrictions each
sensor reading is associated with an uncertainty. To improve quality, an
application can combine data values from different sensors or, more gen-
erally, data providers. But as different data providers may have diverse
opinions about a certain real world phenomenon, another issue arises:
inconsistency. When handling data from different data providers, the
application needs to consider their trustworthiness. This naturally intro-
duces a third aspect of quality: trust. In this paper we propose a novel
processing model integrating the three aspects of quality: uncertainty,
inconsistency and trust.

1 Introduction

Applications that process sensed data or integrate data from different indepen-
dent data providers need to handle data with varying quality. To these applica-
tions it is crucial to measure data quality. Moreover, a measurement of quality
can be beneficial for both applications and data providers. Applications can use
it to exclude data that does not satisfy user needs and data providers could
incorporate the quality of the provided data into their pricing policies. Often
the quality of data hints at the costs of providing the data. It might be more
expensive in terms of energy to provide an accurate, up-to-date data value of a
sensor than an imprecise, possibly outdated value. Especially context-aware ap-
plications running on resource-limited mobile devices often have to trade quality
against resource-consumption. These context-aware applications are the focus of
the Nexus project [1].

A lot of research has been done on the subject of data quality. In most cases
a metric of a certain quality aspect like uncertainty is used to define quality. In
the context of the Nexus project, we have investigated three different aspects of
quality: uncertainty, inconsistency and trust. In this paper we integrate all three
aspects of quality into a single processing model.

The paper is organized as follows. Sect. 2 introduces the Nexus middleware
and motivates the choice of the three quality aspects. Sect. 3 gives an overview
of the related work. We define the three aspects of quality, namely certainty,
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consistency and trust separately in Sect. 4 and we introduce operators used for
formulating queries and an example scenario in Sect. 5. In Sect. 6, we explain
the reasons for integrating the three quality aspects and present and evaluate
a suitable processing model. Section 7 concludes with directions for further re-
search.

2 The Nexus System

In the Nexus project [1], we provide a framework for managing global context
models in an open platform, where a multitude of context data providers can in-
tegrate and share their context models. Due to the global characteristics and the
high number of different context providers, our system is based on a distributed
and scalable architecture.
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Fig. 1. Architecture of the Nexus system [1]

We depict a simplified three-layer architecture of our system in Fig. 1. The
bottom layer, i.e., the context information layer, consists of context data provi-
ders (CP) offering context information from various sources ranging from static
information to sensor values. Thereby, different context providers may provide
data with different levels of detail. In addition, this data can be based on dif-
ferent kinds of sensors. These two characteristics are the reason to specify the
uncertainty of the data. Moreover, the fact that several context providers may
provide data on the same phenomenon is the reason to specify the inconsistency
of this data. Finally, in this open system, information about the trust in context
providers is essential to estimate the value of the provided data. We explain the
details of these three aspects of quality in Sect. 4.

The middle layer, i.e., the federation layer, is the platform for processing
queries on the data provided by the context information layer. Thereby, the
federation nodes (FN) on this layer provide the abstraction of a single data
source to the applications (App) in the application layer. Processing of data
quality is done based on the currently available data at the different providers.
This processing is not influenced by limitations through network characteristics,
e.g., interpolation mechanisms are incorporated to cope with high network delay.



3 Related Work

Research has been done on quality of context data in various ways, however,
distinguishing between different quality aspects is a novel concept. Papers typ-
ically talk about quality of data, meaning either certainty or consistency, and
treating trust as a different issue. As we will outline in Sect. 4, our concept of cer-
tainty is mostly related to the area of sensor data and moving object databases
(continuous domain, infinite number of alternatives) and consistency to the area
of uncertain databases (discrete domain, finite number of alternatives). In the
following, we present some works on quality of context data and show that our
models, since they are based on these works, build on accepted knowledge.

Uncertainty is caused, e.g., by the characteristics of update protocols or tra-
jectory simplification for position data or by the impreciseness of sensors. Proba-
bility density functions (PDFs) are commonly used to represent uncertain data.
E.g., in case of GPS sensors1, the PDF directly reflects the measuring accuracy.
For uncertainty caused by update protocols, it is possible to specify a range
and assume uniform distribution [2]. Although PDFs do not provide the most
accurate means for representing uncertainty in all cases [3], we will use this well-
known uncertainty model in this paper. Some papers in the area of uncertain
data only consider simple range or nearest neighbor queries, e.g. [2, 4], while
others use more complex composed queries, e.g. [5, 6]. From these two publi-
cations, we adopt the idea of composed queries and a one-dimensional (spatial)
domain. In addition, for measuring uncertainty, we apply the well-known concept
of differential entropy [7] as in [8].

In the area of inconsistent data, i.e., scenarios with a finite number of al-
ternatives for a value, a concept sometimes called the possible worlds model is
frequently used, e.g. in [9–12]. The advantage of the possible worlds model is
that it formally can be used on top of the relational algebra without modifying
the operators. Conceptually, for each possible combination of alternative val-
ues, a separate instance of the database (a possible world) is created and the
query (consisting of standard relational algebra operators) is evaluated on each
instance resulting in a set of alternative results.2 We also rely on this model,
but extend it by allowing uncertain attributes with PDFs. Cheng et al. also use
the possible world model together with PDFs [8], but only regarded queries that
can be classified either as returning a single value represented by a PDF or as
returning entity sets, represented by possible worlds, so no actual integration of
PDFs in the possible worlds model is required. For measuring inconsistency, a
lot of related works [13, 14] define distance-based metrics, which is also the idea
of our model.

For modeling trust in context data providers, we use a simplified variant of
the model from [15], which is based on Jøsang’s opinion triangle [16].

1 http://telecom.tlab.ch/ zogg/Dateien/GPS Compendium(GPS-X-02007).pdf
2 n values with alternatives in a database result in O(2n) possible worlds, so this

model can be used to define the semantics of query processing, but in general not to
actually implement it.



To the best of our knowledge, there is no work that tries to define a generic
reference model for processing quality of context data, combining the different
quality aspects and providing a single expressive interface for applications to
quality of data.

4 Three Aspects of Quality of Data

In the following discussion, o, o1, o2, . . . denote objects. Objects are sets of at-
tributes. The P attribute of o1 is denoted by o1.P . Here, we only regard at-
tributes (called P ) with scalar values, representing not only, e.g., temperature
or other sensor measurement values, but also – as in the following discussion –
position values in a one dimensional space. This is primarily for simplicity, but,
depending on the data model, can also practically be used, e.g., for representing
positions of cars on a highway [5].

Different data providers can manage the same object. We call the data pro-
viders 1, 2, . . ., and o2

1.P denotes the position of object o1 according to provider
2.

The following definitions are chosen such that greater values correspond to an
increase of the named quality aspect, i.e., greater values mean more uncertainty,
more inconsistency and more trust.

4.1 Uncertainty

Imprecise sensors like GPS are the reason for uncertainty. So sensor values in
general are not given exactly, but through a range of values. How this range
is given depends on the sensor. In the following we assume that a probability
density function (PDF) is given, but in the future, we plan to integrate more
flexible representations.

We assume that data providers specify a normal PDF, however, due to the
way we handle data of not fully trusted providers when fusing the quality aspects
(cf. Sect. 6), we want to be able to express that, with some probability, we are
not sure or do not know the value.

Definition 1. An uncertain position P is represented by a special PDF p : R →
R

+
0 with 0 ≤ ∫∞

−∞ p(x) dx ≤ 1. With the probability 1− ∫∞
−∞ p(x) dx, the value is

unknown (NULL).

Besides representing uncertain positions, we also require a means for mea-
suring how uncertain a position is. For this, we adopt the concept of differential
entropy from [7], which was already used for measuring quality of data in [8].
To be able to use this definition, we restrict the position PDF to have a lower
bound l and upper bound u, with

p(x)
{

> 0, l ≤ x ≤ u
= 0, otherwise .



Definition 2. u(P ) = − ∫ u

l
p(x) log2 p(x) dx is the uncertainty of position P .

This definition restricts the form of the PDF and may not be adequate for
cases where the probability for the value being NULL is greater than 0, however,
as shown in Sect. 6, we only apply this definition to values directly retrieved from
data providers, where these limitations are reasonable.

4.2 Inconsistency

Inconsistency occurs when different data providers offer the same datum, e.g.,
different sensors measure the same datum, or the buildings in a town are mod-
elled from different organizations. This leads to a finite number of alternatives
for one value. For measuring the inconsistency of two positions, we use the arith-
metic mean of the smallest possible distance and the largest possible distance
between the positions:

Definition 3. The smallest and largest possible distance between two positions
P1 and P2 are dmin = max(0, max(l2 − u1, l1 − u2)), dmax = max(u1, u2) −
min(l1, l2). The inconsistency of the two positions is

i(P1, P2) =
dmin + dmax

2
.

4.3 Trust

We consider data providers to be differently reliable. The reliability of a data
provider cannot be constituted globally, because it depends on the user and its
preferences. In the Nexus project, we model trust as a triple (belief, disbelief,
ignorance), where the three values are from the interval [0,1] and their sum is 1.
In the following discussion we use a simplified version, where the disbelief value
is always 0. In this case, it is sufficient to specify the belief value b (we trust the
provider), the ignorance value (we cannot decide) is 1− b.

Definition 4. The trust value of data provider i is given by b(i), b : N → [0, 1].

5 Query Processing

As mentioned in Sect. 3, we use the possible worlds approach as basis for the
query processing, but need to be able to represent uncertainty, so we have to ex-
tend the model to support an infinite number of possible worlds. This is subject
to ongoing research, but for queries with simple selection predicates, the ap-
proach shown in Fig. 2 is reasonable. In addition to enumerate a finite number
of possible worlds (boxes in Fig. 2), we allow uncertain attributes in a possible
world (grey circles representing positions), so that a possible world in our model
can represent an infinite number of exact possible worlds (shown in the bottom
part of Fig. 2). In contrast to the original possible world model, we need to adapt



operators for our approach. Fig. 2 shows a range query, which only a part of the
o1s represented by PW1 fulfills, so the result of applying the query to PW1 is
an empty possible world (PW3 ), and a possible world with a modified position
for o1 (PW2 ).

Fig. 2. Extending the possible worlds model to support uncertainty

The Nexus system is not only able to simply retrieve objects, but can also
process more complex queries. It provides a set of generic operators, which is
similar to the relational algebra. The precise definition of the complete set is
beyond the scope of this paper, but we briefly describe the operators used in the
example scenario. Note that these operators only handle uncertainty, we explain
in Sect. 6, why this is sufficient.

Selection σpred : The selection operator is equivalent to the selection operator
of the relational algebra. It takes a list of objects as input and outputs a
list containing all objects from the input list, which fulfill the predicate pred.
When applied to uncertain data, objects fulfill the predicate with some prob-
ability, and objects are included in the result list with this probability, i.e., σ
can create several alternative results (possible worlds) and is an entity-based
non-aggregate operator according to the classification in [8]. As previously
explained, it may be necessary to modify uncertain attribute values. NULL
values are handled as in SQL: When pred evaluates to unknown, the object
is not included in the result.

Sorting sortexpr : The sorting operator sorts a list of objects. expr is an expres-
sion based on attributes of an object. It is evaluated for each object in turn,
and the objects are sorted according to the results. Like the selection opera-
tor, sorting can create several alternative results when applied to uncertain
data. The probability of a result list is determined by the probability that
evaluating expr in sequence on all objects of this list results in a sorted list.
Sorting is an entity-based aggregate operator.

Fetch fetchn: The fetch operator just cuts a list of objects to the first n objects.
It does not evaluate attributes like the other two operators do, thus does not
require an adaption to handle uncertain data. We use the fetch operator in
conjunction with sorting to implement a nearest neighbor query.



5.1 Example Scenario

Fig. 3 shows the example scenario. Two providers 1 and 2 store two objects o1

and o2. For o2, each provider offers a representation, these two representations
are different.

Fig. 3. Example scenario: PDFs of the positions of o1 and o2

The uncertainties of the positions are u(o1
1.P ) = u(o1

2.P ) = 0, u(o2
2.P ) = 1,

the inconsistency of o2.P is i(o1
2.P, o2

2.P ) = 1. We want to answer the query,
which of the objects located between the positions 1 and 3 is closest to position
0, more formally

fetch1(sortdist(0,o.P )(σ1≤o.P≤3[o1, o2])) .

dist calculates the distance between its arguments. As in this scenario, the
first argument is the position 0, the result has the same PDF as the second
argument.

As explained above, it may be necessary to adapt the PDF for the position
during selection. For a selection of the form σl≤P≤u, we do this the by narrowing
the range, where the PDF is > 0, to the interval [l, u] and multiplying the
resulting function with a constant factor, so that the integral equals to 1:

p′(x) =

{
p(x)R u

l
p(x) dx

, l ≤ x ≤ u

0, otherwise

For evaluating sort , we must calculate the probability that a distance D2 is
greater than an other distance D1. When D1 and D2 are represented by two
PDFs d1 and d2, the probability for D2 > D1 is3∫ ∞

−∞

∫ ∞

x1

d1(x1)d2(x2) dx2 dx1 . (1)

In the given scenario, we cannot be sure if o1 actually fulfills the selection
predicate, and – according to the data of provider 2 – there is a chance that
3 d1(x1)d2(x2) is the combined PDF for D1 and D2. To derive the probability for

D2 > D1, we need to integrate over the area where x2 > x1.



o2 is closer to 0 than o1. Obviously, the probability for o1 to be closer to 0 is
much higher than for o2. However, the probability for o1 to fulfill the selection
predicate is only 0.5, so we expect the probability for o2 being the result of the
query to be only a little bit above 0.5.

6 Processing Model

In Sect. 4, we presented approaches for representing and measuring uncertainty,
inconsistency and trust on the data provider level. To be able to process complex
queries like the one presented in the previous section, we need to address two
additional questions: how to account for the quality aspects during the processing
of queries and how to measure the quality of the final result set.

Fig. 4. Measuring the quality of the query result

The straightforward attempt to solve the first problem would be to define
separately for each operator, how each quality aspect is handled. When, e.g., the
selection operator is applied to an uncertain attribute, the uncertainty selection
operator would be invoked, and for an inconsistent attribute the inconsistency
selection operator. However, this approach cannot handle information that is
both uncertain and inconsistent, like o2.P in Fig. 3. Therefore, we need a more
integrated concept, which can deal with all three quality aspects simultaneously.

To measure the quality of result sets, in some cases, it is possible to directly
apply the definitions to query results. When an object with an uncertain position
is present in a result set, the uncertainty model presented in Sect. 4.1 can be
used to represent its position. Likewise, the inconsistency model from Sect. 4.2
can be used when two different values for the same attribute of an object are
in the result set. However, when only one value qualifies for the result set, the
inconsistency information gets lost. To use the trust model from Sect. 4.3, the
trust value for the provider has to be assigned to each attribute he provides to the
result. However, in more complex situations, these definitions are not suitable.
Figure 4 shows on the left hand side a situation where we are not sure if the
answer to the query How many objects are located inside the dashed square? is
0 or 1. This should somehow be reflected by the result’s quality, but is unclear
if this is uncertainty or inconsistency, because exactly the same result can be



caused by uncertainty (top) or by inconsistency (bottom). On the right hand
side, we have the same situation with a slightly shifted square for the query.
In this case, we can be sure that the result of the query is 1, so the quality of
the result should be optimal, although the data used for answering the query is
uncertain or inconsistent.

Fig. 5. Processing model

To address these two problems, we are investigating the approach depicted
in Fig. 5. The main idea is to combine the three aspects before the actual query
processing takes place, and define query processing and the result’s quality based
on the possible worlds model. In the following, we discuss reasons for choosing
this approach.

Viewed from the perspective of query processing, uncertainty and inconsis-
tency describe similar phenomena – there exist several alternatives for one value.
In the case of uncertainty, the number of alternatives is possibly infinite, whereas
in the case of inconsistency, a finite number of alternatives exist. In that sense,
uncertainty is a generalization of inconsistency and both can be expressed by an
uncertainty model.

When expressing inconsistency as uncertainty, we basically add all PDFs
for an attribute. Thereby we have to weight the individual PDFs of the data
providers, in the most simple case with the reciprocal of the number of data
providers. In our case, however, we can refine the weighting using the trust
values, so that PDFs from trustworthy data providers gain a higher weight than
those from lesser trusted ones. This meets the supposable expectation of users
that information of trustworthy data providers is more likely to be true.

In more detail, the approach consists of the following steps:

1. Applications or users may want to specify minimum requirements for cer-
tainty, consistency and trust for the data used for processing the query.
Three additional selections are performed before the actual query is pro-
cessed which result in a subset of the original data set, that fulfills the quality



constraints. Note that the selection of sufficiently trusted data providers has
to be done before evaluating the consistency constraint, otherwise, untrusted
providers would be able to force the removal of attributes from the subset
by providing incorrect representations of the attribute, thus decreasing the
consistency.

2. The three quality aspects are combined based on the uncertainty model.
When the providers 1, . . . , n provide values for the position of an object o,
the resulting position is

o.p(x) =
1
n

n∑
i=1

b(i)(oi.p(x)) .

Inconsistency is incorporated by averaging the representations, trust by
weighting them. Note that

∫∞
−∞ o.p(x) dx may be smaller than 1 (cf. Sect. 4.1).

In some cases, applications may require a different fusion algorithm, so we
provide a way for the application to specify the algorithm to use.

3. The calculation of the quality of the query’s result is still an open issue, but
using some extension of an entropy based approach seems to be promising.
It is not necessary to use an additional selection here, the application itself
can decide whether the quality of the result is sufficient or not and discard
the result in the latter case.

An additional benefit of this approach is that the combined data quality
model is closely related to models typically used in the literature, which allows
us to define the semantics of our operators based on well understood concepts.

6.1 Revisiting the Example Scenario

In this section, we describe how the query in Sect. 5.1 is processed using our
processing model. We use the notation [o1, . . . , on]p for a result list generated
with probability p.

For the first example, we trust each data provide fully, i.e., b(1) = b(2) = 1
and we do not use restrictions on certainty, consistency and trust. Thus, fusing
the data of the two providers results in o1 = o1

1 and o2 with

o2.p(x) =

⎧⎨
⎩

0.25, 1 ≤ x < 2
0.75, 2 ≤ x ≤ 3
0, otherwise

.

Fig. 6 shows the intermediate results after each operator of the query and the
final result. σ does not modify o2, because its position lies completely inside the
requested area, o1, however, becomes o′1 with

o′1.p(x) =
{

2, 1 ≤ x ≤ 1.5
0, otherwise .

o′1 is closer to 0 than o2 with a probability of 15
16 according to (1). The probability

of o2 being the final result of the query is a little bit higher than 0.5 as expected
in Sect. 5.1.



σ [o′1, o2] 1
2

����
����

[o2] 1
2

�
sort [o′1, o2] 15

32

�

[o2, o
′
1] 1

32
[o2] 1

2
����

����
fetch [o′1] 15

32
[o2] 17

32

Fig. 6. Processing the query (b(1) = b(2) = 1)

For the second example, shown in Fig. 7, we use the trust values b(1) = 0.5
and b(2) = 1. This results in the following situation after fusing the data:

o1.p(x) =
{

0.5, 0.5 ≤ x ≤ 1.5
0, otherwise o2.p(x) =

⎧⎨
⎩

0.25, 1 ≤ x < 2
0.5, 2 ≤ x ≤ 3
0, otherwise

.

Because we do not fully trust provider 1, o1.P is NULL with probability 0.5 and
o2.P with probability 0.25. o1 fulfills the selection predicate with a probability
of 0.25, o2 with a probability of 0.75, so the selection also modifies o2.p:

o′1.p(x) =
{

2, 1 ≤ x ≤ 1.5
0, otherwise o′2.p(x) =

⎧⎨
⎩

1
3 , 1 ≤ x < 2
2
3 , 2 ≤ x ≤ 3
0, otherwise

.

Equation (1) yields 11
12 for the probability of o′1 being closer to 0 than o′2.

σ [o′1, o
′
2] 3

16
����

����

[o′1] 1
16

�

[o′2] 9
16

�

[] 3
16

�
sort [o′1, o

′
2] 33

192�������

[o′2, o
′
1] 3

192�������

[o′1] 1
16						


[o′2] 9
16						


[] 3
16

�
fetch [o′1] 45

192
[o′2] 111

192
[] 3

16

Fig. 7. Processing the query (b(1) = 0.5, b(2) = 1)

7 Conclusions and Future Work

In this paper we presented an abstract processing model for the quality of context
data. We explained the three quality aspects uncertainty, inconsistency, and trust
we use in the Nexus project and showed how the possible worlds model can be
applied in this scenario.

In the future we plan to integrate more advanced models for the different
quality aspects and multidimensional coordinates. The scheme for computing
the quality of the overall result is also subject to ongoing research.
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5. de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in
network databases. In Shahabi, C., Boucelma, O., eds.: GIS, ACM (2005) 31–40

6. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying
databases that track mobile units. Distributed and Parallel Databases 7(3) (1999)
257–387

7. Shannon, C.E., Weaver, W.: The mathematical theory of communication. fourth
edn. The University of Illinois Press (1969)

8. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabilistic queries over
imprecise data. In Halevy, A.Y., Ives, Z.G., Doan, A., eds.: SIGMOD Conference,
ACM (2003) 551–562
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