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Abstract—Ad-hoc smart spaces aim at resource-rich mobile
devices sharing resource and context data with others near
them spontaneously. Thus, a device may, e.g., obtain a more
complete context model by utilizing sensor data of its neighbors
via wireless communication, such as Bluetooth. The highly
dynamic device neighborhood challenges resource discovery,
as the devices have to organize themselves autonomously.

This paper evaluates different resource discovery protocols
in Bluetooth-based ad-hoc smart spaces. We simulate the pro-
tocols in different scenarios taking into account the scatternet
structure of the network. We suggest request flooding for small
settings and random replication for medium to large spaces.

I. INTRODUCTION

Modern mobile devices (smartphones, PDAs, etc.) carry a
multitude of sensors, e.g., GPS, cameras, or accelerometers.
They are also capable of storing larger amounts of data,
both personal (calendar, contacts, messages) and general
(maps, traffic, weather). Put together, sensors and stored data
tell a lot about the user’s current context [1]. This allows
context-aware applications that provide more user benefit [2].
However, not all aspects of context are available when needed
as devices have different capabilities and sensors are not
always functional (e.g. GPS indoors). Humans frequently
ask other people for help, e.g. to find a train station. Mobile
devices possess several means to communicate; they could
adopt this and ask their neighbors for missing context data.

Ad-hoc smart spaces [3] aim at resource-rich mobile
devices sharing resources (sensors and context data) with
others near them spontaneously and without dedicated infras-
tructure. They act in the background to improve applications
that require resource data. L.e., they must not hinder other
activities on the device, e.g., by allocating device features
exclusively. To put ad-hoc smart spaces into effect, we
focus on practical solutions that cater for easy adoption. Le.,
implementations should run on consumer devices without
additional hardware or drastic changes of the software stack.

A key challenge of ad-hoc smart spaces is resource
discovery. Unlike device discovery, which is closely coupled
with the underlying communication technology, finding
out which devices might share which resources opens a
large space. A plethora of discovery mechanisms exist
in the literature [4], ranging from home entertainment to
internet-scale peer-to-peer nets. This paper evaluates how

selected resource discovery protocols perform in ad-hoc smart
space settings characterized by (1) autonomous peer-to-peer
organization, (2) highly dynamic behavior, and (3) Bluetooth
communication: (1) Ad-hoc smart spaces depend solely on
the mobile devices and assume no further infrastructure. (2)
A space is formed when devices discover each other. Devices
leave by moving away. Spaces grow and shrink, split up and
merge, so resources appear and disappear very dynamically.
(3) We focus on Bluetooth, as it best meets the requirements:
Most mobile devices support it and it does not interfere
with ulterior communication. Contrarily, a WLAN-solution
needs to put the WLAN interface into ad-hoc mode cutting
off infrastructure-based communication. Finally, Bluetooth
is comparatively energy-efficient, suiting it for long-running
background activities.

Our ultimate goal is a practical implementation on a mobile
device, such as a Nokia Internet Tablet. This further restricts
the design space to solutions that are implementable on top
of a state-of-the-art mobile software platform, in our case
Linux and the BlueZ Bluetooth stack.

As our contribution, we introduce the characteristics of
Bluetooth as well as our system architecture, being the
foundations of this work (Section II). We examine different
resource discovery protocols (Section III) which we simulated
in typical scenarios for ad-hoc smart spaces (Section IV).
The simulations show that the chaotic nature of ad-hoc smart
spaces is difficult to capture. Yet, we observe that request
flooding works well for small networks (< 20 devices). For
larger networks, more complex discovery structures pay off.

II. FOUNDATIONS

The foundations of this paper are the Bluetooth networking
and the system architecture of an ad-hoc smart space
middleware. Both strongly influence our evaluation.

Bluetooth communicates strictly in a point-to-point fashion.
Devices organize themselves in piconets of one master and
multiple slaves. The master coordinates communication in the
piconet and routes messages between slaves at the physical
link layer. The slaves only communicate with each other on
the logical link layer. A device can participate in several
piconets at the same time. If the network includes such
devices, as shown in Figure 1 (marked with an asterisk), the
network is called a scatternet. The Bluetooth specification [5]
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does not include routing in a scatternet, and current Bluetooth
stacks do not provide it. Applications need to provide their
own scatternet routing on top of the Bluetooth stack.

Bluetooth includes the Service Discovery Protocol (SDP), a
mechanism to find services in the local piconet [5]. However,
resources further away in a scatternet are out of reach. Also,
SDP is restricted to searching for unique service IDs. Search
by arbitrary attributes (e.g., “GPS devices receiving three-
dimensional coordinates”) is not supported.

We envision the ad-hoc smart space middleware as one
Bluetooth service that builds a peer-to-peer overlay on top of
the scatternet. We use Bluetooth device discovery and SDP to
find running middleware instances first. Then the middleware
instances organize each other to share their resources in a
second step. Figure 2 shows the resulting architecture.

Put simply, the Bluetooth stack of the operating system
comprises three layers. The physical link layer manages
master-slave communication. The logical link layer caters for
datagram messaging in a piconet and provides the base for the
Service Discovery Protocol (SDP) and the REFECOMM profile.
RFCOMM provides reliable end-to-end communication.

The ad-hoc smart space middleware uses RFCOMM and
needs to provide scatternet routing. Resource discovery builds
on top of the routing layer to distribute resource information
throughout the scatternet. Resource management uses both
resource discovery and routing. An application is presented
a unified set of resources; local and remote.

III. RESOURCE DISCOVERY PROTOCOLS

Figure 2 depicts resource discovery as a core component in
our system architecture that acts on top of the entire scatternet.
Our scenario is characterized by a relatively small scale
(at most a few hundred devices), decentralized autonomous
organization, and very dynamic network topology. This rules
out centralized client/server approaches, e.g. LDAP [6]. De-
centralized structured approaches, e.g. Chord [7], distribute
resource information using sophisticated structures. The effort
to maintain these structures in the highly dynamic network is
likely prohibitive, so we did not consider these approaches.

Many peer-to-peer networks build clusters as an overlay
network for efficiency [4]. A Bluetooth scatternet provides a
cluster structure at the physical link layer, so it seems ideal
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to exploit it. [8] presents an algorithm that routes Bluetooth
SDP queries through scatternets. Devices participating in
several piconets offer an SDP service named “bridge”. A
device looking for resources may use a bridge service to
forward SDP searches to other piconets, if the service was not
found in the local piconet. Besides adopting the limitations
of Bluetooth SDP (search by service IDs only), there is one
major problem, however. A device must determine its role
in the scatternet to know whether to provide the “bridge”
service. This knowledge is available in the physical link
layer (see Figure 2), but the Bluetooth API, as provided on
a mobile device, does not propagate the knowledge to the
logical link layer. In practice, scatternet routing and resource
discovery have no chance to determine a bridge device. Of
course it is possible to modify the Bluetooth stack of an open
operating system. Yet, as stated above, this would render easy
adoption of ad-hoc smart spaces impossible on a significant
number of devices.

Our scenario leaves three main design variables open: repli-
cation, routing, and information propagation. (1) The degree
of replication varies between zero and full replication. The
extremes are pull-based querying of all devices or push-based
replication on all devices and search in local directories, re-
spectively. (2) Protocols may integrate scatternet routing with
discovery, or keep the two tasks separate. Integrating them
may optimize communication based on the network structure.
Separating them allows exchangeable layer implementations
and even other communication technologies. (3) Protocols
may propagate information in different ways: flooding, tree
structures, or point-to-point links. We evaluated resource
discovery protocols covering all three design variables.

A. Request Flooding

Request Flooding uses zero replication, integrates scat-
ternet routing, and propagates information through flooding.
A searching device emits a request to all neighbors, which
either reply with resource information or forward the request
recursively. Unique request IDs prevent multiple processing



of requests. Request Flooding does not maintain any support
structures or directories and needs no initialization. Yet it
is guaranteed to find any existing resource. It also finds the
shortest route to the resource.

Due to its simplicity, Request Flooding is considered trivial.
At the same time it serves as a benchmark; other protocols
should perform at least as good as Request Flooding.

B. Resource Flooding

Resource Flooding is a contrary approach to Request
Flooding. It uses full replication, integrates routing and
propagates through flooding. Devices publish their resource
information to all neighbors, which forward it recursively.
This happens whenever resources become available. Devices
keep a local directory that is updated by the resource
advertisements. Resource requests are answered locally
without any communication.

C. Publish/Subscribe

Publish/Subscribe [9] uses full replication, includes routing,
and propagates resource advertisements via a tree to avoid
the duplicate messages, which Resource Flooding produces.

When two devices encounter each other, they exchange
their lists of known devices. For every unknown device in the
received list, they issue a subscription to receive all resource
advertisements about the (previously) unknown device. Thus,
devices need to keep a subscription table to memorize
whom to forward incoming resource advertisements. The
subscriptions form a tree for every resource provider, which
must be repaired whenever a device leaves. When the loss is
noticed, it is published along the tree, and devices remove
the respective resources from their local directories. The
devices exchange their lists of known devices regularly so
that broken paths in the tree are ultimately replaced.

D. Gnutella-Inspired

Gnutella [10] was the first major peer-to-peer file sharing
system that worked completely decentralized. Every partici-
pant selects a number of neighbors anywhere in the network
that replied to a flooded ping message. File Search is done
by flooding a request over these neighbors (using a max.
hop counter). This scaled poorly for very large networks
and lead to enormous delays. Several improvements were
proposed including clustering [11] using “ultra-peers” that
cache resources of their neighbors.

As ad-hoc smart spaces scenarios are much smaller than
internet-scale file sharing nets, the disadvantages of Gnutella
might not make much impact. So we adopted concepts from
Gnutella in our “Gnutella-inspired” protocol:

A device finds other devices through Bluetooth device
discovery and SDP, declares them its neighbors and connects
to them. It floods a ping message over all neighbors (using
a max. hop counter). Devices reply with the list of resources
they offer. The initiating device stores these lists in a local

directory together with the route via which the message
traveled. Devices routing the messages to their destination
update their directories, too. Discovery requests are answered
from the local directory. If this does not succeed, the request
is flooded over the neighbors. Thus, the protocol uses partial
replication and propagates information through flooding. We
designed two variants of the protocol w.r.t. routing:

1) Integrated Routing (IR): This variant directly calls the
Bluetooth API and utilizes direct links in the scatternet. Thus,
“neighbors” are reachable via one hop and flooded discovery
requests travel along the physical scatternet structure.

2) Separate Routing (SR): To evaluate the effect of a
separate scatternet routing layer, we modified the protocol
accordingly. The particular routing algorithm used in our
simulations (see Section IV-B) keeps the network slim,
resulting in a different network topology. The discovery
protocol is the same, devices only connect to fewer neighbors
and the routing algorithm creates additional messages.

E. Central Directory

The Central Directory protocol creates a single replication
of all resource information, depends on a separate routing
layer and uses point-to-point communication. It implements
publish-find-bind as known, e.g., from UDDI [12]. It works
very well in static infrastructures, but requires tweaks in ad-
hoc smart spaces. Devices vote one device to host a central
directory and to answer all discovery requests. Although the
term ‘“vote” implies democracy, the first device needing a
directory appoints itself directory host and informs the others
via flooding, which reply with their resource lists. When the
directory host becomes unavailable, the first device to notice
the loss initiates a new voting procedure.

In case of a net merge two directory hosts exist. A net
merge always creates a bottleneck at the single bridge device
that routes all messages between the two nets. The bridge
is not interested in the traffic of discovery requests, so it
tells the two directory hosts to exchange their directories.
This way, discovery stays in the two old networks, and no
directory announcements need to be flooded.

F. Random Replication

Random Replication features a configurable degree of
replication, depends on a separate routing layer, and uses
point-to-point communication. It creates many decentralized
directories randomly. Random Replication builds an overlay
structure independent of the physical network and assumes a
global view on the scatternet. Every device randomly chooses
a number of “neighbors” from the entire ad-hoc smart space.
Every device queries its neighbors for their resource lists
and stores them in a local directory. Search is first done
locally, then the neighbors are queried. Thus, the requests
may travel quite randomly through the physical network. The
parameter r denotes the neighbors per device as a fraction of
all devices. Thus, r controls the global degree of replication.
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Figure 3. Message load measured in the Initialization scenario

The number of logical hops of a request in the overlay
network largely depends on r. We simulated r» = 30% and
r = 50%. Le., statistically every third or second request can
be answered from the local directory, respectively.

IV. EVALUATION

We compared the resource discovery protocols in over
2000 simulations using a custom-made open source simula-
tion environment!. We simulated three network topologies
(Line, Circle, and Random), and three network sizes: Small,
Medium, and Large (5, 15, and 50 devices).

A. Metrics

We exclusively measure the number of messages a device
sends and receives on the logical link layer in a piconet.
We do not simulate the low level details of Bluetooth;
message fragmentation, frequency hopping, or TDMA slots
are omitted. This rules out measuring precise latencies and
exact energy consumption. However, all simulated protocols
act on top of the RFCOMM Bluetooth profile and send
messages in the exact same way; a more precise simulation
would not reveal additional insights. The piconet messages
allow estimating latency and energy consumption; they will
be roughly a function of the message load.

B. Scatternet Routing

The scatternet routing layer of our simulation environment
uses distance vector routing. Every device keeps a routing
table which provides a global view on all devices, but not
the optimal route. The routing algorithm minimizes open
connections per device to achieve a sparse network topology.
This increases network throughput and decreases message
loss, as devices require fewer context switches [13], [14].

A device periodically searches for other devices. In the
simulation, devices are found based on their geographic
distance. Whenever device A finds a new device B, A checks
whether B is already listed in the routing table. If so, B is
already reachable, i.e., a direct connection to B would only
make the network denser. Otherwise A connects to B and the
two devices exchange their routing tables. For every device
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Figure 4. Message load measured in the Grow scenario

D in B’s routing table that is unknown to A, A adds a route
via B.

If A notices that B is no longer reachable, it simply removes
all routes via B from its routing table. Yet, A does not
propagate the loss of B to other devices, as it is not sure
whether this information is ever needed. Only if a device
attempts to send a message via B, the loss of B is signaled
along the routing path and the devices on the path remove
B from their routing tables.

C. Initialization Scenario

For small networks one would assume that the message
load to maintain organizational structures does not pay
off. Thus, it is interesting to measure this load as a first
performance indicator. We created a test scenario using a
Small-Circle and a Small-Line topology, and no discovery
requests. We ran the simulation for the first 20 messaging
cycles. Thus, all messages serve the purpose to find neighbors,
establish routing, create local directories, etc.

Our results, as depicted in Figure 3, show that there are
two extremes: First, Resource Flooding creates an excessive
amount of messages. This is not a specific outlier of the
particular scenario; we obtained similar results from other
simulations (omitted for brevity). Second, Request Flooding
creates no messages at all, which obvious as Request
Flooding only communicates to search for resources.

Furthermore, Figure 3 shows that the Gnutella-inspired
protocol with integrated routing (IR) generates considerably
fewer messages than with separate routing (SR). Initialization
of the routing layer clearly leaves its mark.

D. Grow Scenario

To test the scalability of the resource discovery protocols,
we simulated three network topologies growing incrementally
from one to 50 devices. As in the Initialization scenario, there
were no discovery requests, communication happens only to
establish organizational structures.

Figure 4 shows the results summed up for all three
topologies, except for the flooding protocols. Resource
Flooding created such an excessive message load that we
decided not to consider the protocol in our simulation any
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further. As in the Initialization scenario, Request Flooding
does not communicate at all.

Even though the tree propagation of Publish/Subscribe
improves Resource Flooding considerably, it still shows
the highest message load. The Gnutella-inspired protocol
performs very well with integrated routing (IR) and mediocre
otherwise (SR), due to the establishment of routing structures.
The Central Directory performs slightly better than Gnutella
SR. Both rely on the established routing structures, but
creating the Central Directory obviously requires fewer
messages than flooding pings. Random Replication nicely
shows the effect of the parameter r, denoting the amount of
neighbors per device. » = 50% generated nearly 3000 more
messages than 7 = 30%, or 20 more messages in average
per device in each topology.

E. Search Scenario

The Search scenario consists of numerous simulations that
search for resources in various network topologies. Figure 5
shows the combined results grouped by network size. The
logarithmic scale of the figure shows the exponentially grow-
ing message load of Request Flooding. This is unacceptable
in large networks. Yet for small networks, Request Flooding
performs well. As Publish/Subscribe keeps all knowledge
locally, devices do not need to communicate to find resources.
This advantage was bought at the price of very high message
load in the Initialization and Grow scenarios. The message
load of the Gnutella-inspired protocol is directly proportional
to the network size for all network sizes tested. We conclude
that the max. hop counter of the tested protocols was too
high and thus never came into effect. There is, however, an
observable advantage of the separate routing layer (SR) as
compared to integrated routing (IR). Thus, the higher initial
effort pays off here. The Central Directory achieves mediocre
results which are slightly better than Random Replication
with 7 = 50%. The measures for Random Replication do not
increase significantly with network size. A value of r = 30%
constantly beats 7 = 50%. On the other hand the randomness
in the protocol makes the Random Replication difficult to
predict.
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Figure 6. Message load measured in the Resource Update scenario

F. Resource Update Scenario

Not only the network topology of an ad-hoc smart space
changes constantly, the resources of devices may also come,
change and go dynamically. We simulated the message load
caused by resource updates in three network topologies
having three different sizes. We conducted one simulation
for adding, updating, and deleting a resource each, resulting
in a total of 29 simulations. To determine the load of the
resource updates without maintenance of support structures,
we subtracted the load of an empty simulation.

The simulated message loads of the Resource Update
scenario, as shown in Figure 6, are directly related on the
degree of replication of the protocols. Request Flooding does
not communicate at all. Publish/Subscribe, which fully repli-
cates the global resource list, produces the highest message
load. The Gnutella-inspired protocols do replicate resource
information, but do not actively update the directories. Instead,
they exploit resource listings contained in messages they
forward for others, thus saving explicit update communication.
The Central Directory protocol keeps a single (or very
few) replications of the global resource list causing some
update load, but considerably less than Publish/Subscribe.
Even though the replication rate of the Random Replication
protocol is relatively high (depending on the parameter r), it
requires comparatively few messages. As expected, r = 30%
caused more update messages than r = 50%.

Figure 6 illustrates the randomness of Random Replication.
The medium-sized network produced more messages than
the large network, as devices happened to chose different
neighbors. Also, the empty test run occasionally caused more
messages than the update tests. This explains the negative
value for r = 30% in the large network.

G. Random Actions Scenario

To gain a more realistic picture of the protocols we
attempted to simulate a real-world scenario by applying
a randomly chosen (but constant) scenario of 30 actions
in a network of 50 devices and different topologies. Fig-
ure 7 shows the resulting message load, with and without
network initialization. Not considering initialization, all
approaches that separate routing perform better: Random
Replication, Gnutella-inspired (SR), and the Central Directory.



Publish/Subscribe produces more messages as it keeps all
replications up to date. Request Flooding and Gnutella-
inspires (IR) produce a lot more messages, as they are based
on a denser network and replicate less. They perform almost
identically, as Gnutella-inspired (IR) is similar to flooding,
if the network is smaller than the max. hop counter.

If we consider the initialization effort, the figures change.
Now, Request Flooding and Gnutella-inspired (IR) perform
best, as they neither require routing nor replicate much.
Gnutella-inspired (SR) and Central Directory follow; they
establish routing, but their replication effort is low. Random
Replication and Publish/Subscribe need significantly more
messages, as their degree of replication is higher.

H. Summary

The results differ considerably depending on the simulated
network size, update and search rate. We observed that
routing structures and replication do not pay off for small
networks. The exponential growth of flooding does not
make much impact for small networks. For medium to large
networks the effect of support structures becomes visible and
clearly helps the respective protocols to scale, as observed
with Random Replication and the Central Directory. Due to
its robustness, we prefer Random Replication for medium
and large ad-hoc smart spaces. Its randomness can make its
performance hard to predict, but it also helps the protocol
cope with changes in the network. The high message load
of Publish/Subscribe in presence of updates shows that full
replication of resource information does not pay off, even
though search is local.

V. CONCLUSIONS AND FUTURE WORK

Ad-hoc smart spaces enable mobile devices to share their
resources and context data with others near them sponta-
neously. This creates a highly dynamic network structure,
which challenges resource discovery. We examined self-
organizing decentralized resource discovery protocols for
Bluetooth-based ad-hoc smart spaces. We pointed out the
particularities of Bluetooth and presented an overall system
architecture for an ad-hoc smart space middleware. We
compared a number of resource discovery protocols with
different strategies towards information replication, scatternet
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routing and information propagation. Our simulations show
that Request Flooding performs best for small network sizes
(< 5 devices), in spite of its exponential growth. In medium to
large networks dedicated routing structures and an increased
degree of replication pays off. The Random Replication
protocol wins here, as its randomness makes it robust to
changes in the network.

Further work is required to determine the ideal degree of
replication r of the Random Replication protocol. Also, we
will experiment with different routing algorithms. Finally,
simple static context data, e.g., weather="sunny”, could
be included in resource advertisements directly, omitting
the need to ask for it explicitly. We will examine such
optimizations in the future.
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