
Optimized Information Discovery using Self-adapting Indices over Distributed
Hash Tables

Faraz Memon, Daniel Tiebler, Frank Dürr, Kurt Rothermel
IPVS – Distributed Systems Department, Universität Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany
Email: {faraz.memon, tiebledl, frank.duerr, kurt.rothermel}@ipvs.uni-stuttgart.de

Abstract

Distributed Hash Table (DHT)-based peer-to-peer in-
formation discovery systems have emerged as highly scal-
able systems for information storage and discovery in mas-
sively distributed networks. Originally DHTs supported
only point queries. However, recently they have been ex-
tended to support more complex queries, such as multi-
attribute range (MAR) queries. Generally, the support for
MAR queries over DHTs has been provided either by cre-
ating an individual index for each data attribute or by cre-
ating a single index using the combination of all data at-
tributes. In contrast to these approaches, we propose to
create and modify indices using the attribute combinations
that dynamically appear in MAR queries in the system.

In this paper, we present an adaptive information dis-
covery system that adapts the set of indices according to the
dynamic set of MAR queries in the system. The main con-
tribution of this paper is a four-phase index adaptation pro-
cess. Our evaluations show that the adaptive information
discovery system continuously optimizes the overall system
performance for MAR queries. Moreover, compared to a
non-adaptive system, our system achieves several orders of
magnitude improved performance.

1. Introduction

During the past decade, DHTs have led the way for

distributed, scalable and fault-tolerant information discov-

ery systems. DHTs have been extended from their origi-

nal form, where they supported only point queries, to meet

modern application demand of supporting multi-attribute

range (MAR) queries. Queries such as, “find all comput-
ers with RAM from 2 to 6 GB and CPU speed from 1.0 to
4.0 GHz” or “find all restaurants open from 10 to 11 PM
and with seating capacity for 8 to 10 people”, are typical

examples of MAR queries.

DHTs have been extended using three different indexing

approaches to provide the support for MAR queries. The

first approach maps the value ranges of individual data at-

tributes to a network of peers [4, 5, 19, 21]. A MAR query is

resolved by dividing the query into multiple single-attribute

range queries and then by joining the results at the query

initiator. The second approach indexes the combination of

all data attributes [6, 10, 18]. Data attributes that are not

included in a MAR query are considered to be wild-cards

in this approach. The third type of approach, employed by

our Optimized Information Discovery (OID) system [16],

indexes several attribute combinations with each combina-

tion different from the other. A MAR query is resolved by

selecting the most efficient index for performing the query.

Although the third type of indexing approach outper-

forms the other two approaches in terms of individual query

efficiency [16], the overall system performance still de-

pends on the attribute combinations used for defining each

index. The efficiency of the overall system increases with

increasing number of queries being able to find a closely

matching index, in terms of the used attribute combination.

In [15], we presented a tool that assists the designer of

a distributed application in defining a useful set of indices

for the third type of DHT indexing approach. Given a limit

for the maximum number of indices and a representative set

of MAR queries (workload), our tool recommends a set of

indices that produces close-to-optimal system performance

for the workload within the given limit.

The index recommendation tool is an offline tool, i.e., it

is assumed that the workload provided to the tool is some-

how collected from an already existing DHT-based infor-

mation discovery system. Further, it is assumed that the

recommended set of indices is manually installed over the

DHT by the designer of the distributed application. In order

to carry out such an installation, the information discovery

system would have to be taken offline, which is highly un-

desirable for large-scale peer-to-peer (P2P) systems. In this

paper, we relax these assumptions to present an adaptive

OID system. The adaptive OID system performs the task of

Published in Proceedings of 29th International Performance
Computing and Communications Conference (IPCCC'10), pages 1-9,
December 2010, Albuquerque, New Mexico, USA.
© IEEE 2010

index recommendation and index installation online, elimi-

nating the need for manually updating the set of indices.

The main contribution of this paper is the index adapta-

tion process. The index adaptation process in a DHT, in-

cluding online index recommendation and index installa-

tion, is carried out in four phases. During the first phase,

a workload of MAR queries is collected from several peers

in the network using uniform random sampling. The sec-

ond phase involves execution of the index recommendation

tool to determine an optimal set of indices for the collected

workload. During the third phase, the cost and the benefit

of installing the recommended set of indices is calculated.

If it is beneficial to install the recommended set of indices,

the installation is carried out during the fourth phase.

The rest of the paper is organized as follows: in Section

2 we give an overview of the related work, the architecture

of the adaptive OID system is discussed in Section 3, in

Section 4 we describe the index adaptation process in detail,

evaluation results are presented in Section 5, and finally we

conclude the paper with an overview of our future work in

Section 6.

2. Related Work

A number of adaptive P2P information discovery sys-

tems have been proposed in the past. In this section, we

discuss some of them in relation to our system.

2.1. Unstructured P2P Systems

Several unstructured P2P information discovery systems

have been suggested that improve the efficiency of future

queries based on the past query workload in the system

[3, 13, 14, 17]. The major difference between these systems

and the structured P2P systems such as ours is that, each

peer in these systems tries to optimize the performance of

queries individually by modifying local data index. This

does not necessarily lead to the optimization of overall sys-

tem performance. Moreover, given a query, these systems

perform only a best-effort search in the network, i.e., not all

matching data objects are always retrieved.

2.2. Structured P2P Systems

In order to improve the search efficiency of queries in

structured P2P information discovery systems, several DHT

extensions have been proposed [7, 8, 20].

Deng et al. [7] introduce learning-aware blind search for

range queries in DHTs. Each peer in their system stores in-

formation about previously retrieved results from each link

of the DHT using a local index structure. Queries are for-

ward to regions of the DHT that had previously returned the

highest number of results. Unlike our system, their system

performs only best-effort search since each peer tries to op-

timize the query performance individually.

Skobeltsyn et al. [20] present a system that stores the

results of frequently issued queries at certain peers in the

DHT. The choice of queries whose results are cached is

based on the dynamic workload of queries in the system.

A query is resolved first by looking up the results in the lo-

cal cache. If no results are found, the peer tries to find a

neighboring cache with results. If still no results are found,

the query is sent to all peer using broadcast. In our system,

queries are never resolved using broadcast since it is highly

unscalable to resolve queries in such manner. Instead, we

optimize indices for efficient query processing.

The HiPPIS system [8] indexes the data in a DHT us-

ing hierarchical indices. Each peer in the system logs each

query that it issues. If the granularity of a queried attribute

changes locally at a peer, e.g., more queries contain “city”

attribute instead of the “state” attribute, the peer checks if

the index has to be adapted accordingly. The peer performs

the adaptation check by asking every peer in the system for

the query statistics on the attribute using flooding. If adap-

tation is needed, the peer locks all the peers in the system

by flooding a lock message. During this period, queries are

answered also using flooding. Finally, the adaptation mes-

sage is sent to all peers in the system using flooding as well.

Unlike the HiPPIS system, our system has a flooding-free

scalable index adaptation process.

3. System Architecture

The adaptive OID system has a layered architecture (see

Fig. 1(a)). The top layer consists of distributed applications

that require support for MAR queries. The bottom layer is

the DHT layer that provides the service for looking up a

key, broadcasting a message, and aggregating a value. The

middle layer, known as the OID framework layer, consists

of four major components: data index space, data placement

controller, query engine, and adaptation engine.

The data index space of OID framework layer consists

of several indices. The data placement controller uses these

indices to route each data object to the peer responsible for

hosting it. The query engine is responsible for distributed

query resolution, while the adaptation engine participates

in the index adaptation process.

Each data index in the OID framework layer is a Hilbert

Space-filling curve (SFC) [11]. Due to locality preserving

properties of Hilbert SFC, data objects that are close in a

multi-dimensional attribute space tend to be mapped to sets

of neighboring peers in a DHT. This enables efficient pro-

cessing of MAR queries. A Hilbert SFC is defined as:

Definition 1 A continuous function h : (a1, a2, . . . , ad) �→
x ∈ N, where (a1, a2, . . . , ad) is a point in a d-dimensional
Euclidean space and N is the set of natural numbers.

Distributed Applications

Distributed Hash Table

Query EngineData Placement
Controller

MAR Query Query Results

lookup(key)
Broadcast(m)

Node IP
Aggregate(v)

SFC1 …SFC2 SFC3 SFCo

Data Index Space

Index
Recommendation

Tool

Adaptation Engine

Workload

CPU Speed

M
em

 S
iz

e

1.0 1.5 2.0 2.5 3.0
512

1024

1536

2048

2560

(c)

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

(a)

0

1 2

3

(b)

Figure 1. System Architecture

A Hilbert SFC divides a d-dimensional euclidean space

into 2k·d cubes, called zones. A line then passes through

all zones defining an order among them. The result is a kth

order SFC, where k, known as the approximation level, de-

fines the granularity of the space sub-division. Figure 1(b)-

(c) show a 2nd and a 3rd order Hilbert SFC respectively.

A data object in our system is indexed using each SFC

defined in the data index space of the OID framework layer.

If the SFC shown in Fig. 1(c) is one such index, then a data

object defined as (CPU Speed = 2.7 GHz, Mem Size =
1792 MB) would receive an identifier 12 from this index.

After a data object receives an identifier from each SFC-

based index, a copy of the data object is routed to the DHT

peers responsible for the object identifiers. For a detailed

description of the data indexing process, see [16].

A MAR query is resolved in two steps. First, the query

is mapped to each SFC defined in the data index space. For

example, a MAR query defined as “(CPU Speed >= 1.3
GHz) ∧ (CPU Speed <= 2.3 GHz) ∧ (Mem Size >=
640 MB) ∧ (Mem Size <= 2304 MB)” can be mapped

to 11 zones on the SFC shown in Fig. 1(c). In the second

step, the query is routed to the peers responsible for the zone

identifiers obtained using the least expensive index [16].

4. Index Adaptation

The goal of the index adaptation process is to update the

set of indices in the OID framework layer of each peer ac-

cording to the dynamic workload of MAR queries in the

system. In order to achieve this goal, we introduce a four-

phase index adaptation process that is periodically executed

in the system. The four phases of the index adaptation pro-

cess are: distributed workload collection, index recommen-

dation, adaptation decision, and index installation.

We define following three types of peer roles to carry out

the index adaptation process:

Adaptation Peer – An adaptation peer is a peer that period-

ically initiates the index adaptation process. The length of

a period is set by the designer of the distributed application.

In order to avoid conflicting index updates, there can only

be a single adaptation peer at a time in the network. We as-

sume that the location of the adaptation peer is pre-selected

by the designer of the distributed application. This could

be done by deciding that the peer that is the successors of a

certain key would be the adaptation peer in the network.

If a new peer joins at the location of the adaptation peer,

the state of the adaptation peer is transferred to it, making

it the new adaptation peer. Moreover, if the adaptation peer

fails during the first three phases of the adaptation process,

the process is restarted by the new adaptation peer. We as-

sume a correctly functioning DHT where any peer that fails

or leaves the network is automatically replaced.

Monitoring Peer – Each peer in our system is a monitoring

peer. Monitoring peers are involved in the local collection

of the query workload, i.e., each monitoring peer logs each

query that it resolves. This log is emptied when a new set

of indices is installed in the data index space of the peer.

Sampling Peer – A sampling peer is a peer that is involved

in distributed workload collection discussed in the next sec-

tion. Any peer can take the role of a sampling peer.

4.1. Distributed Workload Collection

Ideally, if the complete set of past queries were collected

from all peers in the network, an optimal set of indices could

be obtained. However, collecting queries from all peers is

neither efficient nor scalable. Therefore, the goal of dis-

tributed workload collection is to collect a subset of the

complete set of queries by sampling some random peers.

The idea is to sample a sufficiently large subset of peers at

different locations in the network to get an approximation

of the complete set of queries.

The adaptation peer could directly collect a workload of

MAR queries by randomly sampling some monitoring peers

in the network. However, in this case, the adaptation peer

will have to issue a large number of sampling requests and

handle a large number of sampling responses, making the

sampling process unscalable. Therefore, in order to limit

the fanout of the adaptation peer and to make the sampling

process scalable, we use a two-level sampling process.

The adaptation peer initiates the first level of the sam-

pling process by generating β random keys from the iden-

tifier space of the DHT, i.e., [0, 2m), where m is the num-

ber of identifier bits. A DHT lookup is then performed for

each random key in order to identify the peer responsible

for it. Here, we assume a basic DHT lookup functionality

that, given a key, returns the identity of the peer responsible

for the key. Once the identity of a random peers is learned,

a sampling request with parameter γ is sent to it, where γ
indicates the number of peers to be sampled at the second

level of the sampling process.

Upon receiving a sampling request from the adaptation

peer, a peer assumes the role of a sampling peer. The sam-

pling peer then forwards the sampling request to γ random

monitoring peers in the same manner as the adaptation peer.

After receiving a sampling request from a sampling peer, a

monitoring peer responds with the local query workload.

A sampling peer accumulates all the workloads received

from γ random monitoring peers into a single workload.

Since the same query could have been resolved by several

monitoring peers, it could appear multiple times in the ac-

cumulated workload. Therefore, duplicates are eliminated

during the accumulation process. Note that the same query

issued twice is not considered as a duplicate query since

each query has a globally unique identifier. Finally, the

accumulated workload including the workload of the sam-

pling peer is sent to the adaptation peer where the accumu-

lation process is repeated.

In order to detect the failures of the monitoring or the

sampling peers, the process of distributed workload collec-

tion includes timeouts at each level. At the level of a sam-

pling peer, if a response is not received from a monitoring

peer before the timeout, the sampling request is re-issued

assuming that the faulty monitoring peer has been replaced

by the DHT. Similarly, at the level of the adaptation peer, if

a response is not received from a sampling peer before the

timeout, the sampling request is re-issued.

The distributed workload collection phase requires

O ((β · γ) · (log2N + 2)) messages in the worst-case to

collect a workload of MAR queries. N is the total number

of peers in the network and log2N is the maximum number

of messages required for a DHT lookup. Two additional

messages are needed to send a sampling request to a peer

and receive a sampling response from it.

4.2. Index Recommendation

Once a workload of MAR queries has been collected at

the adaptation peer, the next step in the adaptation process

is to search for an optimal set of indices for the collected

workload. For this purpose, we utilized the index recom-

mendation tool previously introduced by us.

Given a workload of MAR queries and a limit o for the

maximum number of indices, the index recommendation

tool recommends a close-to-optimal set of indices Ir for

the given workload. For a detailed description of the index

recommendation tool and the index recommendation algo-

rithms, see [15].

titi-1ti-2ti-3ti-j ti+3ti+2ti+1 ti+j

Wi-j

Ti, i-j Ti, i+j

Figure 2. Adaptation Decision

4.3. Adaptation Decision

After obtaining a recommended set of indices from the

index recommendation tool, a naı̈ve approach would be to

directly install this set of indices in the network. However,

it is possible that the cost of installing the recommended set

of indices outweighs the benefit of installing it. Therefore,

the goal of the adaptation decision phase is to determine

whether the installation of the recommended set of indices

is beneficial or not. This is done by comparing the estimated

cost of the workload over the current set of indices with the

estimated cost of the workload over the recommended set

of indices. The installation cost of the recommended set of

indices is also taken into account.

Let ti mark the current periodic execution of the index

adaptation process, Ic be the current set of indices, and Ir
be the recommended set of indices. Then, we define the fol-

lowing quantities in our system (see Fig. 2):

Ti,i−j – Time interval between ti and ti−j ∀j ∈ N
+ where,

ti−j marks the index adaptation process where Ic was in-

stalled. Note that this time interval is dynamic since a new

set of indices is not installed during each periodic execution

of the index adaptation process.

Wi−j – Complete set of MAR queries during the time in-

terval Ti,i−j .

SWi−j – Sampled workload, from the complete set of

MAR queries during the time interval Ti,i−j .

costin – Estimated cost of installing the recommended set

of indices Ir.

The adaptation peer considers the installation of the

recommended set Ir beneficial, if the following condition

holds:

cost(SWi−j , Ic) > cost(SWi−j , Ir) + costin (1)

i.e., if the cost of the sampled workload SWi−j over the

current set of indices Ic is greater than the cost of the same

workload over the recommended set of indices Ir plus the

installation cost of the recommended set of indices. The

assumption behind Condition 1 is that the complete set of

MAR queries Wi−j would be repeated for a similar interval

of time in the future, i.e., for Ti,i+j . This is the most gen-

eral assumption for predicting the cost of future queries. If

Condition 1 is satisfied, the next phase of index adaptation

is carried out. Otherwise, the index adaptation process is

halted until the next periodic execution.

The cost functions cost(SWi−j , Ic) and cost(SWi−j , Ir)
in Condition 1 can be generalized as a cost function

cost(Q, I). If Q = {q1, q2, q3, . . . , ql} is a set of queries

and I = {SFC1, SFC2, SFC3, . . . , SFCo} is a set of

indices, then cost(Q, I) is calculated as:

cost(Q, I) =

|Q|∑
i=1

cost(qi, SFCj) such that

cost(qi, SFCj) < cost(qi, SFCk) where

∀j, k : 1 ≤ (j, k) ≤ |I| and j �= k

(2)

i.e., the cost of a set of queries Q over a set of indices I is a

sum of the cost of each query in Q over the least expensive

index in I .

In order to determine the least expensive index for a

query, the network cost of the query over each index needs

to be calculated. Due to highly dynamic nature of P2P sys-

tems, this cost cannot be accurately anticipated. However,

if the cost of routing a message in the network is known, the

maximum cost for resolving a query can be calculated.

Let z be the total number of zones a query maps to, on

an SFC-based index. In order to resolve this query, the peer

responsible for each zone has to be queried. If a basic query

routing strategy is considered, where first a lookup is per-

formed to determine the peer responsible for each zone,

then the maximum cost of a query q on an index SFC is

calculated as:

cost(q, SFC) = z · (log2N + 2) [messages] (3)

where N is the total number of peers in the network and

log2N is the maximum number of messages needed for

looking up a peer responsible for a zone. Two additional

messages are needed to send a query request to a peer and

receive a query response from it.

In order to check if Condition 1 holds, the cost of in-

stalling the recommended set of indices costin has to be

calculated. Similar to the cost calculation above, only the

maximum cost of installation can be calculated. Let λ be

the total number of unique data objects in the system, then

the maximum cost for installing the recommended set of

indices Ir is calculated as:

costin = 3 · (N − 1) + (|Ir| − |Ic ∩ Ir|)·
λ · (log2N + 2) [messages]

(4)

where 3 · (N − 1) is the cost of broadcasting the recom-

mended set of indices Ir, (|Ir| − |Ic ∩ Ir|) is the total num-

ber of new indices, and λ · (log2N + 2) is the cost of re-

indexing the data. The reason for the broadcast cost being

almost three-times the network size is discussed in the next

section.

Note that Equations 3 and 4 require the knowledge of

global parameters such as N and λ, which are generally not

known to a peer in a DHT network. However, an estimate

for these parameters could be obtained by installing a re-

liable broadcast/aggregation tree in the network. The root

of this tree will be the adaptation peer in our system. Such

a broadcast/aggregation tree could be installed and main-

tained using the approaches discussed in [9] and [12].

4.4. Index Installation

Once it is determined that installing a recommended set

of indices is beneficial, the adaptation peer initiates the in-

dex installation phase. The goal of the index installation

phase is to broadcast the new set of indices Ir, and to re-

index the data on each peer accordingly.

A naı̈ve way of carrying out the index installation phase

is to broadcast the recommended set of indices using the

DHT broadcast/aggregation tree, and let each peer re-index

the data according to the new set of indices. However,

queries issued in the system during the re-indexing of the

data may not be able to recall the matching data objects

completely. This could happen in cases where, e.g., a query

issued using the new set of indices searches for matching

data objects at a peer where the data has not been placed yet

using the new set of indices. In order to avoid this short-

coming, we introduce a 3-step index installation phase.

During the first step, a broadcast message containing

the new set of indices Ir is sent by the adaptation peer to

each peer in the system. For this purpose, the DHT broad-

cast/aggregation tree is used. Upon receiving the broadcast

message, each peer begins to re-index its data. Note that

the old set of indices Ic and the corresponding data is not

yet removed from the system. Hence, the queries that are

issued during this step continue to be resolved using Ic.

A data object in the OID system is indexed using o num-

ber of indices, i.e., |Ic| = o. This means that there are o
copies of the same data object in the system. Therefore, it

has to be made sure that each copy of the data object is not

re-indexed using each index in Ir. For example, if Ic and Ir
are as shown in Fig. 3, a data object indexed using Ic would

be located at four locations in the system. Now if the same

data object is re-indexed at each location using every index

in Ir, it would be sent four times to each new location in the

network. To avoid this, the data is re-indexed as follows.

Data re-indexing at a peer starts with the comparison of

the installed set of indices Ic with the new set of indices Ir
(see Fig. 3). First, the common elements in both sets are

ignored. Next, a mapping is defined from each element in

Ic to each corresponding element in Ir. The data objects

that had been previously indexed using an element of Ic
are now re-indexed only using the corresponding element

in Ir. For example, in Fig. 3, the data objects that had been

SFC1 SFC4 SFC7 SFC9Ic

SFC7 SFC6 SFC8 SFC1Ir

Figure 3. Data Re-Indexing

indexed using SFC4 in Ic are only re-indexed using SFC6

in Ir. The re-indexing process involves a look-up for the

new location of a data object and then transfer of the data

object to this location.

Once the re-indexing of the data is finished at a peer, it

sends an acknowledgement to the parent node in the DHT

broadcast/aggregation tree. During the second step of the

index installation process, the acknowledgements from all

peers in the network are aggregated until the adaptation

peer receives the aggregated acknowledgement. Queries

still continue to be resolved using the old set of indices Ic.

Upon receiving an aggregated acknowledgement from

the child nodes in the DHT broadcast/aggregation tree, the

adaptation peer starts the third step of index installation by

broadcasting a use index message. When this message

is received at a peer, the peer removes Ic, discards the corre-

sponding data, empties the monitored query log, and starts

using Ir for query resolution. Note that the data common

between Ic and Ir is not discarded. During this step of in-

dex installation, if a query is issued from a peer that has

not received the use index message yet, then there are

two possibilities. First, the query will be resolved using Ic,

if all peers involved in query resolution have not discarded

the data corresponding to Ic. Second, even if a single peer

involved in query resolution has discarded Ic, then the peer

that issued the query will be asked to re-issue it using Ir.

If the adaptation peer fails before the first step of the

index installation phase, then the process of index adapta-

tion is repeated by the new adaptation peer. However, if the

adaptation peer fails after the first step of index installation,

the new adaptation peer is already aware of the state of in-

dex installation due to the broadcast of new indices in the

network. Therefore, the new adaptation peer executes the

next steps of the index installation phase.

5. System Evaluation

In this section, we present the results from the perfor-

mance evaluation of the adaptive OID system. We simu-

lated our system using the PeerSim [1] simulator. The sim-

ulations were performed on an AMD Opteron machine with

4 GB of RAM.

Considering resource discovery in grid computing as an

example scenario, we represent the data objects in our sim-

ulations as resource specifications. Each resource specifica-

tion consists of attributes shown in Table 1. The value for

Attribute Value Domain Definition
CPU Speed 1.0 – 4.0 CPU clock speed in gigahertz

Busy CPU 0 – 100 Percentage of CPU(s) in use

Mem Size 1.0 – 8.0 Total Memory size in gigabytes

Mem Used 0 – 100 Percentage of Memory in use

HDD Size 100.0 – 3000.0 Total HDD size in gigabytes

DL Bandwidth 0.5 – 100 Bandwidth of down link in mbits/sec

Table 1. Attribute List

each attribute in a resource specification is randomly gener-

ated from the value domain of the attribute.

Unlike the database management systems where bench-

mark workloads are made available by the TPC [2], no such

workload of MAR queries is readily available for P2P sys-

tems. Hence, we generate the workloads using the attributes

in Table 1 for simulating different scenarios of our system.

For each point on the graphs displayed in this section,

the corresponding experiment is repeated 10 times with dif-

ferent workloads, and an average value is plotted.

5.1. Varying Number of Attributes

In this section, we present the results from the perfor-

mance evaluation of our system using a workload of queries

with varying number of attributes. We show that an adaptive

OID system is essential for continuous optimization of over-

all system performance for MAR queries. Table 2 shows the

parameter values used for this simulation.

Parameter Value Definition
N 1000 Total number of peers in the DHT

n 1600 Total number of queries in the workload

o 3 Maximum number of indices

λ 5000 Total number of data objects

β 33 First level sampling parameter

γ 2 Second level sampling parameter

Table 2. Simulation Parameters

The workload is generated in a manner that the start of

the workload contains queries with 4 attributes followed by

queries with 3, 2, and 4 attributes again. To simulate a slow

change in the workload over time, the attributes in queries

are varied slowly, i.e., the change from queries with 4 at-

tributes to queries with 3 attributes and so on, is not sudden.

Each attribute in a query is randomly selected from the

list shown in Table 1. Similarly, the range for an attribute

in a query is randomly selected from the domain of the at-

tribute. The values for parameters β and γ are set so that

almost 10% of peers in the network are sampled.

We simulate the adaptive OID system, the non-adaptive

system, and a system with only a single adaptation (par-

tially adaptive system), by executing the generated work-

load from random peers in the DHT over a period of time.

The non-adaptive system is a system with only a single data

index over all 6 attributes shown in Table 1. For the partially

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 250 500 750 1000 1250 1500

A
v
g

.
N

u
m

.
o

f
M

e
s
s
a

g
e

s

Simulation Time

Non-Adaptive
Partially Adaptive (-99.2% msgs)

Adaptive (-83.6% msgs)

Figure 4. Varying Number of Attributes

adaptive system, the adaptation takes place after 10 simula-

tion time units. Moreover, for the adaptive OID system, the

index adaptation process is scheduled to run after every 10
simulation time units. A single simulation time unit is long

enough to allow execution of a single query.

For every 5 simulation time units, we plot the average

number of messages in all three systems during that 5-time-

unit-window (see Fig. 4). The number of messages repre-

sents all the messages in the system including messages for

the index adaptation process. For the adaptive OID system,

the peaks in the number of messages (see Fig. 4) mark the

points where index installation takes place. The higher the

peak, the larger the number of indices that are exchanged.

Similar to the non-adaptive system, the adaptive OID

system and the partially adaptive system start with one in-

dex over all attributes. However, the first adaptation hap-

pens very soon in both the systems and 2 additional indices

are installed (see Fig. 4). This improves the performance

of MAR queries in both systems because the queries are

able to find less expensive indices for resolution. Since the

first adaptation is based on a very small workload, the sec-

ond adaptation follows soon in the adaptive OID system.

The system continues to adapt itself over time according to

the workload of queries. After each adaptation, the perfor-

mance of MAR queries improves as the average number of

messages in the system are reduced.

Figure 4 shows that the partially adaptive system pro-

duces 99.2% less messages than the non-adaptive system.

Moreover, the adaptive OID system produces 83.6% less

messages than the partially adaptive system. Therefore, the

adaptive OID system is several orders of magnitude better

than the non-adaptive system. Figure 4 also shows that, in

order to optimize the overall system performance for MAR

queries, a system with continuous adaptations is essential.

The performance of the non-adaptive system worsens

with decreasing number of attributes in queries (see Fig. 4).

This happens because with decreasing number of query at-

tributes, more attributes have to be considered as wild-cards

on a single large index. The performance of the system gets

better towards the end of the simulation because the number

10
3

10
4

10
5

10
6

10
7

10
8

 0 250 500 750 1000 1250 1500

A
v
g

.
N

u
m

.
o

f
M

e
s
s
a

g
e

s

Simulation Time

Non-Adaptive
Partially Adaptive (-99.2% msgs)

Adaptive (-3.1% msgs)

Figure 5. Fixed Number of Attributes

of attributes in queries increases from 2 to 4 attributes.

In order to further analyze the impact of the number of

attributes in queries, we perform another simulation where

the number of attributes in the workload is kept constant

to 3 attributes. Other simulation parameters have the same

values as in Table 2. Figure 5 shows the performance of all

three systems with respect to the average number of mes-

sage in a 5-time-unit-window.

Figure 5 shows that the adaptive OID system quickly

adapts its indices to the changing workload of queries. Ma-

jor adaptations come close to the start of the simulation.

After that, even though some small adaptations happen in

the system, the performance of the system remains roughly

constant. This happens because the indices adapted during

the start of the simulation remain beneficial for the complete

simulation. The performance of the non-adaptive system

remains almost constant, and several orders of magnitude

worse than the adaptive system, throughout the simulation.

With a constant number of attributes in queries, the per-

formance of the partially adaptive system comes close to the

performance of the adaptive system (see Fig. 5). However,

the adaptive system still produces 3.1% less messages com-

pared to the partially adaptive system. This difference in the

number of messages grows larger over time. Therefore, in

a long running system, the adaptive system would perform

significantly better than a partially adaptive system.

5.2. Varying Number of Indices

In this section, we present the performance evaluation of

the adaptive OID system by showing the impact of varying

number of indices on the system. We perform 3 different

simulations using the same workload as in the first simula-

tion discussed in Sec. 5.1. The maximum number of indices

o is varied from 3 to 5 across these simulations. Other sim-

ulation parameters have the same values as in Table 2. For

each simulation we plot the average number of messages in

a 10-time-unit-window.

Generally, the larger the set of indices, the better the per-

formance of the system after an adaptation (see Fig. 6), be-

10
2

10
3

10
4

10
5

 0 250 500 750 1000 1250 1500

A
v
g
.
N

u
m

.
o
f
M

e
s
s
a
g
e
s

Simulation Time

3 Indices
4 Indices (-2.3% msgs)

5 Indices (-1% msgs)

Figure 6. Varying Number of Indices

cause with increasing number of indices, more queries find

an optimal index for resolution. Since more queries are

optimized, the overall system performance also improves

slightly with increasing number of indices, e.g., the system

with 4 indices produces 2.3% less messages than the sys-

tem with 3 indices. Similarly, the system with 5 indices

produces 1% less messages than the system with 4 indices.

5.3. Varying Number of Data Objects

In this section, we present the performance evaluation of

the adaptive OID system by showing the impact of varying

number of data objects on the system. We perform 6 dif-

ferent simulations using the same workload as in the first

simulation discussed in Sec. 5.1. The total number of data

objects in the system λ is doubled across the simulations,

starting from 5000 and going up to 160,000. Other simu-

lation parameters have the same values as in Table 2. For

each simulation we plot the average adaptation window size

defined as: average number of simulation time units needed

for an adaptation to happen in the system.

Figure 7 shows the performance of the adaptive OID sys-

tem with respect to the average adaptation window size.

The larger the number of data objects in the system, the

longer it takes for an adaptation to happen. The reason is

that with increasing number of data objects, the index instal-

lation cost also increases. Hence, a larger and more diverse

workload is needed for the adaptation to be beneficial.

5.4. Distributed Workload Collection

In this section, we discuss the results from the perfor-

mance evaluation of the distributed workload collection (see

4.1) phase of the index adaptation process. We perform 16
simulations using the same workload as in the first simula-

tion discussed in Sec. 5.1. For a fixed DHT network size,

we vary the values of β and γ across 4 simulations, such

that the total number of peers sampled in the network vary

between 6% and 12% (in steps of 2%) of the total network

size. This simulation scenario is repeated for varying DHT

 200

 300

 400

 500

 600

 700

 800

5k 10k 20k 40k 80k 160k

A
v
g
.
A

d
a
p
ta

ti
o
n
 W

in
d
o
w

 S
iz

e

Num. of Data Objects

Figure 7. Varying Number of Data Objects

network sizes of N = (102, 103, 104, 105). Other simula-

tion parameters have the same values as in Table 2.

During each simulation, after a distributed workload col-

lection phase ends, we measure the cost deviation metric

defined as:(|cost(W, ISW
r)− cost(W, IWr)|
cost(W, IWr)

)
∗ 100

where W is the complete set of MAR queries from all peers,

ISW
r is the recommended set of indices obtained using the

sampled workload SW , and IWr is the recommended set of

indices obtained using the complete set of queries W .

The cost deviation indicates how good the recommended

set of indices is (in percentage), if it is obtained using the

sampled workload, compared to the recommended set of

indices obtained using the global workload. The lower the

cost deviation, the better the performance of the system be-

cause the indices are more optimized for future queries.

For each simulation, the average cost deviation is plotted

in Fig. 8. For the network size of 102, the calculation for the

number of peers to sample using β and γ, was rounded-off

to the same value (7% of the network size) in case of 6%
and 8% sampled peers.

Figure 8 shows that for a fixed network size, the larger

the number of sampled peers, the smaller is the cost devia-

tion. This happens because with increasing number of sam-

pled peers, a better approximation of the complete set of

queries is acquired. Hence, the recommended set of indices

obtained using the sampled workload is more similar to the

recommended set of indices obtained using the complete

set of queries. Figure 8 also portrays that with increasing

network size, sampling a smaller percentage of peers in the

network is sufficient for having a low cost deviation.

6. Conclusion and Future Work

In this paper, we presented the design and evaluation of

the adaptive OID system. The adaptive OID system opti-

mizes the overall system performance for MAR queries by

dynamically adapting the set of indices in a DHT. The set of

10
2

10
3

10
4

10
5 6 7 8 9 10 11 12 13

2
4
6
8

10
12
14
16

A
v
g
.
C

o
s
t
D

e
v
ia

ti
o
n
 [
%

]

Network Size Sampled Peers [%
]

A
v
g
.
C

o
s
t
D

e
v
ia

ti
o
n
 [
%

]

Figure 8. Distributed Workload Collection

indices is adapted using a four-phase index adaptation pro-

cess. During the first phase, a workload of MAR queries

is collected from the DHT network using uniform random

sampling of peers. This workload is then used in the sec-

ond phase for obtaining a new set of indices using the in-

dex recommendation tool [15]. During the third phase the

cost and the benefit of installing a new set of indices is esti-

mated. If it is beneficial to install the new set of indices, the

installation is carried out during the fourth phase of index

adaptation process.

Our evaluations show that the adaptive OID system con-

tinuously adapts the set of indices in the system according to

the dynamic workload of MAR queries. The adaptations are

most useful when there is a variety of different queries in the

system. Nonetheless, the adaptive OID system shows sev-

eral orders of magnitude improved performance compared

to a non-adaptive system.

Currently, the complete log of MAR queries is retrieved

from a peer during the distributed workload collection

phase. In future, we plan to change this phase so that it

is possible to retrieve the query log until a specified point

in time in the past. This would limit the amount of network

information flow during the sampling process, making the

distributed workload collection phase more scalable.

References

[1] PeerSim: A P2P Simulator. http://peersim.sourceforge.net/.
[2] Transaction Processing Performance Council .

http://www.tpc.org/.
[3] W. Acosta and S. Chandra. Exploiting the Properties of

Query Workload and File Name Distributions to Improve

P2P Synopsis-based Searches. In Proc. of Intl. Conf. on
Computer Communications. IEEE, 2008.

[4] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries

for Grid Information Services. In Proc. of Intl. Conf. on P2P
Computing. IEEE, 2002.

[5] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A

Multi-Attribute Addressable Network for Grid Information

Services. In Proc. of Intl. Workshop on Grid Computing.

IEEE, 2003.
[6] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,

S. Shenker, and J. Hellerstein. A Case Study in Building

Layered DHT Applications. In Proc. of Conf. on Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communications. ACM, 2005.

[7] Z. Deng, D. Feng, K. Zhou, Z. Shi, and C. Luo. Range

Query Using Learning-Aware RPS in DHT-Based Peer-to-

Peer Networks. In Proc. of Intl. Symp. on Cluster Computing
and the Grid. IEEE, 2009.

[8] K. Doka, D. Tsoumakos, and N. Koziris. HiPPIS: An Online

P2P System for Efficient Lookups on d-dimensional Hierar-

chies. In Proc. of Workshop on Web Information and Data
Management. ACM, 2008.

[9] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient

Broadcast in Structured P2P Networks. In Peer-to-Peer Sys-
tems II. Springer, 2003.

[10] P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to

Rule Them All: Multi-dimensional Queries in P2P Systems.

In Proc. of Intl. Workshop on the Web and Databases. ACM,

2004.
[11] D. Hilbert. Über die stetige Abbildung einer Linie auf ein

Flächenstück. In Mathematische Annalen, 1891.
[12] K. Huang and D. Zhang. DHT-based Lightweight Broad-

cast Algorithms in Large-scale Computing Infrastructures.

Future Gener. Comput. Syst., 2010.
[13] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A

Local Search Mechanism for Peer-to-Peer Networks. In

Proc. of Conf. on Information and Knowledge Management.
ACM, 2002.

[14] G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos. Query

Workload-aware Overlay Construction using Histograms. In

Proc. of Intl. Conf. on Information and Knowledge Manage-
ment. ACM, 2005.

[15] F. Memon, F. Dürr, and K. Rothermel. Index Recommen-

dation Tool for Optimized Information Discovery Over Dis-

tributed Hash Tables. In Proc. of Intl. Conf. on Local Com-
puter Networks. IEEE, 2010.

[16] F. Memon, D. Tiebler, F. Dürr, K. Rothermel, M. Tomsu, and

P. Domschitz. OID: Optimized Information Discovery using

Space Filling Curves in P2P Overlay Networks. In Proc. of
Intl. Conference on Parallel and Distributed Systems. IEEE,

2008.
[17] L. T. Nguyen, W. G. Yee, and O. Frieder. Query Workload

Driven Summarization for P2P Query Routing. In Proc. of
Intl. Conf. on Peer-to-Peer Computing. IEEE, 2008.

[18] C. Schmidt and M. Parashar. Flexible Information Discov-

ery in Decentralized Distributed Systems. In Proc. of Intl.
Symp. on High Performance Distributed Computing. IEEE,

2003.
[19] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting

Multi-dimensional Range Queries in Peer-to-Peer Systems.

In Proc. of Intl. Conf. on P2P Computing. IEEE, 2005.
[20] G. Skobeltsyn and K. Aberer. Distributed Cache Table: Effi-

cient Query-driven Processing of Multi-term Queries in P2P

Networks. In Proc. of Intl. Workshop on Information Re-
trieval in P2P Networks. ACM, 2006.

[21] P. Triantafillou and T. Pitoura. Towards a Unifying

Framework for Complex Query Processing over Structured

Peer-to-Peer Data Networks. In Proc. of Intl. Workshop
on Databases, Information Systems and P2P Computing.

Springer, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

