Optimized Information Discovery using Self-adapting Indices over Distributed
Hash Tables

Faraz Memon, Daniel Tiebler, Frank Diirr, Kurt Rothermel
IPVS — Distributed Systems Department, Universitit Stuttgart
Universititsstrale 38, 70569 Stuttgart, Germany
Email: {faraz.memon, tiebledl, frank.duerr, kurt.rothermel } @ipvs.uni-stuttgart.de

Abstract

Distributed Hash Table (DHT)-based peer-to-peer in-
formation discovery systems have emerged as highly scal-
able systems for information storage and discovery in mas-
sively distributed networks. Originally DHTs supported
only point queries. However, recently they have been ex-
tended to support more complex queries, such as multi-
attribute range (MAR) queries. Generally, the support for
MAR queries over DHTs has been provided either by cre-
ating an individual index for each data attribute or by cre-
ating a single index using the combination of all data at-
tributes. In contrast to these approaches, we propose to
create and modify indices using the attribute combinations
that dynamically appear in MAR queries in the system.

In this paper, we present an adaptive information dis-
covery system that adapts the set of indices according to the
dynamic set of MAR queries in the system. The main con-
tribution of this paper is a four-phase index adaptation pro-
cess. Our evaluations show that the adaptive information
discovery system continuously optimizes the overall system
performance for MAR queries. Moreover, compared to a
non-adaptive system, our system achieves several orders of
magnitude improved performance.

1. Introduction

During the past decade, DHTs have led the way for
distributed, scalable and fault-tolerant information discov-
ery systems. DHTs have been extended from their origi-
nal form, where they supported only point queries, to meet
modern application demand of supporting multi-attribute
range (MAR) queries. Queries such as, “find all comput-
ers with RAM from 2 to 6 GB and CPU speed from 1.0 to
4.0 GHzZ” or “find all restaurants open from 10 to 11 PM
and with seating capacity for 8 to 10 people”, are typical
examples of MAR queries.

DHTs have been extended using three different indexing
approaches to provide the support for MAR queries. The
first approach maps the value ranges of individual data at-
tributes to a network of peers [4, 5, 19, 21]. A MAR query is
resolved by dividing the query into multiple single-attribute
range queries and then by joining the results at the query
initiator. The second approach indexes the combination of
all data attributes [6, 10, 18]. Data attributes that are not
included in a MAR query are considered to be wild-cards
in this approach. The third type of approach, employed by
our Optimized Information Discovery (OID) system [16],
indexes several attribute combinations with each combina-
tion different from the other. A MAR query is resolved by
selecting the most efficient index for performing the query.

Although the third type of indexing approach outper-
forms the other two approaches in terms of individual query
efficiency [16], the overall system performance still de-
pends on the attribute combinations used for defining each
index. The efficiency of the overall system increases with
increasing number of queries being able to find a closely
matching index, in terms of the used attribute combination.

In [15], we presented a tool that assists the designer of
a distributed application in defining a useful set of indices
for the third type of DHT indexing approach. Given a limit
for the maximum number of indices and a representative set
of MAR queries (workload), our tool recommends a set of
indices that produces close-to-optimal system performance
for the workload within the given limit.

The index recommendation tool is an offline tool, i.e., it
is assumed that the workload provided to the tool is some-
how collected from an already existing DHT-based infor-
mation discovery system. Further, it is assumed that the
recommended set of indices is manually installed over the
DHT by the designer of the distributed application. In order
to carry out such an installation, the information discovery
system would have to be taken offline, which is highly un-
desirable for large-scale peer-to-peer (P2P) systems. In this
paper, we relax these assumptions to present an adaptive
OID system. The adaptive OID system performs the task of

December 2010, Albuquerque,
© IEEE 2010

Published in Proceedings of 29th International Performance
Computing and Communications Conference

New Mexico,

(IPCCC'10),
USA.

pages 1-9,

index recommendation and index installation online, elimi-
nating the need for manually updating the set of indices.

The main contribution of this paper is the index adapta-
tion process. The index adaptation process in a DHT, in-
cluding online index recommendation and index installa-
tion, is carried out in four phases. During the first phase,
a workload of MAR queries is collected from several peers
in the network using uniform random sampling. The sec-
ond phase involves execution of the index recommendation
tool to determine an optimal set of indices for the collected
workload. During the third phase, the cost and the benefit
of installing the recommended set of indices is calculated.
If it is beneficial to install the recommended set of indices,
the installation is carried out during the fourth phase.

The rest of the paper is organized as follows: in Section
2 we give an overview of the related work, the architecture
of the adaptive OID system is discussed in Section 3, in
Section 4 we describe the index adaptation process in detail,
evaluation results are presented in Section 5, and finally we
conclude the paper with an overview of our future work in
Section 6.

2. Related Work

A number of adaptive P2P information discovery sys-
tems have been proposed in the past. In this section, we
discuss some of them in relation to our system.

2.1. Unstructured P2P Systems

Several unstructured P2P information discovery systems
have been suggested that improve the efficiency of future
queries based on the past query workload in the system
[3, 13, 14, 17]. The major difference between these systems
and the structured P2P systems such as ours is that, each
peer in these systems tries to optimize the performance of
queries individually by modifying local data index. This
does not necessarily lead to the optimization of overall sys-
tem performance. Moreover, given a query, these systems
perform only a best-effort search in the network, i.e., not all
matching data objects are always retrieved.

2.2. Structured P2P Systems

In order to improve the search efficiency of queries in
structured P2P information discovery systems, several DHT
extensions have been proposed [7, 8, 20].

Deng et al. [7] introduce learning-aware blind search for
range queries in DHTSs. Each peer in their system stores in-
formation about previously retrieved results from each link
of the DHT using a local index structure. Queries are for-
ward to regions of the DHT that had previously returned the
highest number of results. Unlike our system, their system

performs only best-effort search since each peer tries to op-
timize the query performance individually.

Skobeltsyn et al. [20] present a system that stores the
results of frequently issued queries at certain peers in the
DHT. The choice of queries whose results are cached is
based on the dynamic workload of queries in the system.
A query is resolved first by looking up the results in the lo-
cal cache. If no results are found, the peer tries to find a
neighboring cache with results. If still no results are found,
the query is sent to all peer using broadcast. In our system,
queries are never resolved using broadcast since it is highly
unscalable to resolve queries in such manner. Instead, we
optimize indices for efficient query processing.

The HiPPIS system [8] indexes the data in a DHT us-
ing hierarchical indices. Each peer in the system logs each
query that it issues. If the granularity of a queried attribute
changes locally at a peer, e.g., more queries contain “city”
attribute instead of the “state” attribute, the peer checks if
the index has to be adapted accordingly. The peer performs
the adaptation check by asking every peer in the system for
the query statistics on the attribute using flooding. If adap-
tation is needed, the peer locks all the peers in the system
by flooding a lock message. During this period, queries are
answered also using flooding. Finally, the adaptation mes-
sage is sent to all peers in the system using flooding as well.
Unlike the HiPPIS system, our system has a flooding-free
scalable index adaptation process.

3. System Architecture

The adaptive OID system has a layered architecture (see
Fig. 1(a)). The top layer consists of distributed applications
that require support for MAR queries. The bottom layer is
the DHT layer that provides the service for looking up a
key, broadcasting a message, and aggregating a value. The
middle layer, known as the OID framework layer, consists
of four major components: data index space, data placement
controller, query engine, and adaptation engine.

The data index space of OID framework layer consists
of several indices. The data placement controller uses these
indices to route each data object to the peer responsible for
hosting it. The query engine is responsible for distributed
query resolution, while the adaptation engine participates
in the index adaptation process.

Each data index in the OID framework layer is a Hilbert
Space-filling curve (SFC) [11]. Due to locality preserving
properties of Hilbert SFC, data objects that are close in a
multi-dimensional attribute space tend to be mapped to sets
of neighboring peers in a DHT. This enables efficient pro-
cessing of MAR queries. A Hilbert SFC is defined as:

Definition 1 A continuous function h : (a1, as,...,aq) —
x € N, where (a1,as,...,aq) is a point in a d-dimensional
Euclidean space and N is the set of natural numbers.

0 3
Distributed Applications
4 a
MAR Query | Query Results
A 4 L
Adaptation Engine Tndex 1 2
‘- Recommendation
Workload Tool
(b)
Data Placement .
E
Controller Queribiens CPU Speed 2560
Data Index Space 0 1|14 15
EDEINEDMED 2048
I .
lookup(key) 1 1 Node IP 313 2|13 12
Broadcast(m)+ ! Aggregate(v) = 1536
4] |7 s |n
Distributed Hash Table 1024
5 619 10
@ 512

10 15 20 25 30
(©)

Figure 1. System Architecture

A Hilbert SFC divides a d-dimensional euclidean space
into 2¥'¢ cubes, called zones. A line then passes through
all zones defining an order among them. The result is a k%"
order SFC, where k, known as the approximation level, de-
fines the granularity of the space sub-division. Figure 1(b)-
(c) show a 2”4 and a 3" order Hilbert SFC respectively.

A data object in our system is indexed using each SFC
defined in the data index space of the OID framework layer.
If the SFC shown in Fig. 1(c) is one such index, then a data
object defined as (CPU Speed = 2.7 GHz, Mem Size =
1792 MB) would receive an identifier 12 from this index.
After a data object receives an identifier from each SFC-
based index, a copy of the data object is routed to the DHT
peers responsible for the object identifiers. For a detailed
description of the data indexing process, see [16].

A MAR query is resolved in two steps. First, the query
is mapped to each SFC defined in the data index space. For
example, a MAR query defined as “(CPU Speed >= 1.3
GHz) N (CPU Speed <= 2.3 GHz) A (Mem Size >=
640 MB) A\ (Mem Size <= 2304 MB)” can be mapped
to 11 zones on the SFC shown in Fig. 1(c). In the second
step, the query is routed to the peers responsible for the zone
identifiers obtained using the least expensive index [16].

4. Index Adaptation

The goal of the index adaptation process is to update the
set of indices in the OID framework layer of each peer ac-
cording to the dynamic workload of MAR queries in the
system. In order to achieve this goal, we introduce a four-
phase index adaptation process that is periodically executed
in the system. The four phases of the index adaptation pro-

cess are: distributed workload collection, index recommen-
dation, adaptation decision, and index installation.

We define following three types of peer roles to carry out
the index adaptation process:

Adaptation Peer — An adaptation peer is a peer that period-
ically initiates the index adaptation process. The length of
a period is set by the designer of the distributed application.
In order to avoid conflicting index updates, there can only
be a single adaptation peer at a time in the network. We as-
sume that the location of the adaptation peer is pre-selected
by the designer of the distributed application. This could
be done by deciding that the peer that is the successors of a
certain key would be the adaptation peer in the network.

If a new peer joins at the location of the adaptation peer,
the state of the adaptation peer is transferred to it, making
it the new adaptation peer. Moreover, if the adaptation peer
fails during the first three phases of the adaptation process,
the process is restarted by the new adaptation peer. We as-
sume a correctly functioning DHT where any peer that fails
or leaves the network is automatically replaced.
Monitoring Peer — Each peer in our system is a monitoring
peer. Monitoring peers are involved in the local collection
of the query workload, i.e., each monitoring peer logs each
query that it resolves. This log is emptied when a new set
of indices is installed in the data index space of the peer.
Sampling Peer — A sampling peer is a peer that is involved
in distributed workload collection discussed in the next sec-
tion. Any peer can take the role of a sampling peer.

4.1. Distributed Workload Collection

Ideally, if the complete set of past queries were collected
from all peers in the network, an optimal set of indices could
be obtained. However, collecting queries from all peers is
neither efficient nor scalable. Therefore, the goal of dis-
tributed workload collection is to collect a subset of the
complete set of queries by sampling some random peers.
The idea is to sample a sufficiently large subset of peers at
different locations in the network to get an approximation
of the complete set of queries.

The adaptation peer could directly collect a workload of
MAR queries by randomly sampling some monitoring peers
in the network. However, in this case, the adaptation peer
will have to issue a large number of sampling requests and
handle a large number of sampling responses, making the
sampling process unscalable. Therefore, in order to limit
the fanout of the adaptation peer and to make the sampling
process scalable, we use a two-level sampling process.

The adaptation peer initiates the first level of the sam-
pling process by generating S random keys from the iden-
tifier space of the DHT, i.e., [0,2™), where m is the num-
ber of identifier bits. A DHT lookup is then performed for
each random key in order to identify the peer responsible

for it. Here, we assume a basic DHT lookup functionality
that, given a key, returns the identity of the peer responsible
for the key. Once the identity of a random peers is learned,
a sampling request with parameter ~y is sent to it, where
indicates the number of peers to be sampled at the second
level of the sampling process.

Upon receiving a sampling request from the adaptation
peer, a peer assumes the role of a sampling peer. The sam-
pling peer then forwards the sampling request to 7 random
monitoring peers in the same manner as the adaptation peer.
After receiving a sampling request from a sampling peer, a
monitoring peer responds with the local query workload.

A sampling peer accumulates all the workloads received
from v random monitoring peers into a single workload.
Since the same query could have been resolved by several
monitoring peers, it could appear multiple times in the ac-
cumulated workload. Therefore, duplicates are eliminated
during the accumulation process. Note that the same query
issued twice is not considered as a duplicate query since
each query has a globally unique identifier. Finally, the
accumulated workload including the workload of the sam-
pling peer is sent to the adaptation peer where the accumu-
lation process is repeated.

In order to detect the failures of the monitoring or the
sampling peers, the process of distributed workload collec-
tion includes timeouts at each level. At the level of a sam-
pling peer, if a response is not received from a monitoring
peer before the timeout, the sampling request is re-issued
assuming that the faulty monitoring peer has been replaced
by the DHT. Similarly, at the level of the adaptation peer, if
a response is not received from a sampling peer before the
timeout, the sampling request is re-issued.

The distributed workload collection phase requires
O((B-7)-(logaN +2)) messages in the worst-case to
collect a workload of MAR queries. N is the total number
of peers in the network and [ogs NV is the maximum number
of messages required for a DHT lookup. Two additional
messages are needed to send a sampling request to a peer
and receive a sampling response from it.

4.2. Index Recommendation

Once a workload of MAR queries has been collected at
the adaptation peer, the next step in the adaptation process
is to search for an optimal set of indices for the collected
workload. For this purpose, we utilized the index recom-
mendation tool previously introduced by us.

Given a workload of MAR queries and a limit o for the
maximum number of indices, the index recommendation
tool recommends a close-to-optimal set of indices I, for
the given workload. For a detailed description of the index
recommendation tool and the index recommendation algo-
rithms, see [15].

T | | I — L — | | 1
tij tiz ottt e i tisj

N N
Ti i Ti, isj

Figure 2. Adaptation Decision

4.3. Adaptation Decision

After obtaining a recommended set of indices from the
index recommendation tool, a naive approach would be to
directly install this set of indices in the network. However,
it is possible that the cost of installing the recommended set
of indices outweighs the benefit of installing it. Therefore,
the goal of the adaptation decision phase is to determine
whether the installation of the recommended set of indices
is beneficial or not. This is done by comparing the estimated
cost of the workload over the current set of indices with the
estimated cost of the workload over the recommended set
of indices. The installation cost of the recommended set of
indices is also taken into account.

Let t; mark the current periodic execution of the index
adaptation process, I. be the current set of indices, and I,
be the recommended set of indices. Then, we define the fol-
lowing quantities in our system (see Fig. 2):

T; i—; — Time interval between ¢; and ¢;_; Vj € NT where,
t;—; marks the index adaptation process where I. was in-
stalled. Note that this time interval is dynamic since a new
set of indices is not installed during each periodic execution
of the index adaptation process.

W;_; — Complete set of MAR queries during the time in-
terval Ti,ifj'

SW;_; — Sampled workload, from the complete set of
MAR queries during the time interval 75 ;_ ;.

cost;y, — Estimated cost of installing the recommended set
of indices I,..

The adaptation peer considers the installation of the
recommended set [, beneficial, if the following condition
holds:

cost(SWi_;,1I.) > cost(SW;_;,I,) + costi, (1)

i.e., if the cost of the sampled workload SW;_; over the
current set of indices I, is greater than the cost of the same
workload over the recommended set of indices I, plus the
installation cost of the recommended set of indices. The
assumption behind Condition 1 is that the complete set of
MAR queries W;_; would be repeated for a similar interval
of time in the future, i.e., for 7; ;4 ;. This is the most gen-
eral assumption for predicting the cost of future queries. If

Condition 1 is satisfied, the next phase of index adaptation
is carried out. Otherwise, the index adaptation process is
halted until the next periodic execution.

The cost functions cost(SW;_;, I..) and cost(SW;_;, I,.)
in Condition 1 can be generalized as a cost function
cost(Q,I). f Q = {q1,92,q3,---,q} is a set of queries
and I = {SFC,,SFCy,SFCs,...,SFC,} is a set of

indices, then cost(Q, I) is calculated as:

Ql
cost(Q,I) = Z cost(g;, SF'C;) such that

i=1 2)
cost(q;, SFC;) < cost(q;, SFC;) where
Vi k:1<(j,k)<|[land j # k

i.e., the cost of a set of queries () over a set of indices [is a
sum of the cost of each query in () over the least expensive
index in 1.

In order to determine the least expensive index for a
query, the network cost of the query over each index needs
to be calculated. Due to highly dynamic nature of P2P sys-
tems, this cost cannot be accurately anticipated. However,
if the cost of routing a message in the network is known, the
maximum cost for resolving a query can be calculated.

Let z be the total number of zones a query maps to, on
an SFC-based index. In order to resolve this query, the peer
responsible for each zone has to be queried. If a basic query
routing strategy is considered, where first a lookup is per-
formed to determine the peer responsible for each zone,
then the maximum cost of a query ¢ on an index SFC is
calculated as:

cost(q, SFC) = z - (loga N + 2) [messages] (3)

where N is the total number of peers in the network and
loga N is the maximum number of messages needed for
looking up a peer responsible for a zone. Two additional
messages are needed to send a query request to a peer and
receive a query response from it.

In order to check if Condition 1 holds, the cost of in-
stalling the recommended set of indices cost;,, has to be
calculated. Similar to the cost calculation above, only the
maximum cost of installation can be calculated. Let A be
the total number of unique data objects in the system, then
the maximum cost for installing the recommended set of
indices I, is calculated as:

costin =3 (N — 1) + (|I| — |I. N I,])-

A+ (logaN + 2) [messages] “)

where 3 - (N — 1) is the cost of broadcasting the recom-
mended set of indices I, (|I.| — |I. N I]) is the total num-
ber of new indices, and A - (loga N + 2) is the cost of re-
indexing the data. The reason for the broadcast cost being
almost three-times the network size is discussed in the next
section.

Note that Equations 3 and 4 require the knowledge of
global parameters such as N and A, which are generally not
known to a peer in a DHT network. However, an estimate
for these parameters could be obtained by installing a re-
liable broadcast/aggregation tree in the network. The root
of this tree will be the adaptation peer in our system. Such
a broadcast/aggregation tree could be installed and main-
tained using the approaches discussed in [9] and [12].

4.4. Index Installation

Once it is determined that installing a recommended set
of indices is beneficial, the adaptation peer initiates the in-
dex installation phase. The goal of the index installation
phase is to broadcast the new set of indices I,., and to re-
index the data on each peer accordingly.

A naive way of carrying out the index installation phase
is to broadcast the recommended set of indices using the
DHT broadcast/aggregation tree, and let each peer re-index
the data according to the new set of indices. However,
queries issued in the system during the re-indexing of the
data may not be able to recall the matching data objects
completely. This could happen in cases where, e.g., a query
issued using the new set of indices searches for matching
data objects at a peer where the data has not been placed yet
using the new set of indices. In order to avoid this short-
coming, we introduce a 3-step index installation phase.

During the first step, a broadcast message containing
the new set of indices [, is sent by the adaptation peer to
each peer in the system. For this purpose, the DHT broad-
cast/aggregation tree is used. Upon receiving the broadcast
message, each peer begins to re-index its data. Note that
the old set of indices I. and the corresponding data is not
yet removed from the system. Hence, the queries that are
issued during this step continue to be resolved using /..

A data object in the OID system is indexed using o num-
ber of indices, i.e., |I.] = o. This means that there are o
copies of the same data object in the system. Therefore, it
has to be made sure that each copy of the data object is not
re-indexed using each index in [,.. For example, if I, and I,
are as shown in Fig. 3, a data object indexed using /. would
be located at four locations in the system. Now if the same
data object is re-indexed at each location using every index
in I,., it would be sent four times to each new location in the
network. To avoid this, the data is re-indexed as follows.

Data re-indexing at a peer starts with the comparison of
the installed set of indices . with the new set of indices I,
(see Fig. 3). First, the common elements in both sets are
ignored. Next, a mapping is defined from each element in
1. to each corresponding element in /,. The data objects
that had been previously indexed using an element of I,
are now re-indexed only using the corresponding element
in I,.. For example, in Fig. 3, the data objects that had been

L. [sFc7| SFC, | SFC [SFG, |
I —
I [sFc; | SFC, | SFCs | SFC |

Figure 3. Data Re-Indexing

indexed using SF'Cy in I, are only re-indexed using SF'Cyg
in I,.. The re-indexing process involves a look-up for the
new location of a data object and then transfer of the data
object to this location.

Once the re-indexing of the data is finished at a peer, it
sends an acknowledgement to the parent node in the DHT
broadcast/aggregation tree. During the second step of the
index installation process, the acknowledgements from all
peers in the network are aggregated until the adaptation
peer receives the aggregated acknowledgement. Queries
still continue to be resolved using the old set of indices I..

Upon receiving an aggregated acknowledgement from
the child nodes in the DHT broadcast/aggregation tree, the
adaptation peer starts the third step of index installation by
broadcasting a use index message. When this message
is received at a peer, the peer removes .., discards the corre-
sponding data, empties the monitored query log, and starts
using [, for query resolution. Note that the data common
between I. and I, is not discarded. During this step of in-
dex installation, if a query is issued from a peer that has
not received the use index message yet, then there are
two possibilities. First, the query will be resolved using 1.,
if all peers involved in query resolution have not discarded
the data corresponding to .. Second, even if a single peer
involved in query resolution has discarded I, then the peer
that issued the query will be asked to re-issue it using I,..

If the adaptation peer fails before the first step of the
index installation phase, then the process of index adapta-
tion is repeated by the new adaptation peer. However, if the
adaptation peer fails after the first step of index installation,
the new adaptation peer is already aware of the state of in-
dex installation due to the broadcast of new indices in the
network. Therefore, the new adaptation peer executes the
next steps of the index installation phase.

5. System Evaluation

In this section, we present the results from the perfor-
mance evaluation of the adaptive OID system. We simu-
lated our system using the PeerSim [1] simulator. The sim-
ulations were performed on an AMD Opteron machine with
4 GB of RAM.

Considering resource discovery in grid computing as an
example scenario, we represent the data objects in our sim-
ulations as resource specifications. Each resource specifica-
tion consists of attributes shown in Table 1. The value for

Attribute Value Domain Definition

CPU Speed 1.0-4.0 CPU clock speed in gigahertz

Busy CPU 0-100 Percentage of CPU(s) in use

Mem Size 1.0-8.0 Total Memory size in gigabytes
Mem Used 0-100 Percentage of Memory in use

HDD Size 100.0 - 3000.0 | Total HDD size in gigabytes

DL Bandwidth 0.5-100 Bandwidth of down link in mbits/sec

Table 1. Attribute List

each attribute in a resource specification is randomly gener-
ated from the value domain of the attribute.

Unlike the database management systems where bench-
mark workloads are made available by the TPC [2], no such
workload of MAR queries is readily available for P2P sys-
tems. Hence, we generate the workloads using the attributes
in Table 1 for simulating different scenarios of our system.

For each point on the graphs displayed in this section,
the corresponding experiment is repeated 10 times with dif-
ferent workloads, and an average value is plotted.

5.1. Varying Number of Attributes

In this section, we present the results from the perfor-
mance evaluation of our system using a workload of queries
with varying number of attributes. We show that an adaptive
OID system is essential for continuous optimization of over-
all system performance for MAR queries. Table 2 shows the
parameter values used for this simulation.

Parameter | Value | Definition

N 1000 | Total number of peers in the DHT

n 1600 Total number of queries in the workload
o 3 Maximum number of indices

A 5000 Total number of data objects

B 33 First level sampling parameter

¥ 2 Second level sampling parameter

Table 2. Simulation Parameters

The workload is generated in a manner that the start of
the workload contains queries with 4 attributes followed by
queries with 3, 2, and 4 attributes again. To simulate a slow
change in the workload over time, the attributes in queries
are varied slowly, i.e., the change from queries with 4 at-
tributes to queries with 3 attributes and so on, is not sudden.

Each attribute in a query is randomly selected from the
list shown in Table 1. Similarly, the range for an attribute
in a query is randomly selected from the domain of the at-
tribute. The values for parameters 8 and - are set so that
almost 10% of peers in the network are sampled.

We simulate the adaptive OID system, the non-adaptive
system, and a system with only a single adaptation (par-
tially adaptive system), by executing the generated work-
load from random peers in the DHT over a period of time.
The non-adaptive system is a system with only a single data
index over all 6 attributes shown in Table 1. For the partially

Non-Adaptive -
$108 [Partially Adaptive (-99.2% msgs) -

2 Adaptive (-83.6% msgs)
10’ IVINE L e
s 1 06 vﬁs'-e*fw w H i

0 250 500 750 1000 1250 1500
Simulation Time

Figure 4. Varying Number of Attributes

adaptive system, the adaptation takes place after 10 simula-
tion time units. Moreover, for the adaptive OID system, the
index adaptation process is scheduled to run after every 10
simulation time units. A single simulation time unit is long
enough to allow execution of a single query.

For every 5 simulation time units, we plot the average
number of messages in all three systems during that 5-time-
unit-window (see Fig. 4). The number of messages repre-
sents all the messages in the system including messages for
the index adaptation process. For the adaptive OID system,
the peaks in the number of messages (see Fig. 4) mark the
points where index installation takes place. The higher the
peak, the larger the number of indices that are exchanged.

Similar to the non-adaptive system, the adaptive OID
system and the partially adaptive system start with one in-
dex over all attributes. However, the first adaptation hap-
pens very soon in both the systems and 2 additional indices
are installed (see Fig. 4). This improves the performance
of MAR queries in both systems because the queries are
able to find less expensive indices for resolution. Since the
first adaptation is based on a very small workload, the sec-
ond adaptation follows soon in the adaptive OID system.
The system continues to adapt itself over time according to
the workload of queries. After each adaptation, the perfor-
mance of MAR queries improves as the average number of
messages in the system are reduced.

Figure 4 shows that the partially adaptive system pro-
duces 99.2% less messages than the non-adaptive system.
Moreover, the adaptive OID system produces 83.6% less
messages than the partially adaptive system. Therefore, the
adaptive OID system is several orders of magnitude better
than the non-adaptive system. Figure 4 also shows that, in
order to optimize the overall system performance for MAR
queries, a system with continuous adaptations is essential.

The performance of the non-adaptive system worsens
with decreasing number of attributes in queries (see Fig. 4).
This happens because with decreasing number of query at-
tributes, more attributes have to be considered as wild-cards
on a single large index. The performance of the system gets
better towards the end of the simulation because the number

8

107 F Non-Adaptive -
3 | Partially Adaptive (-99.2% msgs) -
=l o’ F Adaptive (-3.1% msgs) 4
% 6 :}‘"Ah..?’j,.;"“",(‘-2‘».. EWPEATP g LT ¥
=10
kS
£10°
>
P4

PPN
210
<

10° —

0 250 500 750 1000 1250 1500
Simulation Time

Figure 5. Fixed Number of Attributes

of attributes in queries increases from 2 to 4 attributes.

In order to further analyze the impact of the number of
attributes in queries, we perform another simulation where
the number of attributes in the workload is kept constant
to 3 attributes. Other simulation parameters have the same
values as in Table 2. Figure 5 shows the performance of all
three systems with respect to the average number of mes-
sage in a 5-time-unit-window.

Figure 5 shows that the adaptive OID system quickly
adapts its indices to the changing workload of queries. Ma-
jor adaptations come close to the start of the simulation.
After that, even though some small adaptations happen in
the system, the performance of the system remains roughly
constant. This happens because the indices adapted during
the start of the simulation remain beneficial for the complete
simulation. The performance of the non-adaptive system
remains almost constant, and several orders of magnitude
worse than the adaptive system, throughout the simulation.

With a constant number of attributes in queries, the per-
formance of the partially adaptive system comes close to the
performance of the adaptive system (see Fig. 5). However,
the adaptive system still produces 3.1% less messages com-
pared to the partially adaptive system. This difference in the
number of messages grows larger over time. Therefore, in
a long running system, the adaptive system would perform
significantly better than a partially adaptive system.

5.2. Varying Number of Indices

In this section, we present the performance evaluation of
the adaptive OID system by showing the impact of varying
number of indices on the system. We perform 3 different
simulations using the same workload as in the first simula-
tion discussed in Sec. 5.1. The maximum number of indices
o is varied from 3 to 5 across these simulations. Other sim-
ulation parameters have the same values as in Table 2. For
each simulation we plot the average number of messages in
a 10-time-unit-window.

Generally, the larger the set of indices, the better the per-
formance of the system after an adaptation (see Fig. 6), be-

—_
o
o

3 Indices
3 4 Indices (-2.3% msgs)
g 5 Indices (-1% msgs)
210t
=
ks
§103
o
>
<
102 - 1 I |

0 250 500 750 1000 1250 1500
Simulation Time

Figure 6. Varying Number of Indices

cause with increasing number of indices, more queries find
an optimal index for resolution. Since more queries are
optimized, the overall system performance also improves
slightly with increasing number of indices, e.g., the system
with 4 indices produces 2.3% less messages than the sys-
tem with 3 indices. Similarly, the system with 5 indices
produces 1% less messages than the system with 4 indices.

5.3. Varying Number of Data Objects

In this section, we present the performance evaluation of
the adaptive OID system by showing the impact of varying
number of data objects on the system. We perform 6 dif-
ferent simulations using the same workload as in the first
simulation discussed in Sec. 5.1. The total number of data
objects in the system A is doubled across the simulations,
starting from 5000 and going up to 160,000. Other simu-
lation parameters have the same values as in Table 2. For
each simulation we plot the average adaptation window size
defined as: average number of simulation time units needed
for an adaptation to happen in the system.

Figure 7 shows the performance of the adaptive OID sys-
tem with respect to the average adaptation window size.
The larger the number of data objects in the system, the
longer it takes for an adaptation to happen. The reason is
that with increasing number of data objects, the index instal-
lation cost also increases. Hence, a larger and more diverse
workload is needed for the adaptation to be beneficial.

5.4. Distributed Workload Collection

In this section, we discuss the results from the perfor-
mance evaluation of the distributed workload collection (see
4.1) phase of the index adaptation process. We perform 16
simulations using the same workload as in the first simula-
tion discussed in Sec. 5.1. For a fixed DHT network size,
we vary the values of § and v across 4 simulations, such
that the total number of peers sampled in the network vary
between 6% and 12% (in steps of 2%) of the total network
size. This simulation scenario is repeated for varying DHT

~N @
o o
o o

o
o
~

o
o

-

o
o

¥

5k 10k 20k 40k 80k 160k
Num. of Data Objects

Avg. Adaptation Window Size

N W A G O
o
o

(=]
o

Figure 7. Varying Number of Data Objects

network sizes of N = (102,103,10%,10%). Other simula-
tion parameters have the same values as in Table 2.

During each simulation, after a distributed workload col-
lection phase ends, we measure the cost deviation metric
defined as:

SWH _ w
|cost(W, I2") — cost(W, V)| «100
cost(W, I'V)

where W is the complete set of MAR queries from all peers,
I5W is the recommended set of indices obtained using the
sampled workload SW, and IV is the recommended set of
indices obtained using the complete set of queries W.

The cost deviation indicates how good the recommended
set of indices is (in percentage), if it is obtained using the
sampled workload, compared to the recommended set of
indices obtained using the global workload. The lower the
cost deviation, the better the performance of the system be-
cause the indices are more optimized for future queries.

For each simulation, the average cost deviation is plotted
in Fig. 8. For the network size of 102, the calculation for the
number of peers to sample using 3 and ~y, was rounded-off
to the same value (7% of the network size) in case of 6%
and 8% sampled peers.

Figure 8 shows that for a fixed network size, the larger
the number of sampled peers, the smaller is the cost devia-
tion. This happens because with increasing number of sam-
pled peers, a better approximation of the complete set of
queries is acquired. Hence, the recommended set of indices
obtained using the sampled workload is more similar to the
recommended set of indices obtained using the complete
set of queries. Figure 8 also portrays that with increasing
network size, sampling a smaller percentage of peers in the
network is sufficient for having a low cost deviation.

6. Conclusion and Future Work

In this paper, we presented the design and evaluation of
the adaptive OID system. The adaptive OID system opti-
mizes the overall system performance for MAR queries by
dynamically adapting the set of indices in a DHT. The set of

—_

— Avg. Cost Deviation [%)]

o
N Ao

Figure 8. Distributed Workload Collection

indices is adapted using a four-phase index adaptation pro-
cess. During the first phase, a workload of MAR queries
is collected from the DHT network using uniform random
sampling of peers. This workload is then used in the sec-
ond phase for obtaining a new set of indices using the in-
dex recommendation tool [15]. During the third phase the
cost and the benefit of installing a new set of indices is esti-
mated. If it is beneficial to install the new set of indices, the
installation is carried out during the fourth phase of index
adaptation process.

Our evaluations show that the adaptive OID system con-
tinuously adapts the set of indices in the system according to
the dynamic workload of MAR queries. The adaptations are
most useful when there is a variety of different queries in the
system. Nonetheless, the adaptive OID system shows sev-
eral orders of magnitude improved performance compared
to a non-adaptive system.

Currently, the complete log of MAR queries is retrieved
from a peer during the distributed workload collection
phase. In future, we plan to change this phase so that it
is possible to retrieve the query log until a specified point
in time in the past. This would limit the amount of network
information flow during the sampling process, making the
distributed workload collection phase more scalable.

References

[1] PeerSim: A P2P Simulator. http://peersim.sourceforge.net/.

[2] Transaction Processing Performance Council
http://www.tpc.org/.

[3] W. Acosta and S. Chandra. Exploiting the Properties of
Query Workload and File Name Distributions to Improve
P2P Synopsis-based Searches. In Proc. of Intl. Conf. on
Computer Communications. IEEE, 2008.

[4] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries
for Grid Information Services. In Proc. of Intl. Conf. on P2P
Computing. IEEE, 2002.

[5] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services. In Proc. of Intl. Workshop on Grid Computing.
IEEE, 2003.

[6] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca,
S. Shenker, and J. Hellerstein. A Case Study in Building

(7]

8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

Layered DHT Applications. In Proc. of Conf. on Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communications. ACM, 2005.

Z. Deng, D. Feng, K. Zhou, Z. Shi, and C. Luo. Range
Query Using Learning-Aware RPS in DHT-Based Peer-to-
Peer Networks. In Proc. of Intl. Symp. on Cluster Computing
and the Grid. IEEE, 2009.

K. Doka, D. Tsoumakos, and N. Koziris. HiPPIS: An Online
P2P System for Efficient Lookups on d-dimensional Hierar-
chies. In Proc. of Workshop on Web Information and Data
Management. ACM, 2008.

S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient
Broadcast in Structured P2P Networks. In Peer-to-Peer Sys-
tems II. Springer, 2003.

P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to
Rule Them All: Multi-dimensional Queries in P2P Systems.
In Proc. of Intl. Workshop on the Web and Databases. ACM,
2004.

D. Hilbert. Uber die stetige Abbildung einer Linie auf ein
Flachenstiick. In Mathematische Annalen, 1891.

K. Huang and D. Zhang. DHT-based Lightweight Broad-
cast Algorithms in Large-scale Computing Infrastructures.
Future Gener. Comput. Syst., 2010.

V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A
Local Search Mechanism for Peer-to-Peer Networks. In
Proc. of Conf. on Information and Knowledge Management.
ACM, 2002.

G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos. Query
Workload-aware Overlay Construction using Histograms. In
Proc. of Intl. Conf. on Information and Knowledge Manage-
ment. ACM, 2005.

F. Memon, F. Diirr, and K. Rothermel. Index Recommen-
dation Tool for Optimized Information Discovery Over Dis-
tributed Hash Tables. In Proc. of Intl. Conf. on Local Com-
puter Networks. IEEE, 2010.

F. Memon, D. Tiebler, F. Diirr, K. Rothermel, M. Tomsu, and
P. Domschitz. OID: Optimized Information Discovery using
Space Filling Curves in P2P Overlay Networks. In Proc. of
Intl. Conference on Parallel and Distributed Systems. IEEE,
2008.

L. T. Nguyen, W. G. Yee, and O. Frieder. Query Workload
Driven Summarization for P2P Query Routing. In Proc. of
Intl. Conf. on Peer-to-Peer Computing. IEEE, 2008.

C. Schmidt and M. Parashar. Flexible Information Discov-
ery in Decentralized Distributed Systems. In Proc. of Intl.
Symp. on High Performance Distributed Computing. IEEE,
2003.

Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting
Multi-dimensional Range Queries in Peer-to-Peer Systems.
In Proc. of Intl. Conf. on P2P Computing. IEEE, 2005.

G. Skobeltsyn and K. Aberer. Distributed Cache Table: Effi-
cient Query-driven Processing of Multi-term Queries in P2P
Networks. In Proc. of Intl. Workshop on Information Re-
trieval in P2P Networks. ACM, 2006.

P. Triantafillou and T. Pitoura. = Towards a Unifying
Framework for Complex Query Processing over Structured
Peer-to-Peer Data Networks. In Proc. of Intl. Workshop
on Databases, Information Systems and P2P Computing.
Springer, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

