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Abstract. As the size and complexity of Pervasive Computing environ-
ments increases, configuration and adaptation of distributed applications
gains importance. These tasks require automated system support, since
users must not be distracted by the (re-)composition of applications.
In homogeneous ad hoc scenarios, relying on decentralized configuration
schemes is obviously mandatory, while centralized approaches may help
to reduce latencies in weakly heterogeneous infrastructure-based envi-
ronments. However, in case of strongly heterogeneous pervasive environ-
ments including several resource-rich and resource-weak devices, both
approaches may lead to suboptimal results concerning configuration la-
tencies: While the resource-weak devices represent bottlenecks for decen-
tralized configuration, the centralized approach faces the problem of not
utilizing parallelism. Instead, a hybrid approach that involves only the
subset of resource-rich devices is capable of rendering configuration and
adaptation processes more efficiently. In this paper, we present such a
resource-aware hybrid scheme that effectively reduces the time required
for configuration processes. This is accomplished by a balanced-load clus-
tering scheme that exploits the computational power of resource-rich de-
vices, while avoiding bottlenecks in (re-)configurations. We present real-
world evaluations which confirm that our approach reduces configuration
latencies in heterogeneous environments by more than 30% compared to
totally centralized and totally decentralized approaches. This is an im-
portant step towards seamless application configuration.

1 Introduction

The Pervasive Computing research area focuses on the development of abstrac-
tions and concepts for seamless integration of information processing into every-
day activities and objects. In such environments, resources are normally scat-
tered among the devices and any single device is not capable of executing an
entire application. Thus, distributed applications need to be configured prior
to their execution to ensure all required functionality is available. Configuring
an application means finding a set of components which can be instantiated at
the same time. Thus, application configuration is also known as composition of
the required resources and services. Furthermore, this composition has to ful-
fill the structural constraints given by the required application functionalities,
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Fig. 1. Distributed presentation application

while considering the limited resources in the pervasive environment. Moreover,
automation is needed to make this complex process transparent for the user.
As an example, consider a conference environment depicted in Figure 1 where
a speaker wants to give a presentation. For this purpose, the available input
resources (e.g., keyboards, microphones, touch screens) and output resources
(e.g., video projectors, loudspeakers) have to be leveraged by the distributed
presentation application, as demonstrated in [14]. Further typical applications
provide the easy sharing of files and resources like printers or webcams with
other users (Casca, [9]) or the flexible and generic control of devices and ser-
vices in home media networks (OSCAR, [20]). The actual composition of the
application (called configuration) has to be calculated by configuration algo-
rithms on the available devices. Furthermore, automatic runtime adaptation (or
re-configuration) is necessary due to the dynamism in pervasive environments.
Adaptation denotes the task of finding alternative components for those parts
of the application that have become invalid, e.g. due to device failures. As dis-
tractions are highly undesirable during application execution, our main goal is
to perform (re-)configuration processes as fast as possible.

Two fundamentally diverse approaches for configuration and adaptation of
distributed applications exist, namely decentralized and centralized configura-
tion. Decentralized approaches focus on mobile ad hoc networks [7],[10],[13] and
calculate configurations in a cooperative fashion on all devices, as relying on
central instances is not feasible there. While this approach increases the robust-
ness of the configuration process, it implies extensive communication between
the devices. Moreover, it disseminates the configuration tasks equally among all
devices, not exploiting resource-rich devices in heterogeneous environments.

In such scenarios, centralized configuration on the fastest device can speed up
the configuration process, as it exploits the additional computation power and
avoids network communication. As a typical example, [29] presents an efficient
centralized approach for weakly heterogeneous Smart Environments, featuring
exactly one resource-rich device and several resource-weak devices. To distin-
guish between the different devices and classify them, [29] uses a combined-
metrics clustering strategy to establish a cluster structure consisting of one
cluster head – the single resource-rich device – which is responsible for cen-
tralized configuration calculations, while all other devices are the cluster mem-
bers that remain inactive during configurations. As the cluster head needs to



acquire knowledge of the currently available resources on its cluster members,
the Virtual Container concept is introduced: A Virtual Container (VC) is a
local representation of a remote device on the cluster head and contains the
resource information that is relevant for configuration. This enables local access
to the remote configuration logic for the cluster head, allowing a strict decou-
pling of the (re-)configuration processes from the real devices. As the available
resources of devices may change over time, each device automatically notifies
the cluster head about changes in its resource condition, which then updates
the corresponding VC to keep the resource information consistent. After suc-
cessful configuration, the component bindings that are based on the application
structure are established between parent and child components. For runtime
adaptation of a configuration, it is sufficient to recalculate only those parts of
the configuration that require changes, and re-establish the respective bindings.
This scheme represents an efficient solution for weakly heterogeneous Smart En-
vironments. However, such a centralized approach introduces a single point of
failure and prevents the parallel calculation of configurations. Furthermore, the
other devices’ resource information has to be transferred to the configuration
device in advance to enable efficient configuration on the resource-rich device.
Centralized and decentralized approaches are compared in more detail in [19].

Many typical real-world pervasive scenarios are highly heterogeneous: They
feature several resource-rich infrastructure devices like servers or desktop PCs
as well as small mobile devices such as smart phones or PDAs, like in the audito-
rium scenario presented in Figure 1. For such environments, we propose a hybrid
configuration approach in this paper. This approach represents a generalization
of the existing centralized and decentralized approaches. It relies on a clustering
scheme and enables the application configuration to be computed by multiple
resource-rich devices simultaneously, which eliminates the single point of failure
that is common in centralized approaches. The resource-weak devices stay pas-
sive during the hybrid configuration process. Thus, computational bottlenecks
within the calculations are avoided, giving our approach an advantage over fully
decentralized approaches. Moreover, our extended clustering mechanism allows
the clusters to compute compositions independently from other clusters in the
environment. Hence, this hybrid approach reduces the configuration latencies by
more than 30% in heterogeneous environments, as our evaluations show.

This paper is structured as follows: After discussing related projects in the
next section, we present our system model in Section 3. Afterwards, we introduce
our efficient hybrid configuration approach, which is the main contribution of
this paper. Then, we present our evaluation results in Section 5 to show the via-
bility of our approach. Section 6 concludes and gives an outlook on future work.

2 Related Work

2.1 Application Configuration and Service Composition

Many current projects deal with component systems for Pervasive Computing.
Speakeasy [9] and OSCAR [20] represent examplary systems allowing users to



create compositions of devices, media and services based on their current con-
text. Pering et al. [24] present a composition framework to enable user-centric
collections that combine mobile components together for carrying out a user task.
However, these projects rely on user interaction during configuration processes
and do not provide algorithms for the automatic composition of application con-
figurations, which is the main focus here.

Projects like Gaia [26], Aura [31], iRoom [17], or Matilda’s Smart House [18]
provide a middleware for automatic configuration in Smart Environments. They
support developers by providing services for the development of context-aware
mobile distributed applications. These systems represent highly integrated en-
vironments and support various stationary and mobile devices. However, they
are not suited for the use in pure ad hoc environments, as they rely on an exist-
ing infrastructure. For environments with a higher degree of dynamics, a more
recent version of Gaia called Olympus [25] was presented that uses semantic
descriptions to automate the mapping process.

In contrast, projects such as Mobile Gaia [7], RUNES [8] or P2PComp [10]
target at pure ad hoc networks. While these projects provide automatic config-
uration, other peer-to-peer based approaches assign this task to the application
programmer (e.g., one.world [12]). For highly dynamic environments, Paluska
et al. [23] present an indirect specification via goals to refrain from specifying
a single configuration. They provide an extensible mechanism to manage users’
system runtime decisions and scan the vicinity for techniques that satisfy the
user’s goals. All of these projects do not rely on a supporting infrastructure,
but they also do not exploit the increased computation power of resource-rich
devices, yielding suboptimal efficiency in Smart Environments.

MobiGo [30] and PCOM [4] represent systems that support efficient auto-
matic configuration in various environments. While PCOM provides decentral-
ized [13] and centralized [29] configuration algorithms for complex component-
based applications, MobiGo focuses on service level virtualization and migration.

Standard component systems like CORBA [21] or Enterprise Java Beans [32]
offer persistency and transactional behavior. However, they rather focus on en-
terprise software than on resource-constrained dynamic pervasive environments.
Infrastructures such as Jini [2] or UPnP [16] deal with service discovery in spon-
taneous networks. Though, they do not provide system support for automatic
application configuration and adaptation, which is required here.

Hybrid configuration approaches have already shown to be efficient in other
research areas like the distribution of scientific dataflows [3], Web Service com-
position [5] or large-scale Grid computing systems [11]. With the hybrid scheme
presented in this paper, the complete spectrum of possible pervasive environ-
ments is covered, giving this system a distinct advance over the related projects
that focus on application configuration in specific pervasive environments only.

2.2 Load-balancing Clustering Schemes

Many related approaches aim at balancing the load among nodes. MANET-based
schemes [34] like DEEC [27] or DLBC [1] balance the load in infrastructure-less



scenarios to extend the overall network lifetime. Thus, these schemes equally
distribute the load among all nodes. In addition, schemes like AMC [22] focus
on highly dynamic mobile devices and multi-hop connections. Thus, the merging
and split-up of clusters are common actions, yielding low cluster stability. In
contrast, we only want to balance the load between the subset of resource-rich
infrastructure devices to minimize the (re-)configuration latencies, with as few
re-clustering processes as possible. As this infrastructure is typically continuously
available, the respective subset of resource-rich devices is rather static. In the
area of web clusters, scheduling algorithms try to balance the load distribution
on the servers to increase the loading capacity of the cluster [6]. However, these
schemes do not consider aspects like mobility or node failures. Hence, they do not
provide the re-clustering strategies needed here and are not suited to solve our
problem of balancing the configuration load between the resource-rich devices.

3 System Model

3.1 Application Model

For this work, we presume a component-based software model, i.e. an application
consists of several components which are resident on specific devices and require
a certain amount of resources. An application is represented by a tree of interde-
pendent components that is constructed by recursively starting the components
required by the root instance. Interdependencies between components as well
as resource requirements are described by directed contracts which specify the
functionality required by the parent component and provided by the child com-
ponent. A parent component may have an arbitrary number of dependencies.
Further details can be found in [4].

3.2 Underlying System

We especially focus on heterogeneous pervasive environments in this paper, con-
sisting of resource-rich devices like PCs or laptops as well as resource-poor mo-
bile devices like smart phones or PDAs. The number of components per device
is not restricted. Devices have a unique system identifier (SID) and may be-
come unavailable at any time, e.g., due to mobility or device failures, causing
the unavailability of their components. All devices use standard wireless com-
munication technology, e.g., Bluetooth or WiFi, and have a direct, bidirectional
communication link to each other, which is usually the case in typical pervasive
scenarios like offices or home entertainment. Furthermore, the underlying mid-
dleware is supposed to maintain a registry containing all devices in the vicinity
with information about their services and properties.

3.3 Problem Statement

We focus on automatic configuration and adaptation of distributed applications
in heterogeneous pervasive scenarios. In a configuration process, a specific con-
figuration algorithm tries to resolve all application dependencies by finding a



suitable composition of components. Such a composition is subject to two classes
of constraints: Structural constraints describe what constitutes a valid composi-
tion in terms of functionalities. Resource constraints are a result of the limited
resources. For example, in the presentation application introduced in Figure 1, a
structural constraint is that the video projector can only be used if the computer
to which the projector is connected to is also available. A resource constraint
could be that there needs to be at least one loudspeaker as acoustic output de-
vice. An application is successfully configured if all dependencies were resolved
and the bindings between the components were established. The configuration
latency comprises the time between the start and the availability of the applica-
tion to the user. This latency includes the delays caused by calculating a valid
configuration and instantiating all application components. Our goal is to mini-
mize the configuration latency in order to provide a seamless user experience.

Re-configuration processes, or adaptations, become necessary if devices whose
components are part of the current application configuration become unavailable.
Then, alternative components have to be found that can provide the same func-
tionality. Generally, an adaptation represents a special case of a configuration
where only those parts of the application need to be recalculated that are no
longer valid. So, the same algorithms are used for configuration and adaptation.

4 Hybrid Configuration Management

4.1 Approach and Challenges

Both the totally decentralized and totally centralized approaches have advan-
tages, but also drawbacks that prevent an efficient configuration in all possible
pervasive environments. Our hybrid approach combines the best properties of
these two approaches to minimize the configuration latency. For this purpose,
only the resource-rich devices actively calculate application configurations. We
call these devices Active Devices (ADs) in the following. Contrary to this, the
resource-weak devices only provide information about their available resources
and services, prior to configuration processes. They stay passive during the con-
figuration, so we call them Passive Devices (PDs).

In a hybrid configuration process, initially, the AD and the PD roles need
to be assigned to the devices in the environment since the configuration of each
PD has to be calculated by one AD. We call this assignment of a PD to an
AD a mapping. Subsequently, the ADs need to obtain the configuration-specific
information from their mapped PDs. Finally, a hybrid configuration algorithm is
necessary which calculates valid configurations on the ADs and distributes the
configuration results to the PDs. Details are presented below.

4.2 Cluster Formation and Maintenance

Initially, a suitable subset of devices for calculating configurations has to be
discovered to exploit the device heterogeneity efficiently. To reduce the risk



of possible bottlenecks, the component algorithms’ configuration load should
be balanced between the ADs and maintained even in case of changing device
availabilities. Furthermore, each AD should not be required to know about the
mappings at the other ADs.

Resource-Aware Cluster Formation The following scheme establishes mul-
tiple stable clusters in heterogeneous environments with several resource-rich
devices. These devices automatically become the cluster heads (and, hence, the
ADs) if a resource-aware clustering strategy like in [29] is used. Our new scheme
balances the configuration algorithm’s load among these ADs such that a) they
are not overloaded and b) the configuration is parallelized to reduce the latencies.

We assume there are m ADs Ai with cluster indices (CIDs) i ∈ {0, . . . , m−1}
and n PDs Pj with indices j ∈ {0, . . . , n − 1}. Initially, each AD assigns itself
a CID i according to its SID, i.e. the AD with lowest SID (of all ADs) assigns
itself CID i = 0, and the AD with highest SID gets CID i = m − 1. The same
holds for the PDs that assign themselves CIDs j according to their SID.

There is an overhead for each AD consisting of the efforts needed to retrieve
its mapped PDs’ resource information, calculate its mapped PDs’ components’
configuration and send the configuration results back to them. This overhead
highly depends on the number of PDs within its cluster. Thus, if the mapping
of PDs to ADs is balanced, each AD takes the responsibility for about the same
amount of configuration work. This establishes the load balance among the ADs
that is important to reduce the configuration latency. To achieve this, each AD
has to map at least

⌊
n
m

⌋
PDs to itself. If n modulo m = z > 0, the ADs 0, . . . , z−1

need to map one additional PD to ensure all PDs are mapped to an AD. This
leads to the so-called Balancing Condition that has to be fulfilled at each AD:

mapped(Ai) =

⎧⎨
⎩

⌊
n
m

⌋
+ 1, i < n modulo m

⌊
n
m

⌋
, i ≥ n modulo m

, (1)

where mapped(Ai) is the number of PDs that need to be mapped to AD Ai.
The fulfillment of this condition is verified on each AD, initially on startup of
the device and whenever the number of ADs or PDs changes. For the actual
mapping, a simple round robin scheme is used where each AD maps every m-th
PD, starting with A0 that maps P0, Pm, P2m, and so on.

A mapping procedure is initiated by an AD by sending a mapping request
to the PD it wants to map. The PD reacts by transmitting its current resource
information to the respective AD so that the AD can create a local representation
of the remote PD. This scheme is performed in parallel on all ADs, as they map
disjoint sets of PDs. They just need to know their own CID i and the number
of ADs and PDs, which can be looked up in the device registry.

For clarification, let us consider an exemplary scenario consisting of three
ADs A0 to A2 and eight unmapped PDs P0 to P7. Using the described cluster
formation scheme, A0 maps P0, P3, and P6. Furthermore, A1 maps P1, P4, and
P7, and A2 maps P2 and P5. The arising cluster structure is shown in Figure 2a.



Fig. 2. a) Initial mapping, b) Remapping: A3 appeared, c) Remapping: A1 disappeared

Cluster Maintenance Re-clustering is needed to maintain a balanced load in
dynamic environments. Our scheme avoids unnecessary merging and splitting of
clusters by simply re-mapping single PDs. Re-clustering comprises four cases:
The appearance of a new PD or a new AD, and the disappearance of a PD or
an AD. If a new device appears, it assigns itself the lowest free CID within its
class, e.g., if it is an AD and there are m other ADs with indices 0, . . . , m − 1
present, it assigns itself index i = m. Each device decrements its CID if another
device from the same class (i.e., AD or PD) with a lower CID disappears.

If a new PD appears, the AD with cluster index i = (n modulo m) maps this
device. Thus, the round robin distribution of the PDs to the ADs is continued.
After this mapping, each device increments the number n of PDs.

If a new AD D appears, D needs to map
⌊

n
m

⌋
devices to itself1 so that

all ADs still have a similar fraction of PDs. The re-mappings are executed in
the following way: Initially, D needs to remap a PD from the AD that has the
maximum number of mapped PDs (and the highest index i, in case of multiple
options), which yields the AD with index i = [(n-1) modulo (m-1 )] due to the
round robin scheme. D sends a remapping request to the corresponding AD
which then notifies its mapped PD with highest CID that this PD has to be
remapped to D. This remapping process is repeated

⌊
n
m

⌋
times, whereas the ADs

whose PDs are re-mapped by D are chosen by a round robin scheme, as shown
in line 5 of Listing 1.1. Hence, the Balancing Condition is still fulfilled on all
ADs after these re-mappings. Nodes that appear during an ongoing configuration
process – ADs as well as PDs – are not considered within this configuration yet,
but starting with the next one. Consider the example from Figure 2b where AD
A3 appeared. At first, A3 calculates it needs to remap

⌊
8
4

⌋
= 2 PDs. According

to line 5 from Listing 1.1, A3 finds out it needs to remap one PD from device
(8-1-0) modulo 3 = 1, and one PD from device (8-1-1) modulo 3 = 0. Then, A3

sends remapping requests to these ADs. Thus, A1 notifies P7 (its mapped PD
with highest index) to remap to A3, and A0 notifies P6 to remap to A3. Now,
the Balancing Condition is fulfilled again. If multiple devices appear at almost
the same time, the problem of race conditions during the mapping process may

1 Here, D is already included in the number m of ADs



arise and potentially lead to inconsistent mappings. To analyze the seriousness
of this problem, we did multiple real-world tests where we started two devices
timely close to each other and regarded the arising mappings. We found out
that inconsistent mappings started to emerge when the time span between two
subsequent appearances of new devices fell below 30 ms. Thus, every new device
waits for 50 ms for potential other new devices before it starts its mapping
process. Proceeding like this, inconsistencies did not appear anymore.

1 request remappings(){
2 mapped := 0;
3 remappings := floor(n/m);
4 while (mapped < remappings) {
5 remapId = (n−1−mapped) modulo (m−1);
6 send remap request to AD(remapId);
7 await resource info();
8 mapped++;
9 }

10 }
Listing 1.1. Reclustering process executed by a newly appearing AD

If a PD Pj disappears, all ADs need to decrement the number n of PDs,
and Pj ’s mapping needs to be removed at the AD Aj to which it was mapped.
Additionally, Aj verifies if the Balancing Condition is still fulfilled. If this is not
the case, Aj sends a remapping request to the AD with index k = n modulo m.
Then, Ak notifies its mapped PD with highest CID that this PD needs to be
remapped to Aj . The chosen PD finishes this remapping by sending its resource
information to Aj . Additionally, if Pj disappears during an ongoing configuration
process, Aj recognizes those parts of the application which were provided by Pj ’s
components and selects alternative components for them, if available.

Finally, the case of a disappearing AD Ax remains. If Ax was the last avail-
able AD, then each PD notices that the cluster structure is dissolved, and the
decentralized configuration approach is chosen in future configuration processes.
Otherwise, remapping processes are necessary: Each PD that recognizes that
its cluster head Ax is gone broadcasts a so-called Unmapped Message to notify
the other nodes that it is currently unmapped and needs to be remapped to
another AD. If an AD Ay notices the disappearance of Ax, it at first checks if
Ax had a lower CID than itself. In this case, it decrements its CID. Then, Ay

needs to calculate the number of required remappings (remap(Ax)) for itself:
In order to fullfil the Balancing Condition, Ay needs to remap at least

⌊
n
m

⌋
devices, minus the number of its currently mapped devices (mapped(Ay)). As
before, if Ay recognizes that there are some remaining unmapped devices, i.e.,
n modulo m = z > 0, the ADs with indices 0, . . . , z − 1 need to remap one
additional device. Subsequently, each AD broadcasts how many remappings it
will perform. Then, each AD waits for a certain time T1 to gather all remap-
ping and unmapped messages. The value of T1 has to be large enough to cover
the whole gathering process. Otherwise, T1 expires without all messages having



been received, causing inconsistencies and potentially thrashing effects in the
remapping processes. However, as too large values of T1 unnecessarily increase
the time for (re-)clusterings, T1 must also not be chosen too high. A reason-
able compromise is to determine the average time a gathering process takes in
typical scenarios, and add some additional time to be on the safe side. Further
information about the value we chose for T1 is given in Section 5.1. After this
waiting time, each AD knows which PDs are unmapped, and how many PDs
the other ADs will remap. Finally, the remappings are performed according to
the indices of the involved ADs and PDs: AD A0 with lowest CID 0 maps the
remap(A0) unmapped PDs with lowest CIDs, i.e. the unmapped PDs with CIDs
0, . . . , remap(A0)− 1. AD A1 with the second lowest CID maps the remap(A1)
PDs with next higher indices, i.e. remap(A0), . . . , remap(A0) + remap(A1)− 1,
and so on up to the AD with highest CID which maps the unmapped PDs with
highest CIDs. In the special case of a disappearing AD Ax during an ongoing
configuration process, those parts of the application which were calculated by Ax

are no longer available, making a remapping of the PDs that were mapped to Ax

and a subsequent restart of the configuration process inevitable. This increases
the arising latencies. However, a disappearing infrastructure-device exactly at a
configuration process is quite unlikely and should happen rather seldom.

As an example, consider Figure 2c where AD A1 disappeared, leaving P1 and
P4 unmapped. Now, A2 and A3 decrement their CIDs and become A1 and A2,
as an AD with lower CID disappeared. According to the previously described
scheme, A0 and A1 need to remap one additional device because of their low
indices, i.e.

⌊
8
3

⌋
- 2 + 1 = 1 PD, while A2 needs to remap

⌊
8
3

⌋
- 2 = 0 PDs.

As A0 has a lower CID than A1, A0 remaps the unmapped PD with lower CID
(i.e., P1), and A1 remaps P4 as the unmapped PD with higher CID. Again, the
Balancing Condition is fulfilled after these remapping processes.

4.3 Hybrid Application Configuration and Result Distribution

The hybrid configuration is calculated in a parallel and cooperative fashion on
the subset of ADs. The configuration of each PD’s components is performed
locally on the AD it was mapped to. Therefore, the created VCs are used (cf.
Section 1). This reduces the communication overhead during the configuration
compared to decentralized configuration. Moreover, the PDs are not involved in
these calculations. This avoids that the resource-constrained PDs become com-
putational bottlenecks, and it conserves their (usually limited) energy resources.

An adapted version [13] of Asynchronous Backtracking [33] is used for the co-
operative configuration on the ADs. This decentralized configuration algorithm
enables the concurrent configuration of components and utilizes the available
parallelism. It performs a depth-first search in the tree of dependencies. In case
a dependency cannot be fulfilled, dependency-directed backtracking is used. Fur-
thermore, for the local configuration of the PDs’ components on the ADs, we
use an efficient centralized algorithm called Direct Backtracking [28]. This algo-
rithm features a proactive mechanism to avoid backtracking in many situations,
and an intelligent backtracking mechanism to handle conflict situations more
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efficiently. After a successful configuration, the ADs distribute the configura-
tion results among their PDs to notify them about which of their components
were chosen. The respective messages are rather small, as they only contain the
relevant information about the chosen components on the recipient PDs. The
average message overhead per application component is only 9 kB. Finally, the
component bindings are established, yielding the application execution.

4.4 Exemplary Configuration Process

Resuming the scenario from the introduction, Figure 3 shows an examplary en-
vironment where a distributed presentation application needs to be executed.
When a speaker wants to give a presentation, the configuration algorithm needs
to automatically find suitable components for the distributed application on
these devices. For instance, if a speaker wants to switch between the slides using
the touchscreen of his mobile phone (PD 2), a touch-based graphical user inter-
face needs to be provided on this device. Moreover, all presentation files may
potentially be resident on a remote device, like the conference organizer’s smart
phone (PD 0). The speaker also needs supporting input and output devices such
as the auditorium’s multimedia system covering video projector, loudspeakers
and a microphone, which are connected to the stationary PC (AD 0). As some
auditors may potentially be sitting far from the presentation screen, it might
be more convenient for them to have the slides displayed on their own mobile
devices, e.g. their laptop (AD 1) or even their mobile phone (PD 1).

Initially, the cluster structure is established using the presented round robin
scheme. This yields the desktop PC as cluster head for the PDs 0 and 2, and
the laptop as cluster head for PD 1 (step 1). In step 2, the PDs transfer their
current resource information to their respective ADs. On the basis of this in-
formation, the ADs build the local representations of the mapped PDs within



Virtual Containers in step 3. This leads to two VCs at AD 0, and one VC at
AD 1. Then, a user wants to start an application on his/her mobile device, PD 2.
Thus, the information about the application start is transmitted to AD 0 as the
responsible cluster head for PD 2 (step 4). Subsequently, AD 0 initiates the con-
figuration of the application, which is shown in step 5. At first, it verifies which
of the dependencies can be resolved by components of its local container and the
Virtual Containers, representing its mapped PDs. For the remaining unresolved
functionalities, AD 0 requests AD 1 to resolve these dependencies. AD 1 pro-
vides AD 0 with the corresponding information about the fitting components.
Subsequently, the complete configuration is constructed by AD 0. After success-
ful configuration, the PDs whose components are used in the configuration are
informed by their cluster head about their component configurations. Finally,
the required components are initialized, the bindings between the components –
as negotiated within step 5 – are established, and the application is executed.

5 Evaluation

5.1 Experimental Setup

For our real-world evaluations, we used six laptops2 and six smart phones3. The
laptops became cluster heads (ADs) because of their high computation power,
while the smart phones became cluster members (PDs) and were equally dis-
tributed among the cluster heads. In all scenarios, we used the 802.11b Ad Hoc
mode in combination with broadcast messages between the devices. The config-
uration process was initiated by invoking the application anchor on one of the
smart phones. Apart from the real-world experiments, we also performed exten-
sive evaluations on the Network Emulation Testbed (NET, [15]) to evaluate the
scalability of our approach in larger scenarios with up to 85 devices. In these
evaluations, we emulated the same wireless network as in the real-world evalua-
tions. To find a suitable value for the parameter T1 for gathering the unmapped
and remapping messages (cf. Section 4.2), we performed 50 measurements to
identify the time it takes to gather this information from the other devices.
The average time to receive all of these messages was 0.57 s. Furthermore, the
gathering process never took longer than 0.83 s, even in large scenarios. As a
precaution, we initialized T1 with a slightly increased value of 1 s for the eval-
uations. Consequently, we did not face any thrashing effects or race conditions
in the remapping processes during any of the taken evaluations. In the shown
graphs, each measurement represents the average of 50 evaluation runs. Standard
deviations were below 15 % in all cases and below 10% in 90% of all cases.

We used the PCOM [4] system for our evaluations. The evaluated application
represents a binary tree of depth 6, i.e., it consists of k = 127 components.
Additionally, we measured the configuration latencies in a smaller scenario with
a binary tree of depth 4, i.e. k = 31, to verify our results in a smaller scale. In the
2 ThinkPad T41p, Intel Centrino CPU, 1.6 GHz, 1 GB RAM
3 T-Mobile MDA, PXA 270 CPU, 520 MHz, 128 MB RAM



evaluations, the laptops got an increased number of resources compared to the
smart phones (factor 2 to 5, randomly chosen for each laptop) to consider that
they are usually much more resource-rich. We evaluated the hybrid scheme in
comparison to the totally decentralized and centralized approaches to show the
advantage over these standard approaches. We measured the message overhead
and the latencies that arose at the various stages of the configuration: initial
cluster formation and re-clustering processes, the preconfiguration process, the
actual configuration as well as an adaptation process where only 50 % of the
components needed to be adapted, the distribution of the configuration results,
and the binding of the components.

5.2 Communication Overhead Measurements

Figure 4 shows the message overhead at the various stages of the configuration. In
these graphs, “Hybrid-x” represents the hybrid approach with x ADs (laptops),
where 2 ≤ x ≤ 6. The remaining devices (PDs) were the smart phones.

In the preconfiguration process (Figure 4a), an average overhead of 53 kB per
device and configuration process arises for the centralized and hybrid schemes,
since these schemes need to build the cluster structure and to transmit the
configuration-specific information for the VCs. For hybrid configuration, this
overhead arises only at every PD, as they need to transmit their resource infor-
mation to their cluster head. This leads to a reduced overhead compared to the
centralized scheme. The decentralized scheme does not use preconfiguration.

Figure 4b shows the message overhead for the actual configuration. In central-
ized configuration, the device where the application was started initially trans-
mits the application information to the cluster head. The resulting overhead
only depends on the application size, i.e. the involved components. As we used a
fixed application with 127 components, the overhead was static with 183 kB in
total per configuration process. The hybrid approach’s message overhead mainly
depends on the number of involved ADs, as only they calculate configurations.
Thus, a rising number of available PDs does not have an impact on the message
overhead. The message overhead for decentralized configuration increases with a
rising number of involved devices, as all devices have to communicate with each
other. However, this overhead converges for a larger number of involved devices,
since the per-device-overhead decreases due to a lower number of components
per device. The centralized approach’s distribution overhead (Figure 4c) and the
component binding overhead (Figure 4d) converge for the same reason.

As the devices piggyback the configuration results during the decentralized
configuration process, no further messages are needed for result distribution, as
it can be seen in Figure 4c. Compared to the centralized approach, the piggy-
backing increased the overhead during the actual configuration by 403 kB, but
reduced the result distribution overhead by 1418 kB on average. In centralized
configuration, the cluster head broadcasts the complete composition, yielding
high communication overhead. In hybrid configuration, the cluster heads only
need to notify their PDs about which of their components were chosen. Thus,
the hybrid approach’s overhead rises linearly with the number of PDs.



Fig. 4. Message overhead at the different stages of one configuration process (k = 127)

The overhead for establishing the component bindings (Figure 4d) is the same
for all configuration schemes, as it is independent from the actual configuration.
This overhead rises with a rising number of involved devices, since bindings
between components on different devices are likely to emerge more often then.

Figure 4e shows the total message overhead for one configuration process as
the sum of all overheads. The decentralized approach scales best due to the result
piggybacking at the configuration process. Its total message overhead converges
with a rising number of involved devices due to the almost constant overhead for
actual configuration and no further distribution overhead (cf. Figures 4b and 4c).
The centralized approach performs worst because of a high overhead for precon-
figuration and result distribution. The hybrid approach produces an average
overhead at all stages of configuration, yielding a moderate total overhead and
showing its applicability concerning message overhead.

Regarding adaptation, the total message overhead is shown in Figure 4f.
Compared to configuration, the overheads for the centralized and decentralized
schemes were reduced by 30 %, as only parts of the application needed to be
recalculated and distributed. The message overhead of the hybrid scheme de-
creased by 25 % only, as the remapping messages needed to be sent, too. Thus,
the hybrid and centralized schemes produce about the same adaptation message
overhead, while the decentralized schemes’ overhead is around 22 % lower.

5.3 Configuration Latency Measurements

We compared the overall latencies of all three approaches in two heterogeneous
scenarios (k = 31, k = 127) with differing device numbers and 50 % resource-
rich devices in each scenario. Figure 5 shows the total latencies. The real-world
evaluations were performed with 4 to 12 devices, and the emulations in the large-
scale scenario with k = 127 with up to 85 devices, where each laptop holds two



Fig. 5. Total configuration latencies: a) k = 31, b) k = 127

resources and each smart phone holds one resource. Increasing the number of
devices above 85 would not lead to changing results, since some of the devices
would not hold any resources then. Figure 5b shows that the latencies for the hy-
brid and the decentralized approach at first drop with a rising number of devices.
This happens because of an increasing absolute number of resource-rich devices
that are involved in configuration calculations, while in centralized configura-
tion, only one resource-rich device is always used to calculate configurations.
When the total number of devices exceeds 12 (distributed) or 16 (hybrid) de-
vices, the overall latencies start to slightly increase again, as the latencies for
establishing the component bindings grow stronger than the latencies for the
configuration calculation drop. The latencies of centralized configuration show
continuous growth, as the latencies for distribution and establishment of the
bindings increase with a rising number of devices, while the configuration la-
tency remains constant. It can be seen that the hybrid approach outperforms
the decentralized approach by 35.7 % (k = 31) and by 34.5 % (k = 127) on aver-
age, and the centralized approach by 26.3 % (k = 31) and by 44.1 % (k = 127),
respectively. The emulation results point up the hybrid approach’s scalability, as
latency reduction still holds with large applications and many involved devices.

For clarification, Figure 6 shows the latencies at the different configuration
stages in a specific scenario with k = 127, four ADs and up to six PDs. The clus-
tering of devices produces a negligible latency of below 30 ms per PD, as you can
see in Figure 6a. Re-clustering processes due to dynamics take a constant time of
1.1 s more than the initial clustering, mainly because of the chosen value of 1 s
for T1 (cf. Section 5.1). The loading of the resource information increases linear
with an overhead of 400 ms per device. The clustering and resource information
loading latencies are not included in the overall latencies in Figures 6e and 6f, as
they are performed once prior to the configuration. However, the re-clustering
latency is included in the overall adaptation latency shown in Figure 6f.

Regarding the latency for the configuration process itself (Figure 6b), the
centralized approach performs best, as the resource-richest device locally calcu-
lates the configuration. The decentralized approach is significantly slowed down
due to the fact that the resource-limited devices are involved in the calculations.
Another factor is the immense communication overhead of the decentralized ap-



Fig. 6. Latencies at the different stages of the configuration process (k = 127)

proach (cf. Figure 4b). In the hybrid approach, only the resource-rich devices
perform the calculation, but message exchanges between them still take time.
Thus, its latencies are slightly above the centralized scheme’s latencies.

Figure 6c shows the latency to distribute the configuration results. The cen-
tralized scheme has the highest latency, as the single configuration device needs
to distribute the complete configuration (cf. Figure 4c). In contrast, the other ap-
proaches have already piggybacked information about configured components in
the configuration messages, in case of decentralized configuration even between
all devices. Thus, these approaches have much lower distribution latencies.

The initialization of the component bindings (Figure 6d) comprises the sum
of the import of the received configuration results and the establishment of the
respective component links. Since message overhead and delay for the result dis-
tribution are much higher for the centralized approach, as seen in Figures 4c and
6c, the configuration import is responsible for a big fraction of the latency, espe-
cially on the resource-weak devices. The establishment of the links is performed
in the same way by all approaches and, hence, takes the same amount of time.

Figure 6e shows the total latencies as sum of the latencies from Figures 6b-d.
The centralized approach is slowest due to its increased result distribution and
component binding overhead. The decentralized scheme performs 14 % better on
average, although the resource-weak devices are involved. The hybrid approach
avoids the drawbacks of the other schemes and performs fine in all configuration
stages. Thus, it outperforms the decentralized scheme by 34.2 % and the cen-
tralized scheme even by 40.7 % on average. Regarding the total latencies for an
adaptation process (Figure 6f), the advantage of the hybrid approach decreases
to 20.4 % compared to decentralized and to 30.2 % compared to the centralized
scheme, due to the additional re-clustering overhead (cf. Figure 6a).



6 Conclusions and Outlook

We presented a hybrid approach for configuring distributed pervasive applica-
tions. This approach efficiently exploits the available computation resources in
heterogeneous environments. Since this hybrid scheme is a generalization of the
pure centralized and decentralized approaches, it covers the complete spectrum
of pervasive scenarios, which has not been achieved by related projects yet.

Our approach is based on the formation of clusters with balanced configura-
tion load for the resource-rich devices. These devices represent the active devices
during configuration calculation processes, while the resource-weak devices re-
main passive to avoid bottlenecks in the configuration process. Single points of
failure are avoided due to the parallel execution of the configuration calculations
on the active devices. The hybrid approach automatically adjusts its degree of
decentralization to the available resources in the network. In our evaluations, we
proved that our approach reduces the configuration latencies by more than 30 %
on average compared to decentralized and centralized approaches. Moreover, the
evaluations on a network emulation cluster showed that these results also hold in
larger scenarios. The reduced configuration time strongly helps to increase users’
acceptance for pervasive systems and represents a large step towards seamless
automatic application configuration.

Our next step is to reduce the hybrid approach’s communication latencies
by exploiting the application structure and local component dependencies at the
clustering processes. Moreover, we want to use idle periods at the ADs to precal-
culate partial configurations and store them for future configuration processes.
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