
Providing basic security mechanisms in broker-less
publish/subscribe systems

Muhammad Adnan Tariq, Boris Koldehofe, Ala’ Altaweel, Kurt Rothermel
University of Stuttgart

first name.last name@ipvs.uni-stuttgart.de

ABSTRACT
The provisioning of basic security mechanisms such as au-
thentication and confidentiality is highly challenging in a
content-based publish/subscribe system. Authentication of
publishers and subscribers is difficult to achieve due to the
loose coupling of publishers and subscribers. Similarly, con-
fidentiality of events and subscriptions conflicts with content-
based routing. In particular, content-based approaches in
broker-less environments do not address confidentiality at
all. This paper presents a novel approach to provide confi-
dentiality and authentication in a broker-less content-based
publish-subscribe system. The authentication of publishers
and subscribers as well as confidentiality of events is ensured,
by adapting the pairing-based cryptography mechanisms, to
the needs of a publish/subscribe system. Furthermore, an
algorithm to cluster subscribers according to their subscrip-
tions preserves a weak notion of subscription confidentiality.
Our approach provides fine grained key management and the
cost for encryption, decryption and routing is in the order
of subscribed attributes. Moreover, the simulation results
verify that supporting security is affordable with respect to
the cost for overlay construction and event dissemination
latencies, thus preserving scalability of the system.

Keywords
Publish/subscribe, P2P, Security

1. INTRODUCTION
The publish/subscribe communication paradigm has

gained high popularity because of its inherent decoupling
of publishers from subscribers in terms of time, space and
synchronization. Publishers inject information into the pub-
lish/subscribe system, and subscribers specify the events of
interest by means of subscriptions. Published events are
routed to their relevant subscribers, without the publishers
knowing the relevant set of subscribers, or vice versa. This
decoupling is traditionally ensured by intermediate routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12 -15, 2010, Cambridge, UK.
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

over a broker network (e.g. [6, 9]). In more recent sys-
tems, publishers and subscribers organize themselves in a
broker-less routing infrastructure, forming an event forward-
ing overlay (e.g. [7, 1]).

Content-based publish/subscribe is the variant which pro-
vides the most expressive subscription model, where sub-
scriptions define restrictions on the message content. Its
expressiveness and asynchronous nature is particularly use-
ful for large-scale distributed applications with high-volume
data streams. Examples of such stream-based applications
include news distribution, stock exchange, environmental
monitoring, traffic control, and public sensing. Not surpris-
ingly, publish/subscribe needs to provide supportive mech-
anisms to fulfill the basic security demands of these appli-
cations such as access control and confidentiality.

Access control in the context of publish/subscribe sys-
tem means that only authenticated publishers are allowed
to disseminate events in the network and only those events
are delivered to authorized subscribers. Similarly, the con-
tent of events should not be exposed to the routing infras-
tructure and a subscriber should receive all relevant events
without revealing its subscription to the system. These se-
curity issues are not trivial to solve in a content-based pub-
lish/subscribe system and pose new challenges. For instance,
end-to-end authentication using a public key infrastructure
(PKI) conflicts with the loose coupling between publishers
and subscribers. Publishers must maintain the public keys
of the interested subscribers in order to encrypt events. Sub-
scribers on the other hand, must know the public keys of all
the relevant publishers in order to verify the authenticity
of the received events. Similarly, traditional mechanisms
to provide confidentiality by encrypting the whole event
message conflicts with the content-based routing paradigm.
Therefore, new mechanisms are needed to route encrypted
events to subscribers without knowing their subscriptions
and to allows subscribers and publishers authenticate each
other without knowing each other.

In the past, most research has focused on providing ex-
pressive and scalable publish/subscribe systems. So far lit-
tle attention has been given to security issues. Existing ap-
proaches towards secure publish/subscribe systems mostly
rely on the presence of a traditional static broker network [17,
21]. These either address security under restricted expres-
siveness by providing security for topic-based publish/sub-
scribe [21] or rely on a dedicated network of trusted bro-
kers that are in charge to provide content-based matching
and routing [16, 14]. Furthermore, existing approaches use
coarse grain epoch-based key management and cannot pro-

© ACM, [2010]. This is the author's version of the work. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive

version was published in proceedings of 4th International Conference on

Distributed Event Based Systems (DEBS'10), pages 38-49, Cambridge, United Kingdom,

July 2010.

http://doi.acm.org/10.1145/1827418.1827425

vide fine grain access control in a scalable manner [21, 17,
22]. Nevertheless, security in broker-less publish/subscribe
systems, where the subscribers are clustered according to
their subscriptions have not been discussed yet in literature.

In this paper, we present a new approach to provide au-
thentication and confidentiality in a broker-less publish/sub-
scribe system. Our approach allows subscribers to maintain
credentials according to their subscriptions. Private keys as-
signed to the subscribers are labelled with the credentials.
A publisher associates each encrypted event with a set of
credentials. We adapted identity based encryption mecha-
nisms [2, 10], i) to ensure that a particular subscriber can
decrypt an event only if there is match between the creden-
tials associated with the event and the key and, ii) to allow
subscribers to verify the authenticity of received events. Fur-
thermore, we address the issue of subscription confidential-
ity in the presence of semantic clustering of subscribers. A
weaker notion of subscription confidentiality is defined and a
secure connection protocol is designed to preserve the weak
subscription confidentiality. Finally, the evaluations demon-
strate the viability of the proposed security mechanisms.

2. SYSTEM MODEL

2.1 Content-based publish/subscribe
For the routing of events from publishers to the relevant

subscribers we use the content-based data model. The event
space, denoted by Ω, is composed of a global ordered set of
d distinct attributes (Ai): Ω = {A1, A2, . . . , Ad}. Each at-
tribute Ai is characterized by a unique name, its data type
and its domain. The data type can be any ordered type
such as integer, floating point and character strings. The do-
main describes the range [Li, Ui] of possible attribute values.
A subscription filter f is a conjunction of predicates, i.e.,
f = {Pred1 ∧ Pred2... ∧ Predj}. Pred i is defined as a tuple
(Ai, Opi, vi), where Opi denotes an operator and vi a value.
The operator Opi typically includes equality and range op-
erations for numeric attributes and prefix/suffix operations
for strings. An event consists of attributes and associated
values. An event is matched against a subscription f (and
subsequently delivered to the subscriber), if and only if the
value of attributes in the event satisfies the corresponding
constraints imposed by the subscription. The subscription
containment relationship can be defined similar to Siena [6].
Let Ef1 and Ef2 denote the sets of events matching subscrip-
tion f1 and f2, respectively. Then f1 is said to be covered
by another subscription f2, if Ef1 ⊆ Ef2 holds.

We consider publish/subscribe in a setting where there
exits no dedicated broker infrastructure. Publishers and
subscriber contribute as peers to the maintenance of an
self-organizing overlay structure. Peers can join the over-
lay by contacting an arbitrary peer and thereafter subscribe
and publish events. In order to authenticate publishers we
use the concept of advertisements in which a publisher an-
nounces beforehand the set of events which it intends to
publish.

2.2 Attacker model
Our attacker model is similar to that defined by Event-

Guard [21]. There are two entities in the system: publish-
ers and subscribers. Both the entities are computationally
bounded and do not trust each other. Authorized publishers
only disseminate valid events in the system. However, ma-

Bob
Encrypts with
bob@ipvs.de

2

Receives
Private Key

for bob@ipvs.de
3

Bob decrypts with
Private Key

4
Alice

bob@ipvs.deb

Key Server
• Master private key
• Master public key

1

Figure 1: Identity-based encryption [18]

licious publishers may masquerade the authorized publish-
ers and spam the overlay network with fake and duplicate
messages. We do not intend to solve the digital copyright
problem, therefore authorized subscribers do not reveal the
content of successfully decrypted events to other subscribers.
Malicious subscribers on the other hand are curious to dis-
cover the subscriptions of other subscribers and published
events to which they are not authorized to subscribe. Fur-
thermore, passive attackers outside the publish/subscribe
overlay network can eavesdrop the communication and try
to discover content of events and subscriptions.

Finally, we assume presence of a secure channel for the
distribution of keys from the key server to the publishers
and subscribers. The secure channel can be easily realized
by using transport layer security mechanisms such as SSL.
No other requirement is placed on the underlying network
infrastructure regarding confidentiality, authenticity or in-
tegrity of exchanged data.

2.3 Security goals and requirements
There are three major goals for the proposed secure pub-

lish/subscribe system, namely to support authentication,
confidentiality and scalability:

Authentication: In order to avoid non-eligible publications
only authorized publishers should be able to publish events
in the system. Similarly, subscribers should only receive
those messages to which they are authorized to subscribe.

Confidentiality: In a broker-less environment, two aspects
of confidentiality are of interest: i) the events are only visi-
ble to authorized subscribers and are protected from illegal
modifications, ii) the subscriptions of subscribers are confi-
dential and unforgeable.

Scalability: The secure publish/subscribe system should
scale with the number of subscribers in the system. Three
aspects are important to preserve scalability: i) the number
of keys to be managed and the cost of subscription should
be independent of the number of subscribers in the system,
ii) the key server and subscriber should maintain small and
constant numbers of keys per subscription, iii) the overhead
because of re-keying should be minimized without compro-
mising the fine grained access control.

A side objective to above goals is to increase the availabil-
ity of the system by mitigating the effects of event flooding
and selective event drop based denial of service (DoS) at-
tacks.

2.4 Drawbacks of traditional security mecha-
nisms

Authentication using existing public key encryption mech-

anisms such as PKI allow a party to encrypt data to a par-
ticular user. Senders and receivers are strongly coupled, i.e.
before a sender can encrypt a message, the receiver must
generate a public/private key pair, sign its public key by a
certificate authority and communicate it to the sender. Fur-
thermore, PKI is inefficient for a large number of subscribers
as each event needs to be encrypted with each subscriber’s
individual public key. Therefore, a mechanism is needed to
enables any pair of users to securely communicate and verify
each other’s signatures without the need to exchange private
or public keys.

It is very hard to provide subscription confidentiality in a
broker-less publish/subscribe system, where the subscribers
are arranged in an overlay network according to the con-
tainment relationship between their subscriptions. In this
case, regardless of the cryptographic primitives used, the
maximum level of attainable confidentiality is very limited.
The limitation arises from the fact that a parent can de-
crypt every event it forwarded to its children. Therefore,
mechanisms are needed to provide a weaker notion of confi-
dentiality.

2.5 Identity-based encryption
While a traditional PKI infrastructure requires to main-

tain for each identity a private/public key pair which has to
be known between communicating entities to encrypt and
decrypt messages, Identity-based encryption [19, 3] provides
a promising alternative to reduce the amount of keys to be
managed.

In identity-based encryption (IBE), any valid string which
uniquely identifies a user can be the public key of the user.
A key server maintains a single pair of public and private
master keys. The master public key can be used by the
sender to encrypt and send the messages to a user with any
identity, e.g. an email address. To successfully decrypt the
message, a receiver needs to obtain a private key for its
identity from the key server. Figure 1 shows the basic idea
of using identity-based encryption.

We want to stress here that although identity-based en-
cryption at the first glance, appears like a highly centralized
solution, its properties are ideal for highly distributed appli-
cations. A sender needs to know only a single master public
key in order to communicate with any identity. Similarly,
a receiver only obtains private keys for its own identities.
Furthermore, an instance of central key server can be eas-
ily replicated within the network. The replicas can function
independently without having to interact with each other.
This enables key servers to be created on demand for load
balancing and reliability. Finally, a key server maintains
only a single pair of master keys and therefore, can be re-
alized as a smart card, provided to each participant of the
system. It is interesting to note that in case of replicated key
servers, changing master key pair requires one secure trans-
fer to each replica and therefore, the cost is in order of the
number of replicas. Smart cards on the other hand should
be physically replaced. However their use is still practical as
the master key pair is usually secure and is seldom changed.

Although identity-based encryption has been proposed
some time ago, only recently pairing-based cryptography has
laid the foundation of practical implementation of identity-
based encryption. The main idea behind pairing-based cryp-
tography is to establish a mapping between two crypto-
graphic groups. This allows the new cryptographic schemes

Publisher

Pub/Sub�network�

Key�Server

Private�Key�for:
(CredA || S�||..) Subscription�=�CredA

Cipehertexts generated�by�encrypting�
event�with�the�public�keys�of�all�
credentials�whose�subscribers�should�
receive�the�event.
(CredA || S�||..)
(CredB || S�||..)
(CredAB || S�||..)
Sign�with�private�key�for�(CredAB || P�||..)

Private�Key�for:
(CredAB || P�||..)

Advertisement=� CredAB

Verify�signature�
using�public�Key�
which�corresponds�
to�the�publisher�
credentials:
(CredAB || P�||..)

S1

S3

S6

S2

S4 S5

Event�=��A,B

Figure 2: Approach overview: Publisher has creden-
tials to publish events with two attributes A and B,
Subscriber S6 has credentials to receive events with
attribute A

based on the reduction of one problem in one group to a
different usually easier problem in another group. The map-
ping between cryptographic groups is achieved by means
of bilinear maps, a technique we also apply subsequently
for establishing the basic security mechanisms in the pub-
lish/subscribe system and therefore introduce here the main
properties.

Let G1 and G2 be cyclic group of order p, where q is some
large prime. A bilinear map is a function e : G1x G1 → G2

that associates a pair of elements from G1 to elements in
G2. A bilinear map satisfies the following conditions:

1. Bilinearity: e(ux, vy) = e(uy, vx) = e(u, v)xy, for all
u, v ∈ G1 and x, y ∈ Zp.

2. Non-degeneracy: e(u, v) �= 1, for all u, v ∈ G1.

3. Computability: e can be efficiently computed.

3. APPROACH OVERVIEW
For providing security mechanisms in publish/subscribe

we rely on the methods of identity-based encryption and
adapt it in order to support many-to-many interactions be-
tween subscribers and publishers. Publishers and subscribers
interact with a key server by providing credentials to the key
server. In turn they receive keys which fit the expressed ca-
pabilities in the credentials and thus can subsequently be
used to decrypt and sign relevant messages in the content-
based publish/subscribe system. In this case we say the
credential is authorized by the key server.

Consequently, a credential consists of two parts: first a
binary string which describes the capability of a peer in
publishing and receiving events, and second a proof of its
identity. The latter is used for authentication against the
key server and verification whether the capabilities match
the identity of the peer. While this can happen in a vari-
ety of ways, e.g. relying on challenge response, hardware
support, etc., we pay attention mainly at expressing the ca-
pabilities of a credential, i.e. how subscribers and publishers
can create a credential. This process needs to account for

the many possibilities to partition the set of events expressed
by an advertisement or subscription and exploit overlaps in
subscriptions and publications. Subsequently, we use the
term credential only for referring to the capability string of
a credential.

The keys assigned to publishers and subscribers, and the
ciphertexts are labelled with credentials. In particular, the
identity-based encryption ensures, that a particular key can
decrypt a particular ciphertext only if there is a match be-
tween the credentials of the ciphertext and the key. Pub-
lishers and subscribers maintain separate private keys for
each authorized credential. Since we rely on the identity-
based encryption paradigm, the key server in our system
only maintains one master key pair and therefore also pro-
vides the same advantages in terms of achieving a good dis-
tributiveness as discussed in Section 2.5.

The public keys are generated by a string concatenation
of an credential, an epoch for key revocation, a symbol
∈ {S, P} distinguishing publishers from subscribers, and
some additional parameters described in Section 5. The
public keys can be easily generated by any peer without
contacting the key server or other peers in the system. Sim-
ilarly encryption of events and their verification using public
keys do not require any interaction.

Due to the loose coupling between publishers and sub-
scribers, a publisher does not know the set of relevant sub-
scribers in the system. Therefore, a published event is en-
crypted with the public key of all possible credentials, which
authorizes a subscriber to successfully decrypt the event.
The ciphertexts of the encrypted event are then signed with
the private key of the publisher as shown in Figure 2.

The overlay network is maintained according to the con-
tainment relationship between the subscriptions. Subscribers
with coarser subscriptions are placed near the root and for-
ward events to subscribers with less coarser subscriptions. A
subscriber attempts to decrypt the received ciphertexts us-
ing its private keys and verify the authenticity of the event.
If successful, the ciphertexts of the event is forwarded to the
parent as well as children. Otherwise, the ciphertexts are
dropped.

To maintain such a topology each subscriber should know
the subscription of its parent and child peers. When a new
subscriber arrives, it sends the connection request along with
its subscription to a random peer in the overlay network.
The connection request is forwarded by possibly many peers
in the overlay network before it reaches the right peer to con-
nect. Each forwarding peer matches the subscription in the
request with the subscription of its parent and child peers
to decide the forwarding direction. Maintaining a relation-
ship between subscriptions clearly contradicts subscription
confidentiality. Therefore, we show the approach to ensure
a weaker notion of subscription confidentiality in Section 6.

This section has introduced only the main steps in estab-
lishing security. The subsequent sections discuss i) how to
create credentials systematically to support scalability , ii)
how keys are generated and how publications are encrypted,
decrypted and verified, iii) how the publish/subscribe over-
lay is maintained and a weak notion of subscription confi-
dentiality is preserved.

4. CREATION OF CREDENTIALS
For the description of the mechanisms behind the creation

of credentials, we will first propose a systematic way of de-

composing the event space for a content-based subscription
model. Later we show how subscriptions and advertisements
are mapped to the subspaces of the event space and creden-
tials are created. Further extensions like considering string
attributes and complex subscriptions are discussed subse-
quently.

4.1 Event Space decomposition for numeric at-
tributes

At first we introduce a systematic decomposition of the
event space by focusing on numeric attributes. Later we will
discuss also how other types of attributes can be supported.

The event space, composed of d distinct numeric attributes
can be geometrically modelled as a d-dimensional space such
that each attribute represents a dimension in the space.
Subscriptions and advertisements are represented by hyper-
rectangles in the space, whereas published events represent
points.

With the spatial indexing approach, the event space is hi-
erarchically decomposed into regular subspaces, which serve
as enclosing approximation for the subscriptions and adver-
tisements. The decomposition procedure divides the domain
of one dimension after the other and recursively starts over
in the created subspaces. Figure 3 visualizes the advanc-
ing decomposition with the aid of a binary tree. Each tree
level represents one step of the recursive process, starting
with the root where the event space is still undivided. The
first partition of the event space is created by dividing along
the first dimension and creates two sub-spaces. In one sub-
space, the domain of the first dimension is [L1, X1] and in
the other sub-space, it is (X1, U1]. The break line X of a do-
main always equals L+U

2
so that the sub-spaces cover equally

sized domains of the divided dimension. After j steps, the
event space is divided into 2j sub-spaces, which equals the
number of nodes at level j in the binary tree. The number
of leaf nodes in the binary tree is equal to

∏d
i=1 Ti, where

Ti = Ui−Li
Granularity(i)

and Granularity(i) defines the smallest

addressable value of the attribute Ai.
Sub-spaces can be identified by dz-expressions. A dz-

expression is a bit string of ”0”s and ”1”s. A subspace rep-
resented by dz-expression dz1 is covered by the sub-space
represented by dz2, iff dz2 is a prefix of dz1.

4.2 Mapping to credentials
Subscription or advertisement of a peer can be composed

of several subspaces. A credential is assigned for each of
the mapped subspace. For instance, in Figure 3, f2 is
mapped to two subspaces and therefore posses two creden-
tials {000, 010}.

An event can be approximated by the smallest (finest
granularity) subspace that encloses the point represented by
it. To deliver the encrypted event a ciphertext must be gen-
erated for each subspace that encloses the event so that the
peer whose subscription mapped to any of these subspaces
should be able to successfully decrypt the event. An event
dze matches (is enclosed in) a subspace dzs if dze is covered
by dzs. In general, the number of subspaces matched by an
event dze is in the order of log2(

∏d
i=1 Ti) and is equal to

|dze|+1. For example, an event 0010 is matched by the five
subspaces 0010, 001, 00, 0 and ε.

For an event space with a large set of numeric attributes,
the number of mapped subspaces and therefore credential
for a subscription can be very large. This effects the scala-

�

d1=�humidity
d 2
=T
em

p
L2�=0

0 100
0

100

0 1

0 100
0

100

01

00 10

11

50

X1�=50

0
0

100

010

50

50

000

011

001 100 101

110 111

25 75

01

000

010

f1 ={�humidity�=�[0,50],�
Temp=�[50,100]�}

f2 ={�humidity�=�[0,25],�
Temp=�[0,100]�}

d1=�humidity

d1=�humidity d1=�humidity
d 2
=T
em

p

d 2
=T
em

p

d 2
=T
em

p

�

0 1

11100100

000

Decomposition�Binary�Tree

SubscriptionsHierarchical�decomposition�of�Event�Space

100

U1�=100L1 =0

U2=100

X2=
50

Level�=�0

Level�=�1

Level�=�2

Level�=�3

Figure 3: Numeric Attribute

�

s i

sesp

spa

a

an

sea see and

am

Prefix�Tree

f1 ={�name�prefix�s�}

f2 ={�name�prefix��an}

Subscriptions

Figure 4: Prefix matching

bility of the system in terms of space required to store the
keys, computational cost at the key server and communica-
tion cost between key server and the peers. There are three
possibilities to mitigate this problem. The first possibility
is to allow a coarsening of individual subscriptions by map-
ping to a smaller set of bigger subspaces. For example, f2

in Figure 3 can be coarsened by mapping it to the sub-space
0. The coarsened subspace encloses more events and there-
fore a peer can decrypt more events than authorized by the
original subscription. The second possibility is to reduce the
granularity of each attribute but it effects the expressiveness
of all the subscriptions. For example, if the finest address-
able value of a numeric attribute is 8 then range such as
[1, 5] is not possible.

A third and better possibility to reduce the number of cre-
dentials is to decompose the domain of each attribute into
subspaces separately. The spatial indexing procedure is the
same as above, however, in this case a separate decomposi-
tion tree is built for each attribute. Each peer receives cre-
dentials separately for each attribute in its subscription. The
number of credentials maintained for each subscription or
advertisement are bounded by

∑d
i=1 log2(Ti). Similarly, the

number of subspaces matched by an event are
∑d

i=1 log2(Ti).
In our system, we used the third approach.

4.3 String attributes
The above spatial indexing technique can work with any

ordered data type with a known domain. String attributes
usually have a maximum number of characters. This allows
them to have known bounds. They can be linearised by
hashing or other linearisation mechanisms and thus can also
be indexed [13].

Credential for more expressive string operations such as
prefix matching can be generated using a trie. A trie is
an ordered data structure for storing strings in a way that
allows fast string lookup and prefix matching. Each node in
the trie is labelled with a string, which serves as a common
prefix to all its descendants as shown in Figure 4. Each
peer is assigned a single credential, which is the same as its
subscription or advertisement. Events correspond to the leaf
nodes of the trie. To deliver an encrypted event a ciphertext
must be generated with the label of each node in the path
from the leaf to the root of the trie, so that a peer whose
subscription matches any of the labels should be able to
successfully decrypt the event. In general the number of

nodes on the path from the leaf to the root of the trie are
equal to L, where L is the length of the label assigned to leaf
node. Similar mechanism can be used to generate credentials
for suffix matching.

4.4 Complex subscriptions
For a complex subscription with predicates on different

attributes, a subscriber receives separate credentials and
thus keys for each attribute. Using these keys, a subscriber
should be able to successfully decrypt any event with the cor-
responding attributes, if he is authorized to read the values
associated with the attributes. Any cryptographic primitive
can be easily used for this purpose. For example, similar
to PSGuard [22], the keys for individual attributes can be
XORed together and hashed to get the actual key for de-
crypting the event.

In a content-based publish/subscribe system, a subscrip-
tion defines a conjunction on predicates. An event matches
a subscription if and only if all of the predicates in the
subscription are satisfied. To ensure event confidentiality,
a subscriber must not be able to successfully decrypt any
event which matches only parts of its subscriptions. How-
ever, assigning keys for individual attributes and XOR based
decryption does not prevent this behaviour. For example,
consider a subscriber with two subscriptions f1 = {Area =
[10, 20]∧ location = Stuttgart} and f2 = {Area = [40, 80]∧
location = London}. If the credentials and therefore keys
are assigned for individual attributes then the subscriber
can also decrypt the events matching the subscriptions f3 =
{Area = [10, 20] ∧ location = London} and f4 = {Area =
[40, 80] ∧ location = Stuttgart}. Although he is not autho-
rized to read events matching subscriptions f3 and f4. To
properly ensure event confidentiality, all the keys associated
with a subscription should be bound together, so that keys
associated with different subscriptions should not be com-
bined together.

5. METHODS FOR SECURITY
In this section we will describe the construction of secu-

rity mechanisms to achieve authentication of publishers and
subscribers as well as confidentiality of events.

One naive solution would be to directly use the techniques
from PKI by assigning public/private key pair to each cre-
dential. Publishers and subscribers can contact key server to
obtain the public/private key pairs that corresponds to their

credentials. However, PKI does not provide a mechanism to
bound together the public/private key pairs associated with
the same subscription (cf. Section 4.4) and therefore, cannot
be used.

The security mechanisms described in this section are
adapted from attribute-based encryption schemes [2, 10].
In particular, our modifications, i) allow publishers to sign
and encrypt events at the same time by using the idea of
identity-based signcryption [25], ii) include some additional
ciphertexts that increase the efficiency of the system and,
iii) allow subscribers to verify the signatures associated with
all the attributes simultaneously. Our modifications do not
change the basic structure of the schemes and therefore pre-
serves the same security strength.

5.1 Security parameters and initialization
Let G1 and G2 denote the bilinear groups of prime or-

der p i.e. |G1| = |G2| = p, e : G1x G1 → G2 denote an
admissible bilinear map, g denote a generator in G1, and
H1 : {0, 1}∗ → {0, 1}nu , H2 : {0, 1}∗ → {0, 1}nm denote
collusion resistant cryptographic hash functions.

The initialization algorithm i) chooses α ∈ Zp, ii) com-
putes g1 = gα, iii) chooses g2, u

′, m′ ∈ G1, iv) selects vectors
�u = (ui), �m = (mi) of length nu and nm with every element
chosen uniformly at random from G1. The Master Public
Key is composed of (e, g, g1, g2, u

′, m′, �u, �m). This master
public key is known to every peer in the system and is used
for encryption (cf. Section 5.4, Encryption) and signature
verification (cf. Section 5.5, Verification). The Master Pri-
vate key is gα

2 , and is only known to the key server.

5.2 Key generation for publishers
Before starting to publish events, a publisher contacts the

key server along with the credentials for each attribute in
its advertisement. If the publisher is allowed to publish
events according to its credentials, the key server will gen-
erate separate private keys for each credential. Let Credi,j

denote the credential with label j for the attribute Ai, e.g
Credlocation,00 denotes credential 00 of attribute location.

Public key: The public key of a publisher p for credential
Credi,j is generated as

Pup
i,j := (Credi,j || Ai || P || Epoch).

Private keys: The key server will generate the corre-
sponding private keys as follows:

For each credential Credi,j and a publisher p, let vp =
H1(Pup

i,j) be a bit string of length nu and let vp[k] denote
the kth bit. Let Γi,j ⊆ {1, 2,, nu} be the set of all k for
which vp[k] = 1. Choose ri,j ∈ Zp at random and compute:

Prp
i,j := (gα

2 (u′
∏

k∈Γi,j

uk)ri,j , gri,j) =: (Prp
i,j [1], P rp

i,j [2])

5.3 Key generation for subscribers
Similarly, to receive events matching its subscription, a

subscriber should contact the key server and receives the pri-
vate keys for the credentials associated with each attribute
Ai.

Public key: In case of subscribers, the public key for a
credential Credi,j is given as

Pus
i,j := (Credi,j || Ai || S || Epoch).

A different symbol S is used to differentiate the keys used for
the verification of valid events from the ones used to provide
event confidentiality.

Private keys: The private keys are generated as follows:
The key server chooses rs ∈ Zp at random. The same

rs is used for all credentials associated with a subscription.
For each credential Credi,j it calculates Γi,j similar to the
publisher’s case (cf. Section 5.2). Chooses ri,j ∈ Zp and
computes:

Prs
i,j := (grs

2 (u′
∏

k∈Γi,j

uk)ri,j , gri,j) =: (Prs
i,j [1], P rs

i,j [2])

Furthermore, a credential independent key Prs[3] = grs+α
2

is generated. Later we will see that rs along with Prs[3] is
needed to bind the keys of a subscription together.

5.4 Publishing events

Encryption. When a publisher wants to publish an event
M , it chooses qi ∈ Zp at random for each attribute Ai of the

event, such that q =
∑d

i=1 qi. These random values ensure
that only the subscribers who have matching credentials for
each of the attributes should be able to decrypt the event.
Furthermore, it generates a fixed length random key SK.

To encrypt an event, a publisher uses master public key
and performs the following steps:

Step1: Compute:

C1 = e(g1, g2)
qSK and C2 = AES(M, Pup

i,j)
SK

The cost of asymmetric encryption generally increases with
the size of the plaintext. Therefore, only a fixed length ran-
dom key SK is encrypted using the private keys of publisher.
The actual event message M is encrypted with a symmetric
encryption algorithm such as AES, using the key SK.

The ciphertext C2 also includes the public keys of the
credentials which authorizes the publisher to send the event.
The inclusion of these public keys increases the efficiency
of signature verification process at the expense of a small
increase in the ciphertext size (one public key per attribute).

Additionally, a subscriber does not know about the cre-
dentials with which the ciphertext is encrypted and cannot
tell in advance whether he is authorized to read the message.
Therefore, to enable the subscribers to detect the successful
decryption of events, either the event should be appended
with a predefined number of zeros (M ||0∗) or a hash of the
event (H2(M)) should be included in the ciphertext.

Step2: For each attribute Ai, compute Ci = gqi and

C
′
i = e(g1, g2)

qi(Ai||0∗), where 0∗ represents a predefined

length of zeros. The ciphertext C
′
i is used for the routing of

encrypted events as discussed in section 7.
Step3: For each attribute, a ciphertext should be send for

each credential that matches its value. For example, in case
of a numeric attribute with value mapped to 0000, a cipher-
text should be disseminated for the credentials 0000,000,00
and 0.

For each credential Credi,j that matches the value of the
attribute Ai, compute Ci,j = (u′

∏
k∈Γi,j

uk)qi , where Γi,j

is calculated as described above.
The ciphertexts are ordered according to the containment

relationship (in descending order) between their associated
credentials, e.g. for the above example the order is [Ci,0,
Ci,00, Ci,000, Ci,0000].

Table 1: Cost of security mechanisms

Public Private Ciphertext Encryption Decryption Sign Verification

parameters keys Size cost cost cost cost

Numeric O(1) O(
∑d

i=1 log2 Ti) O(
∑d

i=1 log2 Ti) O(
∑d

i=1 log2 Ti) O(d) O(d) O(d)
Prefix O(1) O(d.L) O(d.L) O(d.L) O(d) O(d) O(d)

Signature. Finally, the publisher signs the ciphertexts us-
ing its private keys. It computes vm = H2(M) a bit string
of length nm. Let vm[k] denote the kth bit and Γm ⊆
{1, 2,, nm} be the set of all k for which vm[k] = 1. For
each attribute, the credential Credi,j which authorizes the
publisher to send the corresponding attribute value, we com-
pute:

Csign
i,j [1] := Prp

i,j [1](m′ ∏

k∈Γm

mk)qi and Csign
i,j [2] := Prp

i,j [2]

The credentials Credi,j are same to those included in C2.

5.5 Receiving events

Decryption. On receiving the ciphertexts, a subscriber tries
to decrypt them using its private keys. The ciphertexts for
each attribute are strictly ordered according to the contain-
ment relation between their associated credentials, there-
fore a subscriber only tries to decrypt the ciphertext whose
position coincides with the position of its credential in the
containment hierarchy of corresponding attribute. The po-
sition of a credential can be easily determined by calculating
its length. For example, for a numeric attribute, credential
0000 occupies 4th position in the containment hierarchy i.e.
after 0,00 and 000. Subscribers decrypt the ciphertext in
the following manner.

Step1: Compute ∀Ai ∈ Ω : Di,t, where t is the credential
assigned to the subscriber for the attribute Ai.

1

Di,t :=
e(Prs

i,t[1], Ci)

e(Prs
i,t[2], Ci,t)

= e(g2, g)rs.qi

Step2: Compute D
′
:=

∏d
i=1 Di,t = e(g2, g)rs.q

Step3: Remove rs from D
′
to recover the actual message.

D
′′

:=
e(

∏d
i=1 gqi , P rs[3])

D′ = e(g1, g2)
q

Each subscription requires a different random value rs. If

keys from different subscriptions are combined together D
′

cannot be computed correctly in Step 2 and thus rs cannot
be cancelled out in step 3, preventing the decryption of the
event.

Step4: Since C = e(g1, g2)
qSK, a simple division will

give the key SK i.e. e(g1,g2)qSK
e(g1,g2)q → SK. The key SK is then

used to decrypt the actual event message M . The successful
decryption of message is detected by looking for predefined
number of zeros appending the message or comparing the
message hashes.

1A subscriber might have many credential for a single at-
tribute, e.g. log2(Ti) in the worst case for a numeric at-
tribute. Our overlay topology maintenance and event dis-
semination mechanisms (Section 6) ensures that subscriber
knows the exact credential needed to decrypt the event.

Verification. A subscriber will only accepts the message if
it is from an authorized publisher. To check the authentic-
ity of an event, subscribers use the master public key and
performs the following steps:

Step1: Compute: VL := e(
∏d

i=1 Csign
i,j [1], g), where∏d

i=1 Csign
i,j [1] represents the product of all received Csign

i,j [1]
ciphertexts.

Step2: Compute: VR1 :=
∏d

i=1 e(g1, g2)
Step3: Compute:
VR2 := e(

∏
(u′

∏
k∈Γi,j

uk),
∏d

i=1 Csign
i,j [2]),

where
∏

(u′
∏

k∈Γi,j
uk) represents the product of all Pup

i,j

in C2 and
∏d

i=1 Csign
i,j [2] is the product of all received

Csign
i,j [2] ciphertexts.

Step4: Compute: VR3 := e(m′∏
k∈Γm

mk,
∏d

i=1 Ci).
The received event is authentic if the following identity

holds: VL = VR1 × VR2 × VR3

Remember the ciphertext C2 contains the public keys of
the credentials which authorize the publisher to send the
event. If no such public keys are included in C2, then the
subscriber should try to authenticate the event by check-
ing for all possible credentials which a publisher might hold
to publish the event. For example, an event with a single
numeric attribute and a value mapped to 0000 can be pub-
lished by the publisher with credentials 0000,000,00 or 0. In
this case our approach is as follows: a subscriber checks the
authenticity of the event for each attribute Ai separately2,
by verifying that for one of the possible credentials Credi,j

the following identity holds:

e(Csign
i,j [1], g) =

e(g1, g2) e(u′
∏

k∈Γi,j
uk, Csign

i,j [2]) e(m′∏
k∈Γm

mk, Ci)

In this case the total verification cost is
∑d

i=1 log2(Ti).
Table 1 shows the worst case costs of our security mecha-

nisms for numeric and string attributes.

5.6 Rekeying
When a subscriber arrives or leaves the system, the keys of

all the subscribers with the corresponding credentials should
be changed in order to provide forward and backward se-
crecy. Changing the keys for each incoming or outgoing
subscriber impacts the scalability of the systems in terms of
communication overhead and load on the key server. There-
fore, our approach is to use periodic rekeying by dividing
the system time into epochs.

The length of the epoch is directly related to the overhead
incurred due to rekeying. Big length epochs are used because
they require less frequent rekeying, however, they can only
provide coarse grain access control. Our approach enables
fine grain access control within big length epochs by the ad-

2Combined verification, as mentioned above, in this case will
result in (log2(Ti))

d and thus is not feasible.

Working�day

08�� 12 12�– 16

08�10 10�12 12�14 14�16

Figure 5: Fine grain key management within epoch

dition of a time attribute in the system. The time attribute
specifies credentials of peers to receive or send the events at
finer granularity within each epoch. For example, in Figure 5
the epoch length of one working day is hierarchically divided
into smaller times slots. Only the peers with the credentials
of a time slot can receive or send the event in that time
slot. The time attribute is treated like any other attribute in
the system. Each encrypted event contains the ciphertexts
for each credential which authorizes a subscriber to receive
events in the current time slot. Similarly, for successful de-
cryption of an event, a subscriber should use the private
key that corresponds to required time credential. The con-
struction of our security mechanisms guarantee that events
cannot be retrieved without having required time keys. Fur-
thermore, the time keys from different subscriptions cannot
be combined to retrieve unauthorized events.

Of course, the flexibility of having fine grain access comes
at the cost of managing more keys and communicating more
ciphertexts. However, the overhead is small compared to the
granularity of access, e.g. access control at the granularity
of a second for an epoch of one month, requires a subscriber
or a publisher to maintain 22 decryption keys in the worst
case and each encrypted event contains 24 more ciphertexts.

Each subscriber or publisher contacts the key server at
the end of the epoch and receives the private keys for the
new epoch. It is interesting to note that in case of smart
cards, private keys are generated locally, without incurring
any communication overhead. Otherwise, the overhead for
regenerating private keys and securely communicating them
to respective publishers or subscribers will be shared be-
tween the replicas of key server.

6. SUBSCRIPTION CONFIDENTIALITY
In this section, we address subscription confidentiality in a

broker-less publish/subscribe system, where publishers and
subscribers are responsible for maintaining the overlay net-
work and forwarding events to relevant subscribers. First,
we describe the maintenance of the publish/subscribe over-
lay network. Later we define a weaker notion of subscription
confidentiality and detail the mechanisms behind.

6.1 Publish/Subscribe Overlay
The publish/subscriber overlay is a virtual forest of logical

trees, where each tree is associated with an attribute (cf.
Figure 6). A subscriber joins the trees corresponding to the
attributes of its subscription. Similarly, a publisher sends
an event on all the trees associated with the attributes in
the event.

Within each attribute tree, subscribers are connected ac-
cording to the containment relationship between their cre-
dentials associated with the attribute. The subscribers with
coarser credentials (e.g. the ones mapped to coarser sub-
spaces in case of numeric attributes) are placed near the

Sn

S4 S2

S3 S5

S1

S2 S1

S3 S4

S5

0010

001

0

01

001
01

010

0 01

0

S3000

011

Tree�of�Attribute�A1 Tree�of�Attribute�A2

Figure 6: Publish/Subscriber system with two nu-
meric attributes

root of the tree and forward events to subscribers with finer
credentials. A subscriber with more than one credentials
can be handled by running multiple virtual peers on a single
physical node, each virtual peer maintaining its own set of
tree links. For example in Figure 6, the subscriber s3 has
two credentials {000, 010} and is connect to two places in
the tree.

In order to connect to an attribute tree, a newly arriv-
ing subscriber sn sends the connection request along with
its credential to a random peer sr in the tree. The peer sr

compares the request credential with its own; if the peer’s
credential covers the request credential and the peer can ac-
commodate more children, it accepts the connection. Other-
wise, the connection request is forwarded to all the children
with covering credentials and the parent peer with excep-
tion of the peer, from which it was received. In this way the
connection request is forwarded by many peers in the tree
before it reaches the suitable peer with covering credential
and available connection. Figure 6 shows the path followed
by a request from a subscriber sn until it reaches the desired
parent subscriber.

The drawback of maintaining separate trees for each at-
tribute is that the subscribers also receive events that match
only a part of their subscription (false positives). However,
it cannot effect event confidentiality because false positives
cannot be decrypted without having required credentials for
each attribute.

6.2 Weak subscription confidentiality
It is infeasible to provide strong subscription confidential-

ity in a broker-less publish/subscribe system because the
maintenance of the overlay topology requires each peer to
know the subscription of its parent as well as its children.
To address this issue, a weaker notion of subscription confi-
dentiality is required.

Definition 6.1. Let s1 and s2 denote two subscribers in
a publish/subscribe system which both possess credentials for
an attribute Ai. Weak subscription confidentiality ensures
that at most the following information can be inferred about
the credentials of the subscribers:

1. The credential of s1 is either coarser or equal to the
credentials of s2.

2. The credential of s1 is either finer or equal to the cre-
dentials of s2.

3. The credential of s1 and s2 are not in any containment
relationship.

Definition 6.1. is consistent with the subscription secu-
rity model used for broker-based publish/subscribe systems
in the literature, Content-based approaches rely on the con-
tainment relationship between subscriptions, which man-
dates that even a broker should know if two subscriptions
are related [17].

6.3 Secure connection protocol
In the following, we propose a secure connection protocol,

which maintains the desired overlay topology without vio-
lating the weak subscription confidentiality. For simplicity
and without loss of generality, here we discuss the secure
connection protocol with respect to a single tree associated
with a numeric attribute Ai and each of the subscribers owns
a single credential.

The secure protocol is based on the idea that in the tree
subscribers are always connected according to the contain-
ment relationship between their credentials, e.g. a sub-
scriber with credential 00 can only connect to the subscribers
with credentials 0 or 00.

A new subscriber s encrypts secret words3 with the public
keys Pus

i,j for all credentials that cover its own credential
e.g. a subscriber with credential 00 will generate ciphertexts
by applying the public keys Pus

i,0 and Pus
i,00. The gener-

ated ciphertexts are added to a connection request (CR) and
the request is forwarded to a random peer in the tree. A
connection is established if the peer can decrypt any of the
ciphertexts using its private keys.

Filling the security gaps: By looking at the number of
ciphertexts in the connection request the peer could detect
the credential of the requesting subscriber s. For exam-
ple, a subscriber with credential 00 can only connect to 0
or 00 and therefore, a connection request will have two ci-
phertexts, whereas the the connection request for 000 will
have three ciphertexts. In the worst case, a subscriber has a
credential of the finest granularity. This can be covered by
log2(Ti) other credentials and therefore a connection request
contains in the worst case that many ciphertexts. To avoid
any information leak, ciphertexts in the connection request
are always kept in O(log2 Ti) (O(L) for prefix matching)
by adding random ciphertexts if needed. Furthermore, the
ciphertexts are shuffled to avoid any information leak from
their order.

A different secret word is used for the generation of each
ciphertext to avoid any information leak to the peer which
has successfully decrypted one of the ciphertexts and thus
has recovered the secret word. Otherwise, the peer can try
to generate ciphertexts by encrypting the secret word with
public keys for O(log2 Ti) credentials and can easily deter-
mine the random ciphertexts in the connection request and
thus the credentials of the requesting subscriber s. Finally,
to avoid an attacker to generate arbitrary connection re-
quest messages and try to discover the credential of other
peers in the system, the connection request is signed by the
key server. This step needs to be performed only once, when
a newly arriving subscriber authorizes itself to the key server
in order to receive private keys for its credentials.

Overall algorithm: The secure connection protocol is
shown in Algorithm 1. In the algorithm, the procedure
decrypt request tries to decrypt one of the ciphertexts in
the connection request message.

3A secret word can be a sequence of random bits

Algorithm 1 Secure connection protocol at peer sq

1: upon event Receive(CR of snew from sp) do
2: if decrypt request(CR) == SUCCESS then
3: if degree(sq) == available then // can have child peers
4: connect to the snew

5: else
6: forward CR to {child peers and parent} − sp

7: if decrypt request(CR) == FAIL then
8: if sp == parent then
9: Try to swap by sending its own CR to the snew.
10: else
11: forward to parent

A child peer sq receives CR (of subscriber snew) from the
parent sp only if the parent cannot accommodate more chil-
dren. If sq cannot be the parent of snew, i.e., snew’s cre-
dential is coarser than that of sq, then it tries to swap its
position with snew by sending its own connection request
(cf. Algorithm 1, lines 7-9). However, if none of the chil-
dren of parent sp can connect or swap with snew, then there
is no containment relationship between the credentials of the
children and snew. In this case a parent should disconnect
one of its children in order to ensure the new subscriber is
connected to the tree.

6.4 Discussion
For an attribute Ai, let S� be the set of peers in the sys-

tem whose credentials covers the credential of the subscriber
s1. Let S� denote the set of subscribers whose credentials
are covered by the credential of the subscriber s1 and S⊀

denote the set of subscribers whose credentials have no con-
tainment relation with the credential of the subscriber s1.
The secure connection protocol for the maintenance of the
tree associated with the attribute Ai leaks the following in-
formation:

1. Any peer s
′ ∈ S� can infer that the credential of s1 is

either finer or equal to its own credential.

2. Any peer s
′′ ∈ S� can infer that the credential of s1 is

either coarser or equal to its own credential.

3. Any peer s
′′′ ∈ S⊀ can infer that credential of s1 are

not in any containment relationship with its own cre-
dential.

In general, confidentiality decreases with the decrease in

granularity of the credential of s
′

i.e. s
′

with the creden-
tial of finest granularity can determine the subscription of
peer s1 with certainty. Similarly, confidentiality decreases

with the increase in granularity of the credential of s
′′

i.e.

s
′′

with the most coarse credential can exactly determine

the subscription of s1. For example, if s
′′

has subscribed
to the whole domain of the attribute and the secure con-
nection protocol allows it to connect to s1, then s1 has also
subscribed for the whole domain.

7. SECURE EVENT DISSEMINATION
The secure connection protocol ensures that the creden-

tial of a parent peer covers the credentials of its children.
Therefore, a parent peer can decrypt every event, which it
forwards to the children. Regardless of the cryptographic
primitives, a parent can eventually discover the credentials

of its child peers e.g. by maintaining histories. In our ap-
proach we used one hop flooding to avoid this problem.

In one hop flooding, a parent assumes that the children
have the same credentials as its own and forwards each suc-
cessfully decrypted event to all of them. In turn the children
forward each event which was successfully decrypted to all
of their children and so on. In this strategy, a child may
have finer credentials then its parent and may receives false
positives.

The detailed mechanism works as follows: To publish an
event, a publisher forwards the ciphertexts of each attribute
to a randomly selected subscriber on the corresponding at-
tribute tree. All the ciphertexts of an event are labelled with
a unique value such as sequence number of the event. This
helps subscribers to identify all the ciphertexts of an event(
as ciphertexts for each attribute are received on the separate
tree).

On receiving a ciphertext associated with attribute Ai,
the subscriber checks whether it can recover the Ai||0∗ from

C
′
i by using the private key of the credential Credi,t asso-

ciated with the connection from which the ciphertexts are
received.The following steps are performed:

Step1: Compute Di,t =
e(Prs

i,t[1],Ci)

e(Prs
i,t[2],Ci,t)

= e(g2, g)rs.qi

Step2: Remove rs: D
′′

= e(gqi ,Prs[3])
Di,t

= e(g1, g2)
qi

Step3: Recover plaintext:
C

′
i

e(g1,g2)qi → Ai||0∗
The successful recovery of Ai||0∗ means that the creden-

tial of the subscriber matches one of the credentials in the ci-
phertext and therefore, the ciphertexts should be forwarded
to all children and the parent. However, in case of failure,
the ciphertexts are only forwarded to the parent (unless the
event is received from the parent).

Once the ciphertexts of the all the attributes in the event
are received, the subscriber will try to decrypt the whole
event and verify its authenticity.

8. EVALUATIONS
Similar to EventGuard [21], we evaluated our solution

in two aspects: i) quantifying the overhead of our crypto-
graphic primitives, and ii) evaluating the performance of our
secure publish/subscribe system by benchmarking it with an
unsecured system.

8.1 Performance of cryptographic primitives
In this section, we measure the computational overhead

of our security mechanisms. The security mechanisms
are implemented by Pairing-Based Cryptography (PBC) li-
brary [12]. The implementation uses a 160-bit elliptic curve
group based on the supersingular curve y2 = x3 + x over
a 512-bit finite field. All of our measurements were made
on a 2.00 GHz Intel Centrino Duo with 2GB RAM, running
Ubuntu 9. Table 2 shows the amount of time needed for
cryptographic primitives to perform encryption, decryption,
signature and verification. All reporting values are averaged
over 1000 measurements. The message size is kept 128 bytes
as this key length is good enough for most symmetric en-
cryption algorithms.4 Table 3 shows the overhead from the
perspective of publishers and subscribers in our system. In

4In our system pairing based encryption is used to encrypt a
random key SK, which is later used to decrypt actual event
using symmetric encryption.

Table 2: Throughput of cryptographic primitives

Encryption(E) 10KB/s

Decryption(D) 10KB/s

Signature(S) 158 sign/s

Verification(V) 52 verify/s

Table 3: Computation times (in msec) from the per-
spective of publishers and subscribers

TimeE 6.86174 + d ∗ 5.42426

TimeS d ∗ 6.31925

TimeD 6.1522 + d ∗ 6.10192

TimeV 19.30517 + d ∗ 0.001

general, the cost of verification is high due to the fact that it
involves the computationally expensive pairing operations.

8.2 Performance of publish/subscribe system
We evaluated the performance of our system according to

the following criteria: i) overlay construction time, ii) event
dissemination latencies and iv) resilience of the system to
the event flooding based DoS attacks.

Experimental Setup: Simulations are performed using
PeerSim [11]. Simulations are performed for upto n = 2, 048
peers. The out-degree constraints of the peers are always
chosen as log(n). The latencies for the links between the
peers varies from 24ms to 134ms.

The event space has upto d = 16 different attributes. The
data type of each attribute is Integer, and the domain of
each attribute is the range [1, 16]. We evaluated the system
performance under uniform subscription and advertisement
workloads; and with a uniform event distribution.

Publish/subscribe overlay construction. We measured
the average latency experienced by each subscriber to con-
nect to a suitable position in an attribute tree. Latency
is measured from the time subscriber sends connection re-
quest message to a random peer in the tree till the time the
connection is actually established. The evaluations are per-
formed only for a single attribute tree. Figure 7(a) shows
that the average connection latency increases with the num-
ber of peers in the system because of the increase in the
height of the attribute tree (each new hop increases the net-
work latency as well as time to apply security mechanisms).
However the corresponding increase in latency is small due
to the fact that the overall out-degree also increases with
the number of peers, resulting in only a small increase in the
height of tree. Furthermore, Figure 7(a) shows that there is
an almost constant overhead of approximately 250-300 ms
due to security mechanisms. Our evaluations with higher
number of attributes indicate that the average connection
latency experienced by a subscriber is independent to the
number of attributes. The reason being that each attribute
tree is created in parallel and a subscriber sends connection
request to connect multiple attribute trees at the same time.

Event dissemination. We measured the average time
needed by the event to be disseminated to all the relevant

 1000

 800

 600

 400

 200

 0

 2
04

8

 1
02

4

 5
12

 2
56

 1
28

A
ve

ra
ge

 C
on

ne
ct

io
n

La
te

nc
y

(M
s)

Of Subscribers
 (a)

Subscribers Connection Latency

Secure System
Un-Secure System

 1100
 1000
 900
 800
 700
 600
 500
 400
 300

 2
04

8

 1
02

4

 5
12

 2
56

 1
28A
ve

ra
ge

 E
ve

nt
s

D
is

se
m

in
at

io
n

 L
at

en
cy

 (M
s)

Of Subscribers
 (b)

Events Dissemination Latency

Secure System
Un-Secure System

 100

 90

 80

 70

 60

 50
 50 40 30 20 10 0

%
 o

f S
av

ed
 S

ub
sc

rib
er

s
 B

y
O

ur
 S

ol
ut

io
n

% Of Malicious Subscribers
 (c)

% Of Saved Subscribers against DoS Attack

Figure 7: Performance of publish subscribe system

subscribers in the system. For each subscriber the time is
measured from the dissemination of the event by the pub-
lisher till it is successfully decrypted and verified by the sub-
scriber. For the experiment, 160 publishers are introduced
in the system and each published 10 events. Figure 7(b)
shows that average time to disseminate an event increases
with the number of peers in the system because of the in-
crease in number of the relevant subscribers as well as the
height of the dissemination tree. Similar to previous results
there is an almost constant overhead of approximately 200-
250 ms due to security mechanisms. Furthermore, the stan-
dard deviation is less than figure 7(a) because the number
of subscribers who should receive each published event are
approximately same due to uniform subscription workload.

Resilience against event flooding based DoS attacks.
In a flooding based DoS attack, a malicious peer encrypts
the fake events using public keys of the credentials matching
those events, but does not own the private keys to sign the
fake events. The fake events are disseminated to randomly
selected peers in the network. Our secure event dissemi-
nation mechanism can easily reduce the effects of these at-
tacks by checking the authenticity of ciphertexts received on
an attribute tree, before forwarding them to child peers or
parent i.e. if a subscriber successfully recovers Ai||0m from

C
′
i , it should verify the signatures of the publisher for the

attribute Ai before forwarding the ciphertexts. We made
small changes in the security mechanisms of section 5 to
achieve the goal. In particular, we modified the generation
of Csign

i,j [1], such that vm = H2(Ai||0∗) so that each sub-
scriber who have credentials to recover Ai||0∗ can verify the
signatures without any need to decrypt the whole event5.

In case of unsecured system fake events are delivered to
all relevant subscribers, whereas using our approach a fake
event is detected by the first subscriber who is authorized
to receive the events encrypted with corresponding creden-
tials. In worst case a fake event (forwarded to a peer not
authorized to receive the event) will go to the root of the
attribute tree before being detected as fake. Figure 7(c)
shows the percentage of subscribers saved from receiving

5Similarly, the effect of replay attacks can also be reduced
by adding publisher signed time stamps.

fake events by our approach as compared to the unsecured
system for different percentages of malicious subscribers in
the system. It is evident from the figure that even in the
presence of 50% malicious subscribers approximately 75% of
subscribers are saved from receiving fake messages as com-
pared to unsecured solution. Further experiments show that
the percentage of save subscribers are not much dependent
on the number of malicious peers in the system and stay
approximately in the range of 80 − 70%

9. RELATED WORK
Over the last decade many content-based pub-

lish/subscribe systems [6, 9, 1, 5, 23] have evolved.
Most systems focus on increased scalability of the system
by reducing the cost of subscription forwarding and event
matching. Only a few systems have addressed security
issues in a content-based publish/subscribe system. Wang
et al. [24] investigate the security issues and requirements
that arise in an internet-scale publish/subscribe system.
They concluded that due to loose coupling between pub-
lishers and subscribers, many security issues cannot be
directly solved by current technology and requires further
research. Hermes [16] proposes a security service that uses
role-based access control to authorize subscribers as well as
to establish trust in the broker network. Pesonen et al. [15]
addresses the role-based access control in multi-domain
publish/subscribe systems by the use of a decentralized
trust management. Opyrchal et al. [14] try to leverage
concepts from secure group-based multicast techniques for
the secure distribution of events in a publish/subscribe
system. They showed that previous techniques for dynamic
group key management fails in a publish/subscribe scenario,
since every event potentially has a different set of interested
subscribers. To overcome the problem they proposed a key
caching technique. However, broker nodes are assumed
to be completely trustworthy. Eventguard [21] provides
six guards/component to protect each of the five major
publish/subscribe operations (subscribe, unsubscribe, ad-
vertise, unadvertise, publish) and routing. It only supports
topic-based routing through the direct use of pseudorandom
functions. PSGuard [22] addresses scalable key man-
agement in a content-based system by using hierarchical
key derivation to associate keys with subscriptions and
events. It does not address the issues related to the secure
routing of events and subscription confidentiality. Event
confidentiality is not properly ensured in case of complex
subscriptions, i.e., the keys associated with the filters in a
complex subscription are not bind together.

Another drawback with the existing solutions is their as-
sumption about the presence of a broker network [17, 16,
21]. These solutions are not directly applicable to peer-to-
peer environments where subscribers are clustered according
to their interests.

The recent progress of pairing-based cryptography moti-
vates many applications built upon Identity-Base Encryp-
tion. Attribute-Based Encryption [2, 10], is a general form
of Identity-Based Encryption. It allows for a new type of
encrypted access control, where the access control policies
are either embedded in the user private keys or in the ci-
phertexts. Shi et al. [20] and Boneh et al. [4] addresses com-
plex queries (such as conjunction, subset and range queries)
over encrypted data using identity based encryption. Both
approaches address the problem from a pure cryptographic

perspective and are not practical in our scenario. In the
construction of Boneh et al. [4] the cost of public parame-
ters, encryption cost and ciphertext size for range queries
increases with the number of dimensions and number of
points in each dimension i.e. O(d.Ti). Similarly the de-
cryption cost of Shi et al. [20] is exponential in the number
of attributes O((log2(Ti)

d). Therefore, instead of using their
cryptographic mechanisms, we derived our mechanisms di-
rectly from attribute-based encryption. Furthermore, these
systems are not targeted toward content-based systems and
do not address the issues related to verification of event
authenticity, subscription confidentiality and secure event
routing.

10. CONCLUSIONS
In this paper, we have presented a new approach to

provide authentication and confidentiality in a broker-less
content-based publish/subscribe system. The approach is
highly scalable in terms of number of subscribers and pub-
lishers in the system and the number of keys maintained
by them. In particular, we have developed mechanisms to
assign credentials to publishers and subscribers according
to their subscriptions and advertisements. Private keys as-
signed to publishers and subscribers, and the ciphertexts
are labelled with credentials. We adapted techniques from
identity based encryption, i) to ensure that a particular sub-
scriber can decrypt an event only if there is match between
the credentials associated with the event and its private keys
and, ii) to allow subscribers to verify the authenticity of re-
ceived events. Furthermore, we developed a protocol to pre-
serve the weak subscription confidentiality in the presence
of semantic clustering of subscribers.

11. ACKNOWLEDGMENTS
This work is partially funded by SpoVNet project [8] of

Baden-Württemberg Stiftung gGmbH. We would like to thank
Jianwei Yin, Marco Völz and anonymous reviewers for their
helpful comments.

12. REFERENCES
[1] E. Anceaume, M. Gradinariu, A. K. Datta, G. Simon,

and A. Virgillito. A semantic overlay for self-
peer-to-peer publish/subscribe. In ICDCS, 2006.

[2] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption. In Proc.
of the IEEE Symposium on Security and Privacy,
2007.

[3] D. Boneh and M. K. Franklin. Identity-based
encryption from the weil pairing. In Intl. Cryptology
Conf. on Advances in Cryptology, 2001.

[4] D. Boneh and B. Waters. Conjunctive, subset, and
range queries on encrypted data. In 4th theory of
Cryptography Conf., 2007.

[5] J. A. Briones, B. Koldehofe, and K. Rothermel. Spine
: Adaptive publish/subscribe for wireless mesh
networks. Studia Informatika Universalis, 7, 2009.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Trans. on Compt Syst, 2001.

[7] R. Chand and P. Felber. Semantic peer-to-peer
overlays for publish/subscribe networks. In Euro-Par,
pages 1194–1204, 2005.

[8] T. S. Consortium. Spontaneous virtual networks: On
the road towards the internet’s next generation. it -
Information Technology, 2008.

[9] L. Fiege, M. Cilia, G. Muhl, and A. Buchmann.
Publish-subscribe grows up: Support for management,
visibility control, and heterogeneity. IEEE Internet
Computing, 10:48–55, 2006.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In conf. on Computer and
communications security, ., 2006. .

[11] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris.
PeerSim: A Peer-to-Peer Simulator.
http://peersim.sourceforge.net/.

[12] B. Lynn. The pairing-based cryptography (pbc)
library. http://crypto.stanford.edu/pbc/.

[13] V. Muthusamy and H.-A. Jacobsen. Infrastructure-less
content-based publish/subscribe. Technical report,
Middleware Systems Research Group, University of
Toronto, 2007.

[14] L. Opyrchal and A. Prakash. Secure distribution of
events in content-based publish subscribe systems. In
conf. on USENIX Security Symposium, 2001.

[15] L. I. W. Pesonen, D. M. Eyers, and J. Bacon.
Encryption-enforced access control in dynamic
multi-domain publish/subscribe networks. In DEBS,
2007.

[16] P. Pietzuch. Hermes: A Scalable Event-Based
Middleware. PhD thesis, University of Cambridge, Feb
2004.

[17] C. Raiciu and D. S. Rosenblum. Enabling
confidentiality in content-based publish/subscribe
infrastructures. In Intl. Conf. on Security and Privacy
in Communication Networks, 2006.

[18] V. Security. Identity-based encryption technology
overview. In 64th IETF Meeting, Nov. 2005.

[19] A. Shamir. Identity-based cryptosystems and
signature schemes. In Proceedings of CRYPTO 84 on
Advances in cryptology, 1985.

[20] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and
A. Perrig. Multi-dimensional range query over
encrypted data. In Proc. of IEEE Symposium on
Security and Privacy, 2007.

[21] M. Srivatsa and L. Liu. Securing publish-subscribe
overlay services with eventguard. In Proc. of ACM
conf. on Computer and communications security, 2005.

[22] M. Srivatsa and L. Liu. Scalable access control in
content-based publish-subscribe systems. Technical
report, Georgia Institute of Technology, 2006d.

[23] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and
K. Rothermel. Dynamic publish/subscribe to meet
subscriber-defined delay and bandwidth constraints. In
Intl. Conf. on Parallel Computing (Euro-Par), 2010.

[24] C. Wang, A. Carzaniga, D. Evans, and A. Wolf.
Security issues and requirements for internet-scale
publish-subscribe systems. In Proc.of Hawaii Intl.
Conf. on System Sciences (HICSS), 2002.

[25] Y. Yu, B. Yang, Y. Sun, and S.-l. Zhu. Identity based
signcryption scheme without random oracles. Comput.
Stand. Interfaces, 31, 2009.

