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ABSTRACT

Although a significant amount of research has investigated
the benefits of distributed CEP in terms of scalability and
extensibility, there is an ongoing reluctance in deploying
distributed CEP in an industrial context. In this paper
we present the DHEP system developed together with the
IBM®! laboratory in Béblingen. It addresses some of the
key problems in increasing the acceptance of distributed
CEP, for example supporting interoperability between het-
erogeneous event processing systems. We present the con-
cepts behind the DHEP system and show how those concepts
help to achieve scalable and extensible event processing in
an industrial context. Moreover, we verify in an evaluation
study that the additional cost imposed by the DHEP system
is moderate and ’affordable’ for the benefits provided.
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1. INTRODUCTION

Complex event processing systems have seen a change of
perspective recently. While, orignally, powerful engines and
languages were used in a central way to efficiently correlate
events and detect situations, the emerging increase in event
sources forced the community to investigate into scalable
CEP systems by distributing the handling of events.

However, in reality, CEP is not yet fully exploited and is still
establishing itself within the business world. Distributed
CEP is even one step behind. The reason is that for in-
dustrial event processing, not only performance is impor-
tant. For example, in an e-energy scenario also orthogo-
nal attributes like functionality, expressiveness, reusability
of present knowledge, user friendly interfaces, and flexibility
are essential. These attributes are not present in current
distributed approaches, which focus mostly on an efficient
distributed detection of situations (cf. [3, 17, 10, 21, 13,
12]). Therefore, most users still rely on existing, mature
complex event technology [1] which is capable of providing
the required functionality, at the expense of distribution.
Scalability is typically achieved by providing more powerful
servers hosting the CEP System (cf. [3]). This, however, is
a tremendous disadvantage in scenarios where the applica-
tions requirements vary or are even completely unknown up-
front. When the requirements, for example the event rates,
increase over time, the deployed system’s capabilities will
eventually reach its limits. Also, many scenarios, like mea-
suring current power consumption within a nationwide or
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even continental power grid, are inherently dispersed. A
centralized CEP system handling all the sensor data would
not only cause a huge processing cost, but cause a major
communication overhead alongside.

We believe that in the future, integration of universal, het-
erogeneous CEP technology will be key technology to al-
low flexible CEP systems that are capable of adapting to
user needs (cf. [18]). The reason for this is that many users
rely on different products (because they specialize in some
certain criteria) that are not capable to interact. This lies
mainly in the fact that there does not exist any generally
accepted definition language for complex event processing,
though first steps in this direction have been made (cf. [14]).
This is a major drawback for many applications, since in-
teroperability and communication is mandatory in todays
business world. Business partners are forced to interact,
and with the emerge of event driven architectures this also
affects CEP systems. Hence, commonly used and accepted
communication and event descriptions have to be developed
to enable interoperability.

In this paper we present our event processing system, DHEP,
which focusses on these aspects, such that business processes
can benefit from a distributed processing of events. We in-
troduce a framework that supports the integration of var-
ious established centralized CEP systems in a distributed
environment. The system has been developed and created
in collaboration with the IBM Research and Development
Laboratory Boblingen, where it is currently running. We
will show that DHEP is a highly scalable complex event
processing system, which enables interaction with business
processes and context information. It therefore enables an
efficient approach for distributed CEP in business contexts.

The rest of this paper is structured as follows. In Section
2 we present the challenges for a distributed heterogeneous
CEP system on the basis of our driving e-energy scenario.
After presenting the DHEP framework in Section 3 we will
show some evaluation results in Section 3.2. Finally, we
discuss related work in Section 5 before we conclude the
paper and present future work.

2. CHALLENGES FOR DISTRIBUTED HET-

EROGENEOUS CEP

As already outlined in previous work, there exists a gap be-

tween event processing in academia and the industry (cf. [18]).

When analyzing today’s usage of event processing in large
business applications, it can be observed that almost none
of the distributed CEP approaches proposed in the scientific
literature has made it into industrial applications so far. In-
stead, a wide range of dedicated, centralized CEP systems
are used in various application domains to perform event
correlation tasks. Also, it is interesting that current develop-
ment in these application fields seems to favour investigating
on highly efficient clustering mechanisms (cf. [3]) instead of
distributing the process and moving the CEP functionality
to dispersed locations where it is most efficient.

There are multiple reasons for this tendency. First, these
’distributed but centralized’ approaches are customized to
perform well when massive event loads can be processed in
centralized data centers. Second, especially in business ap-
plications the CEP technology is strongly connected to busi-

ness processes of the company. Thus, in order to perform
the processing of the events, access to context information
related to business processes is needed and such context in-
formation often resides in centralized databases. Third, ex-
ploiting CEP in truly distributed business processes is not
yet understood to a sufficient extent.

Therefore, the DHEP approach is driven by demands and re-
quirements from distributed business processes where event
processing can play an essential role when implementing the
required business functionality. In e-energy scenarios, as
they are emerging nowadays, the efficiency of large power
grids is enhanced by smart meters placed in households
from where they send power consumption events to an en-
ergy agency. A simplified scenario is depicted in Figure 1.
Here, smart meters in the consumers’ households send the
energy requests to substations owned by energy (transmis-
sion) providers. The substations keep track of the currently
requested power within their subnet. If the requested power
exceeds the provided power within the subnet, the substa-
tion requests additional energy from the providers’ mains.
The provider itself may request additional power either from
other providers or from energy producers. On the return
path, the provider sends notifications to the smart meters
about the available energy.
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Figure 1: Simple E-Energy Scenario

The need for extensibility, the inherent distribution of en-
ergy consumers, along with the hierarchical structure of to-
day’s power management (cf. [7, 16]) calls for a distributed
CEP solution which imposes specific challenges like the ones
listed below.

e Communication: The power grid of almost every coun-
try contains a large number of substations that need to
interact according to the (simplified) power consump-
tion forecast scenario described previously. Therefore,
intelligent event emission avoiding unnecessary event



traffic is a must when power consumption shall be fore-
cast reliably in shorter time intervals like once per 15
minutes.

As can be seen in the example, different energy trans-
mission providers, energy consumers and energy pro-
ducers have to interact in a network. Hence, communi-
cation between heterogeneous CEP environments has
to be supported. Events and rules have to be exchange-
able between the different CEP systems running in the
network.

e Heterogeneity: The substations within the power grid
can have different complexity and tasks. While low-
footprint event processing is sufficient in some places,
major substations may require more powerful process-
ing capabilities. Therefore, having different kinds of
event processing engines within the power grid is im-
portant.

e Purposeful deployment: Furthermore, the placement
and deployment of rules is essential for a distributed
CEP system and has special challenges in this kind
of setting. For example, domain restrictions and en-
gine constraints may preclude the placement of rules
on some network nodes.

e Context Modeling: Context information like the struc-
ture of the power grid or the power consumption per
household is important. Hence, a powerful language
for modeling context information is required. In a dis-
tributed system, necessary access to context informa-
tion may be expensive from some places in the net-
work. Therefore, it must be possible that events trans-
port context information and that event processing
rules are able to deal with context information.

By providing solutions to these key aspects, our system is a
first step to deliver the benefits of distributed event process-
ing systems to industrial event processing solutions.

3. APPROACH

The main idea behind the DHEP system architecture is to
enable a distributed event processing without enforcing sys-
tem users to use a new correlation technology. Hence, our
goal is to interconnect existing centralized engines within a
network of correlation nodes that is likely to be widely dis-
persed. As a consequence, we embed these centralized en-
gines within a framework which takes care of all features nec-
essary to build up a distributed processing system, like man-
aging the communication between the nodes or distributing
rules. Moreover, since heterogeneous engines are unable to
interact without some form of event translation, we propose
the concept of a meta-language (cf. [18]). Therefore, DHEP
comes along with a powerful modeling language that allows
the design of distributed applications. The language enables
the use of ontology to design and manage events, rules and
context information within the distributed system. Hence,
we are able to adapt to a very wide range of possible applica-
tions and can use this semantic knowledge to enable efficient
complex event processing. Finally, we provide a configura-
tion tool for the application design. On the one hand, it
is a graphical editor, where the user is modeling and man-
aging the application. On the other hand, it is responsible

for managing the placement and deployment of rules. Fig-
ure 2 gives an overview of our system. We will discuss the,
the meta language, the configuration tool and the runtime
environment, in more detail in the following.
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Figure 2: DHEP System Overview

The DHEP system is very flexible. By integrating more
nodes into the event processing network, the load of each
node can be decreased, making the whole system more ro-
bust to a higher event input. By reducing the number of
nodes, resources can be saved. Therefore, the network con-
figuration can be adapted depending on the desired overall
system behaviour. Additionally, latency can be improved by
several means. First, the system can benefit from placing
latency-relevant rules on nodes with good network connec-
tion. Second, the knowledge about independent rule sets can
be exploited: The independent rule sets may be placed on
different nodes within the network, thus reducing the overall
detection time by using parallel computation.

3.1 The DHEP Meta Language

The DHEP system is based on a meta language for defining
the elements of distributed event-based applications that can
be implemented according to the DHEP approach:

e an object-oriented context-model defining the informa-
tion model underlying an event processing application;

e event type definitions allowing to include complex ob-
jects in events being transmitted within the system;



e event processing rules for standard event correlation,
access to context model information, and invocation of
web services;

e event processing nodes within a network; each event
processing node can be equipped with different event
processing engines;

e deployment descriptions that allow to express which
event processing rule shall be executed on which engine
on which node in the network.

In order to illustrate the language concepts, a simple object
model is required to represent the e-energy example from
Section 2. This simplified object model allows to express
that power consumption can be metered at smart meters
installed at a customer’s house (cf. Listing 1). Customers
have some contract with an energy agency which sell and
bill consumed energy on behalf of energy providers owning
the power plants.

The context modeling part of the DHEP language features
typical object-oriented capabilities which are powerful enough
to represent complex information models like the IEC 61970
standard for modeling power grids as published by the In-
ternational Electrotechnical Commission (cf. [7, 16]). Stan-
dards like this gain more and more importance for the im-
plementation of state-of-the-art industry applications.

object sort NamedObject
attribute name : String;
attribute description : String;

object sort PowerMeter < NamedObject
attribute currentConsumption : Float;
attribute accumulatedConsumption : Float;
attribute parent : SubStation;

object sort SubStation < NamedObject

object sort Customer < NamedObject
attribute myMeter : PowerMeter;

object sort EnergyAgency < NamedObject
relation myCustomers : Customer;

object sort EnergyProvider < NamedObject
attribute sellThrough : EnergyAgency;

Listing 1: Example of Object Definitions

Some typical events that need to be handled include power
consumption at a certain meter or power production infor-
mation provided by a power plant operator (cf. Listing 2).
Event Attributes can be both standard attribute types like
Integer or String and complex attribute types like defined
DHEP object sorts, e.g. a PowerMeter defined in Listing 1.

event sort PowerConsumption
field meter : PowerMeter;
field amount : Float;

event sort PowerForecast
field meter : PowerMeter;
field amount : Float;

event sort Aggregated PowerForecast
field station : SubStation;
field amount : Float;

event sort PowerProduction
field provider : EnergyProvider;
field amount : Float;

Listing 2: Example of Event Definitions

Rules are the foundation of every situation detection. DHEP
Rules (cf. Listing 3) consist of four parts: i) The event pat-
tern (WHEN) specifies the events used in the rule as well
as their relation. ii) The correlation condition (IF) is used
to access and verify certain attribute values of the incoming
events. iii) The restrictions that have to be met when plac-
ing the rule (RESTRICT). iv) The action (EMIT), which
describes the event that will be sent to the network once the
situation is detected. Also, the user specifies how the values
of the result event are set.

Listing 3 shows an aggregation of two smart meter values.
We attach the added amount values of the incoming Pow-
erForecast events to the resulting AggregatedPowerForecast
event.

Our rule language supports typical correlation operators like
SEQ, ALL, OR, and NOT for detecting event patterns.
Together with being able to define time constraints for de-
tecting event patterns and thus situations, we are wellposi-
tioned with respect to expressiveness of our rule language 2.
This holds true in particular as we also support sophisticated
context model access and service invocations via dedicated
rules.

rule AggregateConsumptionForecasts

WHEN SEQ(pcf! : PowerForecast,
pcf2 : PowerForecast)

IF pcfil.meter # pcf2.meter

RESTRICT engine.type = amit

EMIT AggregatedPowerForecast
(station = pcfl.meter.parent
amount = pcfl.amount +

pef2.amount)

Listing 3: Example of a Simple Aggregation Rule

As can be seen in the example, deployment restrictions can
be formulated (cf. Listing 3). These restrictions influence
where a rule can be placed. We currently support two such
restriction types. First, every rule has a rule type classifica-
tion expressing on what type of engine the rule can be pro-
cessed. Upon deployment this will be used to assure that the
rule is only deployed to an engine capable of processing rules
of the respective type. Second, the rules can be annotated
with restrictions on the computational power required on
the machine they shall run on, e.g., attributes like required
CPU speed, memory size or network connection bandwidth.

Finally, the event processing network can be defined by a set
of event processing nodes (see Listing 4), each of which can
be equipped with multiple event processing engines. Fur-
thermore, the user has the possibility to influence the place-
ment by manually deploying rules on specific nodes. How-
ever, this is not necessary as we also provide an automatic
deployment mechanism (cf. Section 3.3).

2Adding more sophisticated correlation operators is no big
effort and not so essential to our approach.



node a correlation node
correlation engine AMiT;

node a context model server
query engine queryFEngine;
deployed rule rule R1;
service invocation engine service Engine;

Listing 4: Example of a Node Model

3.2 The DHEP Runtime Environment

Every node in our network is running the DHEP runtime
environment(RE) which is basically a middleware that en-
capsulates the event processing technology. It abstracts the
network functionality and performs all tasks that are neces-
sary to enable a distributed heterogeneous event processing
system. Figure 3 shows the most important components of
the RE. The dashed path marks the typical event flow we
have to handle in the RE. In the following subsections, we
describe the components as they are used in the event flow.
Also, we discuss the functionality of the Rule Management
and Context Enrichment components.

Correlation Engine(s) /™,
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£ "%' Context

EE Enrichment
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Figure 3: Eventflow in the Runtime Environment

Event Bus

The event bus constitutes the foundation of our system, as
it contains all low-level elements which are needed for dis-
tributing the data, i.e. events, in our system. Since hetero-
geneous systems do also include heterogeneous communca-
tion methods, the communication interface of the RE has to
be designed in a very modular fashion. Thus, all communica-
tion modules implement the same common interface, which
provides the getMessage method to receive events. Mod-
ules are built in a modular fashion making them exchange-
able. This enables the integration of multiple heterogeneous
message systems and communication principles. Currently,
the system supports three modules (see Figure 4): a socket
module, a JMS (Java® Message Service™ [9]) module, and
a message queueing module.

The socket module is based on the well known reactor design
pattern (also known as dispatcher/notifier, cf. [19]) and uses
non-blocking sockets in order to achieve high scalability. A
Selector acts as a demultiplexer to determine which connec-
tions are ready to have operations invoked on them, with-
out blocking the application process. The message queueing

module is responsible for the communication using WebSphere®

MQe. It contains a queue manager which manages the lo-
cal queue and connections to remote queues [15]. The JMS
module enables topic based Publish/Subscribe communica-
tion. Therefore, it requires at least one node running in a
Java EE environment that hosts the topic queues [9]. For
every DHEP event type there exists one topic queue.
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Figure 4: Event Bus & Decoder

Decoder/Encoder

As typical for a model and ontology based system, DHEP
has to retrieve the semantic knowledge of every incoming
event. Therefore, we deserialize every incoming event and
match it against our description model, in order to encapsu-
late the event within an event object. This happens within
the Decoder(see Figure 4). To simplify this process and re-
duce programming overhead in this step, we make use of
Dynamic EMF (Eclipse Modelling Framework, cf. [20]). We
save our events in a Dynamic EMF format and make use of
deserialization methods provided by EMF. Accordingly, the
encoder acts vice versa as a serializer which creates event
messages from DHEP objects. We use a thread pool within
the Decoder component to be able to decode events in par-
allel. This feature is configurable, as the thread pool is only
beneficial if multiple CPUs are installed.

Routing

The routing components receive incoming event objects from
the decoder und forwards them according the routing table.
The table contains not only the information about the next
hop of each event sort in the network, but also about the
local engines which are meant to process the event at the
node. Hence, the event bus distributes every incoming event
accordingly, sending it towards one (or more) of the local
engines or other nodes in the network.

Wrapper

The framework architecture has the ability to integrate dif-
ferent existing CEP engines even within the same network.
Currently, we support two CEP engines, namely AMiT (IBM
Active Middleware Technology™) and JRules (IBM Web-
Sphere ILOG JRules™), as well as a query engine for event
context enrichment and a service engine for web service in-
vocation. The wrapper component is responsible for the
integration of the different engines. It acts primarily as the
adapter between the routing component and an event pro-
cessing unit, i.e. engine, on the node. A wrapper is required
for every different engine, because its main task is to trans-
late from the meta-language into the language of the target
engine. Due to a very modular design, a wrapper is in fact



an adapter not only to engines but to any unit that can
process and act with events. A new wrapper just has to
implement the provided wrapper interface.

We use the wrapper concept also for configuring our sys-
tem. Therefore, we implemented a configuration wrapper,
that receives all system relevant information via configura-
tion events which are distributed via the event bus. The
configuration events contain for example routing informa-
tion and rule placements. The configuration wrapper takes
care of the proper settings of the routing table and moves
rules to their correct target engines (according to the place-
ment algorithm).

Rule Management

The Rule Management is responsible for the distribution,
migration and deployment of rules in our system. It is
strongly coupled with the configuration events, since it uses
these events to manage the deployment of rules. Rule man-
agement offers interfaces to move rules to other nodes as well
as to deploy them on a local event processing engine which
is connected via one of the wrappers. This deployment pro-
cess is currently handled by the configuration tool (see Sec-
tion 3.3). However, we are working on more sophisticated
re-organization and optimization mechanisms performed by
the rule management component in a distributed manner
and tackle the constraints and optimization criteria of our
heterogeneous environments.

Similar to the wrappers, the deployment of rules to en-
gines requires a translation process, because rule descrip-
tions made with the DHEP meta language are not under-
stood by the various CEP engines directly. As a result, rule
translators are attached to the Rule Management. The ef-
fort in creating translators is rather small and worthwhile,
as we require about 20 lines of code per operator translation.

Event Context Enrichment

In distributed scenarios, access to context information is
not always possible or might be very expensive, although it
might be needed in the CEP. As a result, context enrichment
and transport becomes necessary. Especially in business
applications, context information is important since many
business decisions can not be made solely by information
contained in the events, but require additional information
applying to the events. For example, events from a smart
meter are very simple and small, they contain an identifier
of the customer as well as some value representing the re-
quested energy amount. However, this information is most
likely not sufficient for the energy provider which requires
additional data about the users contract. This information
is typically located at the data center, where all business
processes are running. It needs to be added to either events
or the event processing system in order to use it within the
complex event processing, hence allowing to make correct
decisions.

In contrast to centralized approaches, distributed CEP sys-
tems did not concern the access to external information so
far. The DHEP system however, is providing this feature.
For accessing context information in our system, we make
use of the modular, heterogeneous architecture by providing
a query engine, which is capable of enriching events with
context retrieved from external sources, such as a database.
The configuration of the query engines is done via query

: Event C 7C
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Figure 5: Enrichment of Smart Meter Events

rules which are also specified in the DHEP language. The
transport of context is ensured since all specified objects can
be serialized and deserialized within the encoder/decoder.
To reduce the expected cost produced by the database ac-
cess, we implemented a configurable caching mechanism.

3.3 Configuration Tool

The configuration tool is the meeting point of the DHEP
meta language and the actual CEP network, where the user
models, deploys and interacts with the application. From
the users perspective, the tool is primarily a graphical mod-
elling editor (see Figure 6). However, the main functionality
lies in the deployment mechanisms initiated and coordinated
by the tool. Therefore, the Configuration Tool communi-
cates with the Rule Management component of the frame-
work, using configuration events.
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Figure 6: Excerpt of the Graphical Editor

3.3.1 Placement in Heterogeneous Networks
Basically, our system is designed to be capable of integrat-
ing any placement and optimization algorithm, as the de-
ployment is handled separatly via the configuration tool and
events. Also, the Rule Management component described in
Section 3.2 provides interfaces to integrate distributed place-
ment algorithms.

However, the placement of rules in a heterogeneous network
is not trivial as many constraints have to be fulfilled. As we
have presented in Section 3.1, our rules may have restric-
tions: A rule may not be placed on some nodes, because
its restrictions do not match the nodes attributes. Further-
more, every rule causes a resource usage on the node where
it is placed. This might result in an invalid placement of

a rule not because of a constraint violation, but an exceed-
ing resource usage. As a result of these two properties the
deployment algorithms have to ensure, that a placement is
valid iff both the constraints and the resource requirements
of the placed rule are met by the node.



A difficulty arises in heterogeneous systems, as the resource
usage of rules is different on the nodes. This is caused by
differing resources on the nodes, as well as differing engines,
which might require different costs. Basically, every placed
rule produces a load which is based on the following pa-
rameters: the rule itself (when processing an event), the
event rate, the event stream. The latter is important, as
depending on the incoming events, the rule might trigger a
situation, i.e. a result event, or not.

Figure 3 shows a typical event flow within our system. As
can be seen, 7 components are passed, after an event has
been received, each contributing to the resource usage: i)
Decoder, ii) Routing, iii) Translation, iv) CEP, v) (Back-
)Translation, vi) Routing, vii) Encoder.

Hence we can calculate the total resource usage of every
event for rule e, on node n as the sum of the resource con-
sumption of every used component c¢;. We use the required
processing latency of each component as the cost in our func-
tion.

C(er,n) = Zcost(ci) (1)

This function is in fact a lower bound calculation, as the
components v) to vii) are only used if the CEP engine pro-
duces a result, and therefore require no resource consump-
tion at all in many cases. However, with this lower bound
calculation, we can give a pessimistic forecast, of how many
events can be handled by a node. Since Equation 1 deter-
mines the required CPU time of one event, we can calculate
a rule’s maximum resource consumption Chaz (Equation 2)
for a given event rate A and give a lower bound for the max-
imum event throughput Amaz (Equation 3):

Crnaa(r,n) = Ax Cler,m) (2)

1
Amaw - C(er,n)

®3)
3.3.2  Correlation Cost Analysis

As a result from our placement conditions and cost approxi-
mations, knowledge about the resource requirements of rules
is mandatory. In DHEP, we face two major system parts
producing this cost: The framework (i.e. the runtime envi-
ronment), and the correlation engines. The framework cost
is not dependent on the rule itself, but on the event rate
coming along with the rule, we will tackle this in the eval-
uation of our framework (Section 4). However, this is not
true for the correlation cost. Here, rule types and rule char-
acteristics have a major influence on the cost.

To understand the engines behavior and resource consump-
tion, benchmarks on the processing cost are necessary which
are collected exemplary for the IBM AMiT™engine (see
Figure 7). For the benchmarks, the processing time (la-
tency) between the input of an event to the engine’s inter-
face and the eventual output of a result event was measured.

Figure 7(a) shows the latency of different basic rule types:
Filter rules, logical rules and temporal rules(like a sequence).
The results show that the cost increases with the rule’s com-
plexity. The second benchmark shows the impact of specific
event streams on the processing time of rules (see Figure
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Figure 7: Correlation Rule Cost Evaluations

7(b)). This is affecting sequential rules, as they are produc-
ing new rule instances. For example, an event stream A" B
produces an instance for every incoming event A, while wait-
ing for the matching event B that triggers the rule pattern
A; B — C. The benchmark shows, that the increase is ap-
proximately quadratic. The reason is that every event has
to the go through all n previously created rule instances un-
til a new instance is created. This effect causes quadratic
runtime for the event stream A" B.

Figure 7(c) shows the impact of event attributes. As can
be seen, the rule’s latency increases logarithmic with the
number of accessed event attributes. Finally, Figure 7(d)
shows the impact of multiple rules that are affected by an
event. As can be seen, the latency increases linearly, which
shows that the engine processes every rule after the other.
However, the cost increase is not an accumulation of the in-
dividual rule costs, but the engines scheduling mechansism
creates an overhead for every additional rule.

4. EVALUATION

The evaluation of the DHEP framework was driven by two
guiding questions:

(1) What is the systems’s behavior and overhead?

(2) When is the framework applicable?

4.1 Framework Cost Analysis

In order to understand our system’s behavior, as well as
calculate the benefits of a distributed deployment, we first
evaluated how the different components that are used in the
standard event flow contribute to the total processing cost
of events. The flow was described in Section 2 and shown in
Figure 3. In the flow, each event is typically processed in 7
intervals, after it has been received: i) Decoder, ii) Routing,
iii) Translation, iv) CEP, v) (Back-)Translation, vi) Routing,
vii) Encoder

As can be seen, the intervals 1-3 correspond the incoming
events, while intervals 5-7 correspond to outgoing events.
Furthermore, interval 4 is independent of our framework and
has to be measured seperately. An exemplary benchmark for
one engine is presented in Section 3.3.2.



We deployed a small evaluation network: an event source,
the processing node, and an event sink. The processing node
was a Windows PC running a single core CPUQ2.0GHz.
IBM’s AMiT™engine was connected via a wrapper to the
DHEP Runtime Environment. The event source was sim-
ulating a smart meter sending powerrequest events conti-
nously. In order to receive consistent, repeatable results,
only one filter rule was deployed on the engine, filtering for
an id, and thus always resolving to true for every event sent.
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For the evaluation, we had a very low event rate of 1 even-
t/sec to ensure that there is only one event within the frame-
work at every time. Figure 8 depicts the first results we
gained. Several results are remarkable: First, the correlation
(i.e. the filtering) has the highest processing cost. Second,
the wrapper concept proves to be reasonable since transla-
tion of events is pretty fast compared to other tasks. Third,
deserialization requires a lot of processing cost. In fact, the
cost for retrieving and generating a DHEP object for an in-
coming event is almost as high as the filtering process of the
engine. We conclude from this fact, that the EMF’s serial-
ization methods we use are not as efficient as we hoped and
leave room for optimizations.
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As a second evaluation, we varied the events produced from
our event source in their size. We did this by adding addi-
tional attribute value pairs in the same settings. The results
of our second framework cost evaluation is shown in Figure
9. As can be seen, with an increasing size of the events, here
the number of event attributes, the framework cost increases
too. The reason for this can be found in the additional over-
head that is caused during the (de)serialization and transla-

tion of the event within the wrapper component. However,
it can be seen that the cost increase is rather small and lin-
ear: About 1.5% increase for each additional attribute of
the ingoing and the outgoing events. The only exception is
the low cost of an attribute-less event, which is based on the
fact that both (de)serialization and translation do not ac-
cess the attribute list of the event at all. However, an event
without any attribute is rather unusal in complex event pro-
cessing scenarios. Therefore this effect only has a minimum
influence.
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Figure 10: Event Context Enrichment Cost

4.2 Event Enrichment via Query Engine

In our next evaluation we tackled the access of context and
enrichment of events with the retrieved information. This
has been done with the query engine we briefly introduced
in section 3.2. For the measurements, we used our basic
network setup, and added a mySQL database to the pro-
cessing node. We then created a rule, that should retrieve
some integer value from the database and add it to the in-
put event. The results of our processing cost measurements
are depicted in Figure 10. As can be seen context access
produces a massive overhead to the system. The costs for
accessing a database and querying for a value and adding
the value to an event are about ten times higher than filter-
ing for an attribute.

The expense of event enrichment can be reduced by enabling
the caching mechanism as it is described in Section 2. As
can be seen in the results, this can be a great benefit for ap-
plications, where the same attribute is retrieved for a large
number of events. Furthermore, when caching comes into
consideration, other factors like cache size and freshness of
data shold have a major influence on the cache behavior.
Also, a type specific caching can further improve the caching
mechanisms. However, these parameters are mostly appli-
cation dependent and require further investigation.

4.3 Advantages of a Distributed Deployment
Based on the previous evaluations (cf. Section 3.3.2 and
4.1), we are able to understand how different attributes are
influencing the processing latency of our system. As has
been shown, the systems overall processing cost is caused by
both the framework and the used CEP engine. Furthermore,
we can state, that the framework costs are almost constant,
whereas the cost for processing an event in a CEP engine
are dependent on the used engine and the deployed rule
set. In our last evaluations, we want to show the scalability
of DHEP: by adding nodes to the network we are able to
process an increasing event load.



We tested our framework with a simple deployment of our e-
energy scenario which is depicted in Figure 11: Smart meters
calculate the current energy consumption of a household and
send periodically consumption events to the energy provider.
The energy provider first checks, whether the power con-
sumption exceeds a predefined threshold. This is done with
a simple filter rule. Afterwards, the exceeding consumption
events are aggregated (cf. rule definition in Section 3.1).
We chose this simple scenario because of three reasons: i)
The deployed rules are the most basic rules one can get for a
CEP engine. Therefore, we expect the correlation process to
be very fast. This favors the CEP engine, and stresses our
framework, because a high event throughput can be reached
by the correlation process. ii) By setting the filter values we
can adapt the event rates that are used within aggregation
rule. iii) With a low number of rules, the centralized deploy-
ment is in clear favor, because there is not much space for
splitting and distributing the rule set.
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Figure 11: The two different deployment scenarios

We deployed our rule set on a centralized CEP engine, and
compared the results with a decentralized deployment of the
rule set, as it is depicted in Figure 11. The results of the
evaluation are shown in Figure 12. As can be seen, we de-
ployed the scenario with three different filter settings, where
we changed the restrictiveness of the filters. Moreover, we
used the evaluation to verify our approximation functions
presented in Section 3.3.1 (cf. the lighter bars in Figure 12).
We approximated the values for the various component costs
from our evaluation results presented before.

The results show three main conclusions: First, the more re-
strictive the filters are, the more events can be processed in
both settings. This is self-evident, as less events are reaching
the aggregation rule, hence producing less cost. Second, our
lower bound approximations are pretty close to the actual
values we got from our evaluations. Third, we benefit from a
distributed deployment of rules although we deployed a sce-
nario that is likely to favor a centralized one. Furthermore,
the benefit increases, as the filters get more restrictive. The
reason is, that the aggregation rule slows the system and is
the bottleneck in a deployment wher no events are filtered
out (0% Filter). In more realistic scenarios, where the events
are filtered out, the aggregation receives less events. Hence,
the benefit in distributing rules increases.

As can be seen, although our system produces additional
costs, the advantage in distributing rules over multiple nodes
becomes apparent even in very simple scenarios. The advan-
tage gets even more obvious, when bigger and more realistic
business scenarios are deployed or when additional sources
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have to be processed by the CEP system. The increase of
CEP costs might exceed the available processing power and
network bandwith of centralized CEP systems. With our
framework, we can easily extend our setup by adding addi-
tional processing nodes to reduce both processing cost and
network bandwith usage of the CEP system.

S. RELATED WORK

Since we combine in DHEP the expressiveness and power
of mature CEP systems running on large servers, typically
used nowadays, with the ideas of distributed CEP systems,
a look in both directions is necessary.

While initial research focused on expressive languages and
efficient centralized situation detection mechanisms (cf. [1, 6,
8]), academia has shifted its main focus on distributed CEP.
Multiple approaches have been designed recently (cf. [10,
12, 13, 17, 11]). Especially with the increasing popularity
of Publish/Subscribe systems (cf. [22, 4]), event processing
has become a highly distributed technology. CEP scales
well in these systems, since it can benefit from the Publish/-
Subscribe paradigm by subscribing to specific happenings of
interest, which can extended to support complex events. A
CEP engine attached to the Publish/Subscribe system takes
care of the detection of complex events. Furthermore, the
possibility to detect complex events on any node in the sys-
tem opens a lot of optimization possibility, such as moving
functionality closer to the source in order to reduce the over-
all network usage.

While we can learn from these approaches in terms of effi-
cient network usage and rule migration, they lack the special
industrial requirements we have defined in Section 2. They
consider homogeneous engines for their migration and de-
ployment techniques. Furthermore, they do not integrate
context information of applications. Finally, distribution
techniques do not seem to be mature enough to be deployed
in business applications. They take only static node re-
sources into account, but ignore important aspects for busi-
ness application, such as dynamic load, additional restric-
tions for the processing of rules, security aspects, and the
proximity to context data sources that are necessary for rule
processing.

Attempts to interconnect heterogeneous components within
a common distributed platform can be found in the con-
text of service oriented architectures in form of the SCA
or JBI specifications (cf. Service Component Architecture
[2], Java Business Integration [23]). Similar as in DHEP,
different services can interact and communicate with each
other based on a common communication bus. Adapters



are used to translate between the internal languages of the
services and the communication language. However, the fo-
cus in these systems is to interconnect existing functionality
encapsulated in service instead of distributing application
parts among various configurable nodes.

First steps towards increasing the performance of CEP sys-
tems by combining heterogeneous correlation technology has
been made by Chakravarthy et al.[5]. They manually com-
bine a classical event processing engine and a stream pro-
cessing engine in order to achieve an efficient situation de-
tection.

Most closely to our goal in maintaining the scalability of
mature correlation technology is the work of Biger et al.[3].
They integrate several centralized CEP systems into a dis-
tributed correlation network without modifying the system
itself. In addition to connecting input and output of indi-
vidual powerful correlation nodes and deciding which cor-
relation tasks to perform at which node, the configuration
and deployment of each correlation machine becomes a main
issue. However, the approach has several characteristics con-
tradicting our goal. First, the network setup as well as the
CEP configuration has to be tailored towards the target ap-
plication beforehand. Second, the intention of stratification
is to achieve a maximum throughput by splitting a specific
set of rules and pipelining it through multiples stratas. It is
not intended for inherently distributed applications like the
e-energy scenario.

6. CONCLUSION

In this paper we presented the complex event processing sys-
tem DHEP, which has been designed and created to close
the gap between current CEP systems and business require-
ments. The concepts behind DHEP focused on providing a
very modular architecture, that comprises various different
event processing engines, and enables communication among
them within a distributed system. Moreover, DHEP comes
along with a powerful object oriented definition language,
that enables efficient, tool-aided designing of big industrial
CEP applications. The evaluation results show that, al-
though the functionality provided by DHEP imposes addi-
tional cost, the system scales well by exploiting distributed
detection of situations.

Our future work will include experiments with larger sce-
narios, where we will integrate multiple heterogeneous cor-
relation engines, such that DHEP users can benefit from
using many diverse systems. Furthermore, we will design
and practically evaluate a variety of placement algorithms
in large scale scenarios.
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